首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Virtual memory (VM) CD8+ T cells are present in unimmunized mice, yet possess T‐cell receptors specific for foreign antigens. To date, VM cells have only been characterized in C57BL/6 mice. Here, we assessed the cytokine requirements for VM cells in C57BL/6 and BALB/c mice. As reported previously, VM cells in C57BL/6 mice rely mostly on IL‐15 and marginally on IL‐4. In stark contrast, VM cells in BALB/c mice rely substantially on IL‐4 and marginally on IL‐15. Further, NKT cells are the likely source of IL‐4, because CD1d‐deficient mice on a BALB/c background have significantly fewer VM cells. Notably, this NKT/IL‐4 axis contributes to appropriate effector and memory T‐cell responses to infection in BALB/c mice, but not in C57BL/6 mice. However, the effects of IL‐4 are manifest prior to, rather than during, infection. Thus, cytokine‐mediated control of the precursor population affects the development of virus‐specific CD8+ T‐cell memory. Depending upon the genetic background, different cytokines encountered before infection may influence the subsequent ability to mount primary and memory anti‐viral CD8+ T‐cell responses.  相似文献   

2.
3.
C5a is a proinflammatory mediator that has recently been shown to regulate adaptive immune responses. Here we demonstrate that C5a receptor (C5aR) signaling in DC affects the development of Treg and Th17 cells. Genetic ablation or pharmacological targeting of the C5aR in spleen‐derived DC results in increased production of TGF‐β leading to de novo differentiation of Foxp3+ Treg within 12 h after co‐incubation with CD4+ T cells from DO11.10/RAG2?/? mice. Stimulation of C5aR?/? DC with OVA and TLR2 ligand Pam3CSK4 increased TGF‐β production and induced high levels of IL‐6 and IL‐23 but only minor amounts of IL‐12 leading to differentiation of Th cells producing IL‐17A and IL‐21. Th17 differentiation was also found in vivo after adoptive transfer of CD4+ Th cell into C5aR?/? mice immunized with OVA and Pam3CSK4. The altered cytokine production of C5aR?/? DC was associated with low steady state MHC class II expression and an impaired ability to upregulate CD86 and CD40 in response to TLR2. Our data suggest critical roles for C5aR in Treg and Th17‐cell differentiation through regulation of DC function.  相似文献   

4.
5.
The identification of DC‐derived signals orchestrating activation of Th1 and Th17 immune responses has advanced our understanding on how these inflammatory responses develop. However, whether specific signals delivered by DCs also participate in the regulation of Th2 immune responses remains largely unknown. In this study, we show that administration of antigen‐loaded, IL‐6‐deficient DCs to naïve mice induced an exacerbated Th2 response, characterized by the differentiation of GATA‐3‐expressing T lymphocytes secreting high levels of IL‐4, IL‐5, and IL‐13. Coinjection of wild type and IL‐6‐deficient bone marrow‐derived dendritic cells (BMDCs) confirmed that IL‐6 exerted a dominant, negative influence on Th2‐cell development. This finding was confirmed in vitro, where exogenously added IL‐6 was found to limit IL‐4‐induced Th2‐cell differentiation. iNKT cells were required for optimal Th2‐cell differentiation in vivo although their activation occurred independently of IL‐6 secretion by the BMDCs. Collectively, these observations identify IL‐6 secretion as a major, unsuspected, mechanism whereby DCs control the magnitude of Th2 immunity.  相似文献   

6.
Graft‐versus‐host disease (GvHD) is a frequent life‐threatening complication following allogeneic HSC transplantation (HSCT). IL‐10 is a regulatory cytokine with important roles during GvHD, yet its relevant sources, and mode of action, remain incompletely defined in this disease. Using IL‐10‐deficient donor or host mice (BALB/c or C57BL/6, respectively) in a MHC‐mismatched model for acute GvHD, we found a strongly aggravated course of the disease with increased mortality when either donor or host cells could not produce this cytokine. A lack of IL‐10 resulted in increased allogeneic T‐cell responses and enhanced activation of host DCs in spleen and MLNs. Remarkably, IL‐10 was prominently produced by host‐ and donor‐derived CD5intCD1dintTIM‐1int B cells in this disease, and consistent with this, allogeneic HSCT resulted in exacerbated GvHD when mice lacking IL‐10 expression in B cells were used as donor or host, compared with controls. Taken together, this study demonstrates that host and donor B cell‐derived IL‐10 provides a unique mechanism of suppression of acute GvHD, and suggests that DCs are the targets of this B cell‐mediated suppressive effect. These findings open novel therapeutic possibilities based on the use of B cells to increase the feasibility of allogeneic HSCT.  相似文献   

7.
Previous studies have shown that EAE can be elicited by the adoptive transfer of either IFN‐γ‐producing (Th1) or IL‐17‐producing (Th17) myelin‐specific CD4+ T‐cell lines. Paradoxically, mice deficient in either IFN‐γ or IL‐17 remain susceptible to EAE following immunization with myelin antigens in CFA. These observations raise questions about the redundancy of IFN‐γ and IL‐17 in autoimmune demyelinating disease mediated by a diverse, polyclonal population of autoreactive T cells. In this study, we show that an atypical form of EAE, induced in C57BL/6 mice by the adoptive transfer of IFN‐γ‐deficient effector T cells, required IL‐17 signaling for the development of brainstem infiltrates. In contrast, classical EAE, characterized by predominant spinal cord inflammation, occurred in the combined absence of IFN‐γ and IL‐17 signaling, but was dependent on GM‐CSF and CXCR2. Our findings contribute to a growing body of data, indicating that individual cytokines vary in their importance across different models of CNS autoimmunity.  相似文献   

8.
Th17 cells are often associated with autoimmunity and been shown to be increased in CD11b?/? mice. Here, we examined the role of CD11b in murine collagen‐induced arthritis (CIA). C57BL/6 and CD11b?/? resistant mice were immunized with type II collagen. CD11b?/? mice developed arthritis with early onset, high incidence, and sustained severity compared with C57BL/6 mice. We observed a marked leukocyte infiltration, and histological examinations of the arthritic paws from CD11b?/? mice revealed that the cartilage was destroyed in association with strong lymphocytic infiltration. The CD11b deficiency led to enhanced Th17‐cell differentiation. CD11b?/? dendritic cells (DCs) induced much stronger IL‐6 production and hence Th17‐cell differentiation than wild‐type DCs. Treatment of CD11b?/? mice after establishment of the Treg/Th17 balance with an anti‐IL‐6 receptor mAb significantly suppressed the induction of Th17 cells and reduced arthritis severity. Finally, the severe phenotype of arthritis in CD11b?/? mice was rescued by adoptive transfer of CD11b+ DCs. Taken together, our results indicate that the resistance to CIA in C57BL/6 mice is regulated by CD11b via suppression of IL‐6 production leading to reduced Th17‐cell differentiation. Therefore, CD11b may represent a susceptibility factor for autoimmunity and could be a target for future therapy.  相似文献   

9.
10.
Host protection to helminth infection requires IL‐4 receptor α chain (IL‐4Rα) signalling and the establishment of finely regulated Th2 responses. In the current study, the role of IL‐4Rα‐responsive T cells in Schistosoma mansoni egg‐induced inflammation was investigated. Egg‐induced inflammation in IL‐4Rα‐responsive BALB/c mice was accompanied with Th2‐biased responses, whereas T‐cell‐specific IL‐4Rα‐deficient BALB/c mice (iLckcreIl4ra?/lox) developed Th1‐biased responses with heightened inflammation. The proportion of Foxp3+ Treg in the draining LN of control mice did not correlate with the control of inflammation and was reduced in comparison to T‐cell‐specific IL‐4Rα‐deficient mice. This was due to IL‐4‐mediated inhibition of CD4+Foxp3+ Treg conversion, demonstrated in adoptively transferred Rag2?/? mice. Interestingly, reduced footpad swelling in Il4ra?/lox mice was associated with the induction of IL‐4 and IL‐10‐secreting CD4+CD25?CD103+Foxp3? cells, confirmed in S. mansoni infection studies. Transfer of IL‐4Rα‐responsive CD4+CD25?CD103+ cells, but not CD4+CD25high or CD4+CD25?CD103? cells, controlled inflammation in iLckcreIl4ra?/lox mice. The control of inflammation depended on IL‐10, as transferred CD4+CD25?CD103+ cells from IL‐10‐deficient mice were not able to effectively downregulate inflammation. Together, these results demonstrate that IL‐4 signalling in T cells inhibits Foxp3+ Treg in vivo and promotes CD4+CD25?CD103+Foxp3? cells that control S. mansoni egg‐induced inflammation via IL‐10.  相似文献   

11.
12.
Dermatomyositis (DM) and polymyositis (PM) are collectively termed autoimmune myopathy. To investigate the difference between muscle‐ and skin‐infiltrating T cells and to address their role for myopathy, we characterized T cells that were directly expanded from the tissues. Enrolled into this study were 25 patients with DM and three patients with PM. Muscle and skin biopsied specimens were immersed in cRPMI medium supplemented with interleukin (IL)‐2 and anti‐CD3/CD28 antibody‐conjugated microbeads. The expanded cells were subjected to flow cytometry to examine their phenotypes. We analysed the cytokine concentration in the culture supernatants from the expanded T cells and the frequencies of cytokine‐bearing cells by intracellular staining. There was non‐biased in‐vitro expansion of tissue‐infiltrating CD4+ and CD8+ T cells from the muscle and skin specimens. The majority of expanded T cells were chemokine receptor (CCR) type 7CD45RO+ effecter memory cells with various T cell receptor (TCR) Vβs. The skin‐derived but not muscle‐derived T cells expressed cutaneous lymphocyte antigen (CLA) and CCR10 and secreted large amounts of IL‐17A, suggesting that T helper type 17 (Th17) cells may have a crucial role in the development of skin lesions. Notably, the frequency of IL‐4‐producing chemokine (C‐X‐C motif) receptor (CXCR)4+ Th2 cells was significantly higher in the muscle‐derived cells and correlated inversely with the serum creatine phosphokinase (CPK) and lactate dehydrogenase (LDH) levels. stromal‐derived factor (SDF)‐1/CXCL12, a ligand for CXCR4, was expressed at a high level in the vascular endothelial cells between muscular fasciculi. Our study suggests that T cell populations in the muscle and skin are different, and the Th2 cell infiltrate in the muscle is associated with the low severity of myositis in DM.  相似文献   

13.
Early production of pro‐inflammatory cytokines, including IFN‐γ, is essential for control of blood‐stage malaria infections. We have shown that IFN‐γ production can be induced among human natural killer (NK) cells by coculture with Plasmodium falciparum infected erythrocytes, but the importance of this response is unclear. To further explore the role of NK cells during malaria infection, we have characterized the NK‐cell response of C57BL/6 mice during lethal (PyYM) or nonlethal (Py17XNL) P. yoelii infection. Ex vivo flow cytometry revealed that NK cells are activated within 24 h of Py17XNL blood‐stage infection, expressing CD25 and producing IFN‐γ; this response was blunted and delayed during PyYM infection. CD25 expression and IFN‐γ production were highly correlated, suggesting a causal relationship between the two responses. Subsequent in vitro experiments revealed that IL‐18 signaling is essential for induction of CD25 and synergizes with IL‐12 to enhance CD25 expression on splenic NK cells. In accordance with this, Py17XNL‐infected erythrocytes induced NK‐cell CD25 expression and IFN‐γ production in a manner that is completely IL‐18‐ and partially IL‐12‐dependent, and IFN‐γ production is enhanced by IL‐2. These data suggest that IL‐2 signaling via CD25 amplifies IL‐18‐ and IL‐12‐mediated NK‐cell activation during malaria infection.  相似文献   

14.
IL‐23 plays a critical role in EAE induced by the active immunization of C57BL/6 mice with an immunodominant epitope of myelin oligodendrocyte glycoprotein (MOG35–55). It was initially assumed that the pathogenic effects of IL‐23 were directly related to the generation, expansion and/or stabilization of autoreactive CD4+ Th17 cells. However, a number of recent studies have uncovered discrepancies between the requirement for IL‐23, as opposed to Th17 cells or their products (IL‐17A, IL‐17F and IL‐22), in the development of EAE. In this issue of the European Journal of Immunology, it is demonstrated that impairment of IL‐23 signaling does not impede the expansion of myelin‐specific CD4+ T cells in peripheral lymphoid tissues but inhibits their accumulation in the CNS. This paper contributes to a growing body of data that implicates IL‐23 in the acquisition of CNS homing properties by autoreactive effector cells.  相似文献   

15.
Basophils are mostly known for their involvement in allergic reactions. Recent studies in mice indicate a role for basophils in the induction of adaptive immunity, especially T helper 2 (Th2) responses. Therefore, it would be highly important to understand how basophils respond to pathogen‐associated molecules, such as ligands for toll‐like receptors (TLRs), and if the basophils could promote Th2 responses via these stimuli. To this end, the activation of basophils via TLRs in combination with activation via IgE was studied, as well as its effect on T helper cell skewing. Using quantitative PCR, we demonstrated the presence of mRNA for TLRs 1–8 in human basophils. Basophils responded to TLR triggering with differential cytokine production, but not with degranulation. Simultaneous triggering of TLRs and IgE led to synergy in production of IL‐4, IL‐8, IL‐13, and RANTES. Furthermore, the synergistic effects on basophils mediated by IgE and TLR‐4 triggering allowed robust Th2 skewing upon activation of naïve human CD4+ T cells. Our data show that human basophils respond to TLR ligands in synergy with IgE‐mediated activation and that the cytokines produced can promote Th2 differentiation. These results indicate a role for basophils in the regulation of T‐cell responses in humans.  相似文献   

16.
Schistosoma japonicum infection can induce granulomatous inflammation and cause tissue damage in the mouse liver. The cytokine secretion profile of T helper (Th) cells depends on both the nature of the activating stimulus and the local microenvironment (e.g. cytokines and other soluble factors). In the present study, we found an accumulation of large numbers of IFN‐γ+ IL‐4+ CD4+ T cells in mouse livers. This IFN‐γ+ IL‐4+ cell population increased from 0·68 ± 0·57% in uninfected mice to 7·05 ± 3·0% by week 4 following infection and to 9·6 ± 5·28% by week 6, before decreasing to 6·3 ± 5·9% by week 8 in CD4 T cells. Moreover, IFN‐γ+ IL‐4+ Th cells were also found in mouse spleen and mesenteric lymph nodes 6 weeks after infection. The majority of the IFN‐γ+ IL‐4+ Th cells were thought to be related to a state of immune activation, and some were memory T cells. Moreover, we found that these S. japonicum infection‐induced IFN‐γ+ IL‐4+ cells could express interleukin‐2 (IL‐2), IL‐9, IL‐17 and high IL‐10 levels at 6 weeks after S. japonicum infection. Taken together, our data suggest the existence of a population of IFN‐γ+ IL‐4+ plasticity effector/memory Th cells following S. japonicum infection in C57BL/6 mice.  相似文献   

17.
IL‐6 is a pleiotropic cytokine involved in the physiology of virtually every organ system. Recent studies have demonstrated that IL‐6 has a very important role in regulating the balance between IL‐17‐producing Th17 cells and regulatory T cells (Treg). The two T‐cell subsets play prominent roles in immune functions: Th17 cell is a key player in the pathogenesis of autoimmune diseases and protection against bacterial infections, while Treg functions to restrain excessive effector T‐cell responses. IL‐6 induces the development of Th17 cells from naïve T cells together with TGF‐β; in contrast, IL‐6 inhibits TGF‐β‐induced Treg differentiation. Dysregulation or overproduction of IL‐6 leads to autoimmune diseases such as multiple sclerosis (MS) and rheumatoid arthritis (RA), in which Th17 cells are considered to be the primary cause of pathology. Given the critical role of IL‐6 in altering the balance between Treg and Th17 cells, controlling IL‐6 activities is potentially an effective approach in the treatment of various autoimmune and inflammatory diseases. Here, we review the role of IL‐6 in regulating Th17/Treg balance and describe the critical functions of IL‐6 and Th17 in immunity and immune‐pathology.  相似文献   

18.
19.
IL‐10, a cytokine with pleiotropic functions is produced by many different cells. Although IL‐10 may be crucial for initiating protective Th2 responses to helminth infection, it may also function as a suppressive cytokine preventing immune pathology or even contributing to helminth‐induced immune evasion. Here, we show that B cells and T cells produce IL‐10 during murine Litomosoides sigmodontis infection. IL‐10‐deficient mice produced increased amounts of L. sigmodontis‐specific IFN‐γ and IL‐13 suggesting a suppressive role for IL‐10 in the initiation of the T‐cell response to infection. Using cell type‐specific IL‐10‐deficient mice, we dissected different functions of T‐cell‐ and B‐cell‐derived IL‐10. Litomosoides sigmodontis‐specific IFN‐γ, IL‐5, and IL‐13 production increased in the absence of T‐cell‐derived IL‐10 at early and late time points of infection. In contrast, B‐cell‐specific IL‐10 deficiency did not lead to significant changes in L. sigmodontis‐specific cytokine production compared to WT mice. Our results suggest that the initiation of Ag‐specific cellular responses during L. sigmodontis infection is suppressed by T‐cell‐derived IL‐10 and not by B‐cell‐derived IL‐10.  相似文献   

20.
The genus leishmania comprises different protozoan parasites which are causative agents of muco‐cutaneous and systemic, potentially lethal diseases. After infection with the species Leishmania major, resistant mice expand Th1 cells which stimulate macrophages for Leishmania destruction. In contrast, susceptible mice generate Th2 cells which deactivate macrophages, leading to systemic spread of the pathogens. Th‐cell differentiation is determined within the first days, and Th2 cell differentiation requires IL‐4, whereby the initial IL‐4 source is often unknown. Mast cells are potential sources of IL‐4, and hence their role in murine leishmaniasis has previously been studied in mast cell‐deficient Kit mutant mice, although these mice display immunological phenotypes beyond mast cell deficiency. We therefore readdressed this question by infecting Kit‐independent mast cell‐deficient mice that are Th1 (C57BL/6 CpaCre) or Th2 (BALB/c CpaCre) prone with L. major. Using different parasite doses and intra‐ or subcutaneous infection routes, the results demonstrate no role of mast cells on lesion size development, parasite load, immune cell phenotypes expanding in draining lymph nodes, and cytokine production during murine cutaneous leishmaniasis. Thus, other cell types such as ILCs or T cells have to be considered as primary source of Th2‐driving IL‐4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号