首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FoxP3+ regulatory T (Treg) cells comprise a highly dynamic population that restrains autoreactivity. Although complete or long‐term depletion of Foxp3+CD4+ Treg cells in adult mice has been shown to result in chronic inflammation and autoimmune disease, the impact of transient Treg‐cell depletion on self‐reactive responses is poorly defined. A new study published in this issue of the European Journal of Immunology [Eur. J. Immunol. 2014. 44: 3621–3631] shows that, although transient depletion of Treg cells in mice is swiftly followed by recovery of Treg‐cell numbers, the “rebounded” population fails to maintain tolerance, culminating in severe autoimmune gastritis. This commentary explores new questions about the quantitative and qualitative aspects of Treg‐cell function in immunological tolerance raised by this study and others.  相似文献   

2.
Foxp3+ Treg are crucial for the maintenance of self‐tolerance and have been shown to control CD8+ T‐cell effector functions. In addition, Treg are thought to control the priming of CD8+ T cells, which recognize the same antigens as Treg. Taking advantage of our model of peripheral tolerance induction to influenza hemagglutinin (HA) after HA gene transfer, we found that HA‐specific Treg suppress antigen‐linked CTL responses through early blockade of CD8+ T‐cell expansion. Confronted with their cognate antigen, Treg expand more rapidly than CD8+ T cells and are highly suppressive only during the initial stages of immune priming. They nullify HA‐specific CD8+ T‐cell responses, local inflammatory responses and rejection of HA transduced cells. When HA gene transfer is performed with extensive tissue inflammation, HA‐specific Treg are less effective but still reduce the frequency of newly primed HA‐specific CD8+ T cells and the ensuing frequency of memory CD8+ T cells. Our results demonstrate that Treg control CTL priming in an antigen‐specific manner at the level of T‐cell expansion, highlighting how self‐reactive Treg could prevent the induction of autoimmune responses through selective blockade of autoreactive T‐cell proliferation.  相似文献   

3.
4.
CD4+Foxp3+ Treg maintain peripheral tolerance and influence immune responses to foreign antigens. The thymus is an important source of Treg, but controversy exists as to whether T cells are selected into the Treg lineage based on signals received through TCR specific for self‐peptides. To examine the specificity of TCR expressed by Treg and its effect on CD4+ T‐cell development, we generated Treg‐TCR transgenic mice. Deletion of >90% of CD4+ T cells in RAG‐sufficient mice, and nearly 100% deletion in RAG?/? mice expressing this TCR indicate that the TCR is specific for an unknown, naturally expressed peptide in the thymus. Deletion occurs late in development, suggesting this peptide is presented by APC in the thymic medulla. These studies are the first to describe the effects of expressing a Treg‐TCR on CD4+ T‐cell development. The implications of our data for models of Treg selection are discussed.  相似文献   

5.
《Immunology》2017,152(2):265-275
Induction of tolerance is a key mechanism to maintain or to restore immunological homeostasis. Here we show that Foxp3+ regulatory T (Treg) cells use Dickkopf‐1 (DKK‐1) to regulate T‐cell‐mediated tolerance in the T‐cell‐mediated autoimmune colitis model. Treg cells from DKK‐1 hypomorphic doubleridge mice failed to control CD4+ T‐cell proliferation, resulting in CD4 T‐cell‐mediated autoimmune colitis. Thymus‐derived Treg cells showed a robust expression of DKK‐1 but not in naive or effector CD4 T cells. DKK‐1 expression in Foxp3+ Treg cells was further increased upon T‐cell receptor stimulation in vitro and in vivo. Interestingly, Foxp3+ Treg cells expressed DKK‐1 in the cell membrane and the functional inhibition of DKK‐1 using DKK‐1 monoclonal antibody abrogated the suppressor function of Foxp3+ Treg cells. DKK‐1 expression was dependent on de novo protein synthesis and regulated by the mitogen‐activated protein kinase pathway but not by the canonical Wnt pathway. Taken together, our results highlight membrane‐bound DKK‐1 as a novel Treg‐derived mediator to maintain immunological tolerance in T‐cell‐mediated autoimmune colitis.  相似文献   

6.
Adoptive transfer of regulatory T (Treg) cells could be an alternative to chronic immunosuppression for prevention of allogeneic graft rejection. While polyspecific Treg cells can prevent immune responses under lymphopenic conditions, Ag‐specific Treg cells are needed to treat autoimmunity and graft rejection. Yet, reliable markers for Ag‐specific Treg cells are missing. We report that latency‐associated peptide (LAP) and glycoprotein A repetitions predominant (GARP) can identify human Ag‐specific Treg cells. In addition, we show that the depletion of CD154+ cells from LAP+ or GARP+ Treg cells increases the Treg‐cell purity to over 90%, as assessed by epigenetic analysis. These Ag‐specific Treg cells can be isolated magnetically and might contribute to the development of GMP‐based protocols. In addition, Ag‐specific Treg cells are functionally far superior to CD4+CD25high or CD4+CD25highCD127low Treg cells in vitro and in preventing strong alloreactions in humanized mice. They could, therefore, have a high therapeutic potential for the control of alloimmune, autoimmune, and allergic immune responses in patients.  相似文献   

7.
Targeting the BAFF/APRIL system has shown to be effective in preventing T‐cell dependent autoimmune disease in the NOD mouse, a spontaneous model of type 1 diabetes. In this study we generated BAFF‐deficient NOD mice to examine how BAFF availability would influence T‐cell responses in vivo and the development of spontaneous diabetes. BAFF‐deficient NOD mice which lack mature B cells, were protected from diabetes and showed delayed rejection of an allogeneic islet graft. Diabetes protection correlated with a failure to expand pathogenic IGRP‐reactive CD8+ T cells, which were maintained in the periphery at correspondingly low levels. Adoptive transfer of IGRP‐reactive CD8+ T cells with B cells into BAFF‐deficient NOD mice enhanced IGRP‐reactive CD8+ T‐cell expansion. Furthermore, when provoked with cyclophosphamide, or transferred to a secondary lymphopenic host, the latent pool of self‐reactive T cells resident in BAFF‐deficient NOD mice could elicit beta cell destruction. We conclude that lack of BAFF prevents the procurement of B‐cell‐dependent help necessary for the emergence of destructive diabetes. Indeed, treatment of NOD mice with the BAFF‐blocking compound, BR3‐Fc, resulted in a delayed onset and reduced incidence of diabetes.  相似文献   

8.
We reported previously that vaccination of reconstituted, lymphopenic mice resulted in a higher frequency of tumor‐specific effector T cells with therapeutic activity than vaccination of normal mice. Here, we show that lymphopenic mice reconstituted with spleen cells from tumor‐bearing mice (TBM), a situation that resembles the clinical condition, failed to generate tumor‐specific T cells with therapeutic efficacy. However, depletion of CD25+ Treg from the spleen cells of TBM restored tumor‐specific priming and therapeutic efficacy. Adding back TBM CD25+ Treg to CD25? naïve and TBM donor T cells prior to reconstitution confirmed their suppressive role. CD25+ Treg from TBM prevented priming of tumor‐specific T cells since subsequent depletion of CD4+ T cells did not restore therapeutic efficacy. This effect may not be antigen‐specific as three histologically distinct tumors generated CD25+ Treg that could suppress the T‐cell immune response to a melanoma vaccine. Importantly, since ex vivo depletion of CD25+ Treg from TBM spleen cells prior to reconstitution and vaccination fully restored the generation of therapeutic effector T cells, even in animals with established tumor burden, we have initiated a translational clinical trial of this strategy in patients with metastatic melanoma.  相似文献   

9.
Human autoimmune diseases are often characterized by a relative deficiency in CD4+CD25+ regulatory T cells (Treg). We therefore hypothesized that expansion of Treg can ameliorate autoimmune pathology. We tested this hypothesis in an experimental model for autoimmune myasthenia gravis (MG), a B‐cell‐mediated disease characterized by auto‐Ab directed against the acetylcholine receptor within neuromuscular junctions. We showed that injection of immune complexes composed of the cytokine IL‐2 and anti‐IL‐2 mAb (JES6‐1A12) induced an effective and sustained expansion of Treg, via peripheral proliferation of CD4+CD25+Foxp3+ cells and peripheral conversion of CD4+CD25?Foxp3? cells. The expanded Treg potently suppressed autoreactive T‐ and B‐cell responses to acetylcholine receptor and attenuated the muscular weakness that is characteristic of MG. Thus, IL‐2/anti‐IL‐2 mAb complexes can expand functional Treg in vivo, providing a potential clinical application of this modality for treatment of MG and other autoimmune disorders.  相似文献   

10.
Costimulatory signals are required for priming and activation of naive T cells, while it is less clear how they contribute to induction of regulatory T (Treg)‐cell activity. We previously reported that the blockade of the B7‐CD28 and CD40L‐CD40 interaction efficiently suppresses allogeneic T‐cell activation in vivo. This was characterized by an initial rise in Foxp3+ cells, followed by depletion of host‐reactive T cells. To further investigate effects of costimulatory blockade on Treg cells, we used an in vitro model of allogeneic CD4+ cell activation. When CTLA‐4Ig and anti‐CD40L mAb (MR1) were added to the cultures, T‐cell proliferation and IL‐2 production were strongly reduced. However, Foxp3+ cells proliferated and acquired suppressive activity. They suppressed activation of syngeneic CD4+ cells much more efficiently than did freshly isolated Treg cells. CD4+ cells activated by allogeneic cells in the presence of MR1 and CTLA‐4Ig were hyporesponsive on restimulation, but their response was restored to that of naive CD4+ cells when Foxp3+ Treg cells were removed. We conclude that natural Treg cells are less dependent on B7‐CD28 or CD40‐CD40L costimulation compared with Foxp3? T cells. Reduced costimulation therefore alters the balance between Teff and Treg‐cell activation in favor of Treg‐cell activity.  相似文献   

11.
Although Treg‐cell‐mediated suppression during infection or autoimmunity has been described, functions of Treg cells during highly pathogenic avian influenza virus infection remain poorly characterized. Here we found that in Foxp3‐GFP transgenic mice, CD8+ Foxp3+ Treg cells, but not CD4+ Foxp3+ Treg cells, were remarkably induced during H5N1 infection. In addition to expressing CD25, the CD8+ Foxp3+ Treg cells showed a high level of GITR and produced IL‐10. In an adoptive transfer model, CD8+ Treg cells suppressed CD8+ T‐cell responses and promoted H5N1 virus infection, resulting in enhanced mortality and increased virus load in the lung. Furthermore, in vitro neutralization of IL‐10 and studies with IL‐10R‐deficient mice in vitro and in vivo demonstrated an important role for IL‐10 production in the capacity of CD8+ Treg cells to inhibit CD8+ T‐cell responses. Our findings identify a previously unrecognized role of CD8+ Treg cells in the negative regulation of CD8+ T‐cell responses and suggest that modulation of CD8+ Treg cells may be a therapeutic strategy to control H5N1 viral infection.  相似文献   

12.
Self‐tolerance, presumably through lineage‐unbiased elimination of self‐antigen‐specific lymphocytes (CD4+ T, CD8+ T, and B cells), creates a formidable barrier to cancer immunotherapy. In contrast to this prevailing paradigm, we demonstrate that for some antigens, self‐tolerance reflects selective elimination of antigen‐specific CD4+ T cells, but preservation of CD8+ T‐ and B‐cell populations. In mice, antigen‐specific CD4+ T‐cell tolerance restricted CD8+ T‐ and B‐cell responses targeting the endogenous self‐antigen guanylyl cyclase c (GUCY2C) in colorectal cancer. Although selective CD4+ T‐cell tolerance blocked GUCY2C‐specific antitumor immunity and memory responses, it offered a unique solution to the inefficacy of GUCY2C vaccines through recruitment of self‐antigen‐independent CD4+ T‐cell help. Incorporating CD4+ T‐cell epitopes from foreign antigens into vaccines against GUCY2C reconstituted CD4+ T‐cell help, revealing the latent functional capacity of GUCY2C‐specific CD8+ T‐ and B‐cell pools, producing durable antitumor immunity without autoimmunity. Incorporating CD4+ T‐cell epitopes from foreign antigens into vaccines targeting self‐antigens in melanoma (Trp2) and breast cancer (Her2) produced similar results, suggesting selective CD4+ T‐cell tolerance underlies ineffective vaccination against many cancer antigens. Thus, identification of self‐antigens characterized by selective CD4+ T‐cell tolerance and abrogation of such tolerance through self‐antigen‐independent T‐cell help is essential for future immunotherapeutics.  相似文献   

13.
TCR‐αβ+ double negative (DN) T cells (CD3+TCR‐αβ+CD4?CD8?NK1.1?CD49b?) represent a minor heterogeneous population in healthy humans and mice. These cells have been ascribed pro‐inflammatory and regulatory capacities and are known to expand during the course of several autoimmune diseases. Importantly, previous studies have shown that self‐reactive CD8+ T cells become DN after activation by self‐antigens, suggesting that self‐reactive T cells may exist within the DN T‐cell population. Here, we demonstrate that programmed cell death 1 (PD‐1) expression in unmanipulated mice identifies a subset of DN T cells with expression of activation‐associated markers and a phenotype that strongly suggests they are derived from self‐reactive CD8+ cells. We also found that, within DN T cells, the PD‐1+ subset generates the majority of pro‐inflammatory cytokines. Finally, using a TCR‐activation reporter mouse (Nur77‐GFP), we confirmed that in the steady‐state PD‐1+ DN T cells engage endogenous antigens in healthy mice. In conclusion, we provide evidence that indicates that the PD‐1+ fraction of DN T cells represents self‐reactive cells.  相似文献   

14.
CD4+ CD25+ Foxp3+ regulatory T (Treg) cells are required to maintain immunological tolerance; however, defects in specific organ‐protective Treg cell functions have not been demonstrated in organ‐specific autoimmunity. Non‐obese diabetic (NOD) mice spontaneously develop lacrimal and salivary gland autoimmunity and are a well‐characterized model of Sjögren syndrome. Lacrimal gland disease in NOD mice is male‐specific, but the role of Treg cells in this sex‐specificity is not known. This study aimed to determine if male‐specific autoimmune dacryoadenitis in the NOD mouse model of Sjögren syndrome is the result of lacrimal gland‐protective Treg cell dysfunction. An adoptive transfer model of Sjögren syndrome was developed by transferring cells from the lacrimal gland‐draining cervical lymph nodes of NOD mice to lymphocyte‐deficient NOD‐SCID mice. Transfer of bulk cervical lymph node cells modelled the male‐specific dacryoadenitis that spontaneously develops in NOD mice. Female to female transfers resulted in dacryoadenitis if the CD4+ CD25+ Treg‐enriched population was depleted before transfer; however, male to male transfers resulted in comparable dacryoadenitis regardless of the presence or absence of Treg cells within the donor cell population. Hormone manipulation studies suggested that this Treg cell dysfunction was mediated at least in part by androgens. Surprisingly, male Treg cells were capable of preventing the transfer of dacryoadenitis to female recipients. These data suggest that male‐specific factors promote reversible dysfunction of lacrimal gland‐protective Treg cells and, to our knowledge, form the first evidence for reversible organ‐protective Treg cell dysfunction in organ‐specific autoimmunity.  相似文献   

15.
Repeated immunization of mice with bacterial superantigens induces extensive deletion and anergy of reactive CD4 T cells. Here we report that the in vitro proliferation anergy of CD4 T cells from TCR transgenic mice immunized three times with staphylococcal enterotoxin B (SEB) (3× SEB) is partially due to an increased frequency of Foxp3+ CD4 T cells. Importantly, reduced number of conventional CD25? Foxp3? cells, rather than conversion of such cells to Foxp3+ cells, was the cause of that increase and was also seen in mice repeatedly immunized with OVA (3× OVA) and OVA—peptide (OVAp) (3× OVAp). Cell‐transfer experiments revealed profound but transient anergy of CD4 T cells isolated from 3× OVAp and 3× SEB mice. However, the in vivo anergy was CD4 T‐cell autonomous and independent of Foxp3+ Treg. Finally, proliferation of transferred CD4 T cells was inhibited in repeatedly immunized mice but inhibition was lost when transfer was delayed, despite the maintenance of elevated frequency of Foxp3+ cells. These data provide important implications for Foxp3+ cell‐mediated tolerance in situations of repeated antigen exposure such as human persistent infections.  相似文献   

16.
The potential use of CD4+Foxp3+ Treg as a cellular therapy for autoimmune disease is of great interest. For clinical translation, the key objective is to reverse established disease. Here we demonstrate that myelin basic protein (MBP)‐reactive CD4+CD25+ Treg from TCR Tg mice, but not polyclonal (non‐MBP‐reactive) Treg, can transfer efficient protection against MBP‐induced EAE when used either directly from donor mice, or after in vitro expansion. MBP‐reactive Treg transfer also showed some ability to improve recovery from EAE initiated by T cells recognizing a distinct CNS autoantigen, proteolipid protein. Importantly, we also demonstrate for the first time in the context of EAE that in vitro‐expanded naturally occurring MBP‐reactive Treg can prevent disease relapse when given after the onset of clinical EAE. Our study also contains data pertaining to the most effective Treg sub‐population in vivo (CD4+CD25+CD62Lhi) and shows that their potent suppressive effects reflect stable expression of Foxp3, although not CD25 or CD62L. Our data provide proof of the principle that Treg‐based therapies can cure CNS autoimmune disease, highlight the challenges for clinical translation and open new avenues for assessing how changing immune function via Treg activity might impact on neurodegeneration and repair.  相似文献   

17.
Cancer vaccines have yet to yield clinical benefit, despite the measurable induction of humoral and cellular immune responses. As immunosuppression by CD4+CD25+ regulatory T (Treg) cells has been linked to the failure of cancer immunotherapy, blocking suppression is therefore critical for successful clinical strategies. Here, we addressed whether a lyophilized preparation of Streptococcus pyogenes (OK‐432), which stimulates Toll‐like receptors, could overcome Treg‐cell suppression of CD4+ T‐cell responses in vitro and in vivo. OK‐432 significantly enhanced in vitro proliferation of CD4+ effector T cells by blocking Treg‐cell suppression and this blocking effect depended on IL‐12 derived from antigen‐presenting cells. Direct administration of OK‐432 into tumor‐associated exudate fluids resulted in a reduction of the frequency and suppressive function of CD4+CD25+Foxp3+ Treg cells. Furthermore, when OK‐432 was used as an adjuvant of vaccination with HER2 and NY‐ESO‐1 for esophageal cancer patients, NY‐ESO‐1–specific CD4+ T‐cell precursors were activated, and NY‐ESO‐1–specific CD4+ T cells were detected within the effector/memory T‐cell population. CD4+ T‐cell clones from these patients had high‐affinity TCRs and recognized naturally processed NY‐ESO‐1 protein presented by dendritic cells. OK‐432 therefore inhibits Treg‐cell function and contributes to the activation of high‐avidity tumor antigen‐specific naive T‐cell precursors.  相似文献   

18.
Candida albicans remains the fungus most frequently associated with nosocomial bloodstream infection. In disseminated candidiasis, the role of Foxp3+ regulatory T (Treg) cells remains largely unexplored. Our aims were to characterize Foxp3+ Treg‐cell activation in a murine intravenous challenge model of disseminated C. albicans infection, and determine the contribution to disease. Flow cytometric analyses demonstrated that C. albicans infection drove in vivo expansion of a splenic CD4+Foxp3+ population that correlated positively with fungal burden. Depletion from Foxp3hCD2 reporter mice in vivo confirmed that Foxp3+ cells exacerbated fungal burden and inflammatory renal disease. The CD4+Foxp3+ population expanded further after in vitro stimulation with C. albicans antigens (Ags), and included at least three cell types. These arose from proliferation of the natural Treg‐cell subset, together with conversion of Foxp3? cells to the induced Treg‐cell form, and to a cell type sharing effector Th17‐cell characteristics, expressing ROR‐γt, and secreting IL‐17A. The expanded Foxp3+ T cells inhibited Th1 and Th2 responses, but enhanced Th17‐cell responses to C. albicans Ags in vitro, and in vivo depletion confirmed their ability to enhance the Th17‐cell response. These data lead to a model for disseminated candidiasis whereby expansion of Foxp3+ T cells promotes Th17‐cell responses that drive pathology.  相似文献   

19.
Interleukin‐2 (IL‐2) is a mainstay for current immunotherapeutic protocols but its usefulness in patients is reduced by severe toxicities and because IL‐2 facilitates regulatory T (Treg) cell development. IL‐21 is a type I cytokine acting as a potent T‐cell co‐mitogen but less efficient than IL‐2 in sustaining T‐cell proliferation. Using various in vitro models for T‐cell receptor (TCR)‐dependent human T‐cell proliferation, we found that IL‐21 synergized with IL‐2 to make CD4+ and CD8+ T cells attain a level of expansion that was impossible to obtain with IL‐2 alone. Synergy was mostly evident in naive CD4+ cells. IL‐2 and tumour‐released transforming growth factor‐β (TGF‐β) are the main environmental cues that cooperate in Treg cell induction in tumour patients. Interleukin‐21 hampered Treg cell expansion induced by IL‐2/TGF‐β combination in naive CD4+ cells by facilitating non‐Treg over Treg cell proliferation from the early phases of cell activation. Conversely, IL‐21 did not modulate the conversion of naive activated CD4+ cells into Treg cells in the absence of cell division. Treg cell reduction was related to persistent activation of Stat3, a negative regulator of Treg cells associated with down‐modulation of IL‐2/TGF‐β‐induced phosphorylation of Smad2/3, a positive regulator of Treg cells. In contrast to previous studies, IL‐21 was completely ineffective in counteracting the suppressive activity of Treg cells on naive and memory, CD4+ and CD8+ T cells. Present data provide proof‐of‐concept for evaluating a combinatorial approach that would reduce the IL‐2 needed to sustain T‐cell proliferation efficiently, thereby reducing toxicity and controlling a tolerizing mechanism responsible for the contraction of the T‐cell response.  相似文献   

20.
DC can present and cross‐present self‐antigens to autoreactive CD4+ and CD8+ T cells, respectively, and incapacitate them by inducing anergy, deletion or converting them into Treg. In this review, we summarize the recent progress in immune tolerance research, which has been achieved by employing antigen‐ and TCR‐transgenic mice. We cover the numerous discoveries that have furthered our knowledge of the DC subsets and maturation pathways involved in tolerance; the signals, such as CD70, TGF‐β, B7‐H1/PD‐L1, which dictate the decision between immunity and tolerance; and the in vivo role of DC in the maintenance of CD4+ T‐cell tolerance and CD8+ T‐cell cross‐tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号