首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Interleukin‐33 (IL‐33) is an IL‐1 family cytokine that signals via its receptor T1/ST2, and is a key regulator of inflammation, notably the type‐2 response implicated in allergic asthma. Critical to our understanding of the role of IL‐33 is the identification of the cellular sources of IL‐33. Although progress has been made in this area, the development of a robust live cell reporter of expression would allow the localisation of IL‐33 during ongoing immune responses. We have generated a fluorescent reporter mouse line, Il33Cit/+, to define the expression profile of IL‐33 in vivo and demonstrate its temporal and spatial expression during experimental allergic asthma responses. We found that type‐2 pneumocytes constitute the major source of IL‐33 upon allergic lung inflammation following exposure to OVA, fungal extract or ragweed pollen. Using Il33Cit/Cit mice (IL‐33‐deficient), we establish a role for IL‐33 early in the initiation of type‐2 responses and the induction of nuocytes (ILC2). We also demonstrate a potential mechanism of action by which IL‐33 rapidly initiates type‐2 immune responses. Il33Cit/+ mice have enabled new insights into the initiation of type‐2 responses and will provide an important tool for further dissection of this important inflammatory pathway in vivo.  相似文献   

3.
Delta‐like protein 1 (DLK1) is a noncanonical ligand that inhibits NOTCH1 receptor activity and regulates multiple differentiation processes. In macrophages, NOTCH signaling increases TLR‐induced expression of key pro‐inflammatory mediators. We have investigated the role of DLK1 in macrophage activation and inflammation using Dlk1‐deficient mice and Raw 264.7 cells overexpressing Dlk1. In the absence of Dlk1, NOTCH1 expression is increased and the activation of macrophages with TLR3 or TLR4 agonists leads to higher production of IFN‐β and other pro‐inflammatory cytokines, including TNF‐α, IL‐12, and IL‐23. The expression of key proteins involved in IFN‐β signaling, such as IRF3, IRF7, IRF1, or STAT1, as well as cRel, or RelB, which are responsible for the generation of IL‐12 and IL‐23, is enhanced in Dlk1 KO macrophages. Consistently, Dlk1 KO mice are more sensitive to LPS‐induced endotoxic shock. These effects seem to be mediated through the modulation of NOTCH1 signaling. TLR4 activation reduces DLK1 expression, whereas increases NOTCH1 levels. In addition, DLK1 expression diminishes during differentiation of human U937 cells to macrophages. Overall, these results reveal a novel role for DLK1 as a regulator of NOTCH‐mediated, pro‐inflammatory macrophage activation, which could help to ensure a baseline level preventing constant tissue inflammation.  相似文献   

4.
Monocytes are highly abundant circulatory effector cells and play a vital role in driving or resolving inflammatory processes depending on their activation phenotype. We investigated and compared a panel of polarization protocols of blood‐derived monocytes to achieve a stable, optimal and effective regimen for in vitro induction of immunosuppressive human macrophages, evaluating their surface receptor expression, cytokine profile, scavenging function and ability to suppress T‐cell proliferation. Importantly, we assessed the effect of copolarization or secondary pro‐inflammatory stimulation of a primary anti‐inflammatory activation phenotype. A combination of IL‐4/IL‐10/TGF‐β yielded a relatively stable and dominant immunosuppressive phenotype characterized by higher IL‐10 production and down‐regulated TNF‐α, IL‐6, CD86, CD274 and MHC II expression. Functionally, IL‐4/IL‐10/TGF‐β‐stimulated macrophages (M2) had a potent deactivating effect on a subsequent pro‐inflammatory LPS/IFNγ‐activated macrophage (M1) stimulation and significantly suppressed T‐cell proliferation. Monocytes derived from patients with chronic inflammatory diseases could be induced to be anti‐inflammatory using this protocol. Pre‐differentiation with GM‐CSF or M‐CSF was further demonstrated to enhance final M1/M2 activation status. Our findings indicate a robust polarization protocol for generation of specific immunosuppressive human monocyte‐derived macrophages.  相似文献   

5.
6.
Group 2 innate lymphoid cells (ILC2s) produce a significant amount of interleukin‐5 (IL‐5), which supports eosinophil responses in various tissues; they also produce IL‐13, which induces mucus production and contributes to tissue repair or fibrosis. The ILC2s are activated by alarmins, such as IL‐33 released from epithelia, macrophages and natural killer T (NKT) cells in response to infection and allergen exposure, leading to epithelial injury. We examined gene expression in lung ILC2s and found that ILC2s expressed Ifngr1, the receptor for interferon‐γ (IFN‐γ). Interferon‐γ severely inhibited IL‐5 and IL‐13 production by lung and kidney ILC2s. To evaluate the effects in vivo, we used α‐galactosylceramide (α‐GalCer) to induce NKT cells to produce IL‐33 and IFN‐γ. Intraperitoneal injection of α‐GalCer in mice induced NKT cell activation resulting in IL‐5 and IL‐13 production by ILC2s. Administration of anti‐IFN‐γ together with α‐GalCer significantly enhanced the production of IL‐5 and IL‐13 by ILC2s in lung and kidney. Conversely, cytokine production from ILC2s was markedly suppressed after injection of exogenous IL‐33 in Il33?/? mice pre‐treated with α‐GalCer. Hence, IFN‐γ induced or already present in tissues can impact downstream pleiotropic functions mediated by ILC2s, such as inflammation and tissue repair.  相似文献   

7.
8.
Intestinal macrophages (IMs) are uniquely programmed to tolerate exposure to bacteria without mounting potent inflammatory responses. The cytokine IL‐10 maintains the macrophage anti‐inflammatory response such that loss of IL‐10 results in chronic intestinal inflammation. To investigate how IL‐10‐deficiency alters IM programming and bacterial tolerance, we studied changes in chromatin accessibility in response to bacteria in macrophages from two distinct niches, the intestine and bone‐marrow, from both wild‐type and IL‐10‐deficient (Il10?/?) mice. We identified chromatin accessibility changes associated with bacterial exposure and IL‐10 deficiency in both bone marrow derived macrophages and IMs. Surprisingly, Il10?/? IMs adopted chromatin and gene expression patterns characteristic of an inflammatory response, even in the absence of bacteria. Further, when recombinant IL‐10 was added to Il10?/? cells, it could not revert the chromatin landscape to a normal state. Our results demonstrate that IL‐10 deficiency results in stable chromatin alterations in macrophages, even in the absence of bacteria. This supports a model in which IL‐10‐deficiency leads to chromatin alterations that contribute to a loss of IM tolerance to bacteria, which is a primary initiating event in chronic intestinal inflammation.  相似文献   

9.
10.
Systemic sclerosis is an autoimmune idiopathic connective tissue disease, characterized by vasculopathy, inflammation and fibrosis. There appears to be a link between inflammation and fibrosis, although the exact nature of the relationship is unknown. Serum amyloid A (SAA) is an acute‐phase protein that is elevated up to 1000‐fold in times of infection or inflammation. This acute‐phase reactant, as well as being a marker of inflammation, may initiate signals in a cytokine‐like manner, possibly through toll‐like receptors (TLRs) promoting inflammation. This study addressed the role of SAA in initiating interleukin‐6 (IL‐6) production in dermal fibroblasts and the role of TLR2 in this system. We show that SAA induces IL‐6 secretion in healthy dermal fibroblasts and that blockade of TLR2 with a neutralizing antibody to TLR2 or specific small interfering RNA attenuated the SAA‐induced IL‐6 secretion and that this was also mediated through the TLR adaptor protein IL‐1 receptor‐associated kinase 4. The effect is nuclear factor‐κB‐mediated because blockade of nuclear factor‐κB reduced the induction. We also demonstrate that dermal fibroblasts express TLR2; this is functional and over‐expressed in the fibroblasts of patients with systemic sclerosis. Taken together these data suggest that SAA is a danger signal that initiates IL‐6 signalling in systemic sclerosis via enhanced TLR2 signalling.  相似文献   

11.
Immune cells express powerful and harmful effectors that require tight regulation. Heterotrimeric G proteins are critical mediators in translating extracellular signals into cell responses, which need a fine‐tuned regulation for the control of cell activation. Regulator of G‐protein signalling 16 (RGS16) has been identified as a key factor of G protein‐mediated activation in lymphocytes, modulating inflammatory and survival responses of various cell types. However, data about the expression of this regulatory protein in monocytes are scarce, and it has remained unclear whether activation and migration of these cells are regulated by RGS16. In this study, the impact of RGS16 on the production of inflammatory cytokines by activated human monocytes was investigated in vitro using the human promonocytic cell line THP‐1 as a model. Gain and loss of function experiments showed that RGS16 overexpression reduces the expression of pro‐inflammatory cytokines IL‐1β, IL‐6, IL‐8 and TNFα, while RGS16 knockdown by RNAi upregulates IL‐1β, IL‐6 and TNFα but not IL‐8. RGS16 knockdown was also shown to enhance Pam3‐mediated induction of the anti‐inflammatory cytokine IL‐10. Our results indicate that RGS16 restricts the activation‐induced pro‐inflammatory profile in myeloid cells.  相似文献   

12.
Interleukin‐33 (IL‐33) is an IL‐1 family cytokine that has a role in regulating T helper type 2 cytokines and mast cell development. Expression of IL‐33 is also associated with chronic inflammatory conditions such as rheumatoid arthritis. However, there is little information regarding IL‐33 in myeloid cell immune responses, which are important in immunity and inflammation. We therefore investigated the expression, intracellular location and regulation of myeloid cell IL‐33 by lipopolysaccharide (LPS) from Escherichia coli and the periodontal pathogen Porphyromonas gingivalis. We detected IL‐33 messenger RNA in the human promonocytic cell line THP‐1, in monocytes derived from these cells and in primary human monocytes. However, IL‐33 was not expressed in primary monocyte‐derived dendritic cells. Stimulation of monocytes with E. coli LPS (Toll‐like receptor 4 agonist) and LPS from P. gingivalis (Toll‐like receptor 2 agonist) up‐regulated IL‐33 at both the messenger RNA and protein levels but IL‐1β and tumour necrosis factor‐α had no effect. The IL‐33 protein was mainly found in the cytoplasm of monocytes with no evidence of nuclear translocation in stimulated cells. Furthermore, no IL‐33 secretion was detected after stimulation with LPS and/or ATP. These data indicate that the function, if any, of IL‐33 in activated monocytes is primarily intracellular. Interestingly, immunofluorescence analysis indicated that IL‐33 was sequestered in the nucleus of monocytes undergoing apoptosis but released into the extracellular milieu by LPS‐stimulated cells in which necrosis had been induced by freeze–thawing. Therefore, this endorses the view that IL‐33 may function as an ‘alarmin’ and have a role in signalling cellular damage and inflammatory disease pathogenesis through release from damaged or necrotic cells.  相似文献   

13.
IL‐33 has recently been identified as a cytokine endowed with pro‐Th2 functions, raising the question of its effect on invariant natural killer T cell (iNKT), which are potent IL‐4 producers. Here, we report a two‐fold increase of iNKT‐cell counts in spleen and liver after a 7‐day treatment of mice with IL‐33, which results from a direct effect, given that purified iNKT cells express the T1/ST2 receptor constitutively and respond to IL‐33 by in vitro expansion and functional activation. Conversely to the expected pro‐Th2 effect, IL‐33 induced a preferential increase in IFN‐γ rather than IL‐4 production upon TCR engagement that depended on endogenous IL‐12. Moreover, in combination with the pro‐inflammatory cytokine IL‐12, IL‐33 enhanced IFN‐γ production by both iNKT and NK cells. Taken together these data support the conclusion that IL‐33 can contribute as a co‐stimulatory factor to innate cellular immune responses.  相似文献   

14.
Human cathelicidin LL‐37 protects against infections and endotoxin‐induced inflammation. In a recent study we have shown that IG‐19, an LL‐37‐derived peptide, protects in a murine model of arthritis. Cytokine interleukin‐32 (IL‐32) is elevated and directly associated with the disease severity of inflammatory arthritis. Therefore, in this study we examined the effects of LL‐37 and IG‐19 on IL‐32‐induced responses in human peripheral blood‐derived mononuclear cells (PBMC) and macrophages. We showed that CD14+ monocytes are the primary cells that produce pro‐inflammatory tumour necrosis factor‐α (TNF‐α) following stimulation of PBMC with IL‐32. We demonstrated that LL‐37 and IG‐19 significantly suppress IL‐32‐induced production of pro‐inflammatory cytokines, e.g. TNF‐α and IL‐1β, without altering chemokine production. In contrast, LL‐37 and IG‐19 enhance the production of the anti‐inflammatory cytokine IL‐1RA. Further mechanistic studies revealed that LL‐37 and IG‐19 suppress IL‐32‐mediated phosphorylation of Fyn (Y420) Src kinase. In contrast, IL‐32‐mediated phosphorylation of AKT‐1 (T308) and MKP‐1 (S359) is not suppressed by the peptides. LL‐37 and IG‐19 alone induce the phosphorylation of MKP‐1 (S359), which is a known negative regulator of inflammation. Furthermore, the peptides induce the activity of p44/42 mitogen‐activated protein kinase, which is known to phosphorylate MKP‐1 (S359). This is the first study to demonstrate the regulation of IL‐32‐induced inflammation by LL‐37 and its derivative peptide IG‐19. The mechanistic results from this study suggest that regulation of immune‐mediated inflammation by these peptides may be controlled by the dual phosphatase MKP‐1. We speculate that LL‐37 and its derivatives may contribute to the control of immune‐mediated inflammatory diseases.  相似文献   

15.
16.
Interleukin‐33 (IL‐33) and its receptor ST2 are over‐expressed in clinical colitis tissue. However, the significance of these observations is at present unknown. Significantly, we demonstrate here that IL33 and ST2 are the primary early genes induced in the inflamed colon of BALB/c mice following dextran sulphate sodium (DSS)‐induced experimental ulcerative colitis. Accordingly diarrhoea and DSS‐induced colon inflammation were impaired in ST2?/? BALB/c mice and exacerbated in wild‐type mice by treatment with exogenous recombinant IL‐33, associated respectively with reduced and enhanced expression of chemokines (CXCL9 and CXCL10), and inflammatory (IL‐4, IL‐13, IL‐1, IL‐6, IL‐17) and angiogenic (vascular endothelial growth factor) cytokines in vivo. The exacerbation effect of treatment with recombinant IL‐33 on DSS‐induced acute colitis was abolished in IL‐4?/? BALB/c mice. Hence, IL‐33 signalling via ST2, by inducing an IL‐4‐dependent immune response, may be a major pathogenic factor in the exacerbation of ulcerative colitis.  相似文献   

17.
18.
19.
Bone‐marrow‐derived macrophages are divided into two phenotypically and functionally distinct subsets, M1 and M2 macrophages. Recently, it was shown that adoptive transfer of M2‐polarized peritoneal macrophages reduced the severity of experimental colitis in mice. However, it is still unclear whether peritoneal macrophages possess the same ability to be polarized to cells with functionally different phenotypes and cytokine production patterns as bone‐marrow‐derived macrophages. To address this question, we examined the ability of peritoneal macrophages to be polarized to the M1 and M2 phenotypes and determined the specific cytokine profiles of cells with each phenotype. We showed that peritoneal macrophages, as well as bone‐marrow‐derived macrophages, were differentiated into M1 and M2 phenotypes following stimulation with interferon‐γ (IFN‐γ) and interleukin‐4 (IL‐4)/IL‐13, respectively. Following in vitro stimulation with lipopolysaccharide, M2‐polarized peritoneal macrophages predominantly expressed T helper type 2 (Th2) cytokines and regulatory cytokines, including IL‐4, IL‐13, transforming growth factor‐β and IL‐10, whereas M1‐polarized peritoneal macrophages expressed negligible amounts of Th1 and pro‐inflammatory cytokines. ELISA showed that M2‐polarized peritoneal macrophages produced significantly more IL‐10 than M1‐polarized peritoneal macrophages. Notably, M2‐polarized peritoneal macrophages contributed more to the suppression of T‐cell proliferation than did M1‐polarized peritoneal macrophages. The mRNA expression of Th2 cytokines, including IL‐4 and IL‐13, increased in T‐cells co‐cultured with M2‐polarized macrophages. Hence, our findings showed that M2 polarization of peritoneal macrophages induced regulatory cytokine production and suppressed T‐cell proliferation in vitro, and that resident peritoneal macrophages could be used as a new adoptive transfer therapy for autoimmune/inflammatory diseases after polarization to the regulatory phenotype ex vivo.  相似文献   

20.
The T‐helper cell type 2‐promoting cytokine interleukin‐33 (IL‐33) has been implicated in asthma pathogenesis. Angiogenesis is a feature of airways remodelling in asthma. We hypothesized that IL‐33 induces airways angiogenesis and expression of angiogenic factors in an established murine surrogate of asthma. In the present study, BALB/c mice were subjected to serial intranasal challenge with IL‐33 alone for up to 70 days. In parallel, ovalbumin (OVA) ‐sensitized mice were subjected to serial intranasal challenge with OVA or normal saline to serve as positive and negative controls, respectively. Immunohistochemical analysis of expression of von Willebrand factor and erythroblast transformation‐specific‐related gene, both blood vessel markers, and angiogenic factors angiogenin, insulin‐like growth factor‐1, endothelin‐1, epidermal growth factor and amphiregulin was performed in lung sections ex vivo. An established in‐house assay was used to test whether IL‐33 was able to induce microvessel formation by human vascular endothelial cells. Results showed that serial intranasal challenge of mice with IL‐33 or OVA resulted in proliferation of peribronchial von Willebrand factor‐positive blood vessels to a degree closely related to the total expression of the angiogenic factors amphiregulin, angiogenin, endothelin‐1, epidermal growth factor and insulin‐like growth factor‐1. IL‐33 also induced microvessel formation by human endothelial cells in a concentration‐dependent fashion in vitro. Our data are consistent with the hypothesis that IL‐33 has the capacity to induce angiogenesis at least partly by increasing local expression of multiple angiogenic factors in an allergen‐independent murine asthma surrogate, and consequently that IL‐33 or its receptor is a potential novel molecular target for asthma therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号