首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunosuppressive CD11b+Gr‐1+ myeloid‐derived suppressor cells (MDSCs) accumulate in the livers of tumor‐bearing (TB) mice. We studied hepatic MDSCs in two murine models of immune‐mediated hepatitis. Unexpectedly, treatment of TB mice with Concanavalin A (Con A) or α‐galactosylceramide resulted in increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) serum levels in comparison to tumor‐free mice. Adoptive transfer of hepatic MDSCs into naïve mice exacerbated Con A induced liver damage. Hepatic CD11b+Gr‐1+ cells revealed a polarized proinflammatory gene signature after Con A treatment. An IFN‐γ‐dependent upregulation of CD40 on hepatic CD11b+Gr‐1+ cells along with an upregulation of CD80, CD86, and CD1d after Con A treatment was observed. Con A treatment resulted in a loss of suppressor function by tumor‐induced CD11b+Gr‐1+ MDSCs as well as enhanced reactive oxygen species (ROS)‐mediated hepatotoxicity. CD40 knockdown in hepatic MDSCs led to increased arginase activity upon Con A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40?/? tumor‐induced myeloid cells resulted in exacerbation of hepatitis and increased ROS production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor‐induced hepatic MDSCs act as proinflammatory immune effector cells capable of killing hepatocytes in a CD40‐dependent manner.  相似文献   

2.
Tumor growth coincides with an accumulation of myeloid‐derived suppressor cells (MDSCs), which exert immune suppression and which consist of two main subpopulations, known as monocytic (MO) CD11b+CD115+Ly6G?Ly6Chigh MDSCs and granulocytic CD11b+CD115?Ly6G+Ly6Cint polymorphonuclear (PMN)‐MDSCs. However, whether these distinct MDSC subsets hamper all aspects of early CD8+ T‐cell activation — including cytokine production, surface marker expression, survival, and cytotoxicity — is currently unclear. Here, employing an in vitro coculture system, we demonstrate that splenic MDSC subsets suppress antigen‐driven CD8+ T‐cell proliferation, but differ in their dependency on IFN‐γ, STAT‐1, IRF‐1, and NO to do so. Moreover, MO‐MDSC and PMN‐MDSCs diminish IL‐2 levels, but only MO‐MDSCs affect IL‐2Rα (CD25) expression and STAT‐5 signaling. Unexpectedly, however, both MDSC populations stimulate IFN‐γ production by CD8+ T cells on a per cell basis, illustrating that some T‐cell activation characteristics are actually stimulated by MDSCs. Conversely, MO‐MDSCs counteract the activation‐induced change in CD44, CD62L, CD162, and granzyme B expression, while promoting CD69 and Fas upregulation. Together, these effects result in an altered CD8+ T‐cell adhesiveness to the extracellular matrix and selectins, sensitivity to FasL‐mediated apoptosis, and cytotoxicity. Hence, MDSCs intricately influence different CD8+ T‐cell activation events in vitro, whereby some parameters are suppressed while others are stimulated.  相似文献   

3.
Myeloid‐derived suppressor cells (MDSC) and DC are major controllers of immune responses against tumors or infections. However, it remains unclear how DC development and MDSC suppressor activity both generated from myeloid precursor cells are regulated. Here, we show that the combined treatment of BM‐derived MDSC with LPS plus IFN‐γ inhibited the DC development but enhanced MDSC functions, such as NO release and T‐cell suppression. This was not observed by the single treatments in vitro. In the spleens of healthy mice, we identified two Gr‐1lowCD11bhighLy‐6ChighSSClowMo‐MDSC and Gr‐1highCD11blowPMN‐MDSC populations with suppressive potential, whereas Gr‐1highCD11bhigh neutrophils and Gr‐1lowCD11bhighSSClow eosinophils were not suppressive. Injections of LPS plus IFN‐γ expanded these populations within the spleen but not LN leading to the block of the proliferation of CD8+ T cells. At the same time, their capacity to develop into DC was impaired. Together, our data suggest that spleens of healthy mice contain two subsets of MDSC with suppressive potential. A two‐signal‐program through combined LPS and IFN‐γ treatment expands and fully activates MDSC in vitro and in vivo.  相似文献   

4.
The role of IFN‐γ in the pathogenesis of autoimmune diseases is controversial. Although Th1 cells can induce experimental autoimmune encephalomyelitis (EAE), IFN‐γ can suppress Th17 cells that are pathogenic in EAE. Here we show that NK cells provide an early source of IFN‐γ during development of EAE. Depletion of NK cells or neutralization of IFN‐γ delayed the onset of EAE and was associated with reduced infiltration of IL‐17+ and GM‐CSF+ T cells into the CNS. In the passive transfer model, immune cells from myelin oligodendrocyte glycoprotein (MOG)‐immunized IFN‐γ?/? mice failed to induce EAE, despite producing IL‐17 and GM‐CSF. The macrophages expressed markers of M2 activation and the T cells had low very late antigen‐4 (VLA‐4) expression and failed to infiltrate the CNS. Addition of recombinant IFN‐γ to immune cells from the IFN‐γ?/? mice activated M1 macrophages and restored VLA‐4 expression, migratory, and encephalitogenic activity of T cells. Furthermore, treatment of recipient mice with anti‐VLA‐4 neutralizing antibody abrogated EAE induced by transfer of T cells from WT mice. Our findings demonstrate IFN‐γ‐producing T cells are not required for development of EAE, but NK cell‐derived IFN‐γ has a key role in promoting M1 macrophage expansion and VLA‐4‐mediated migration of encephalitogenic T cells into the CNS.  相似文献   

5.
γδ T cells are a potent source of innate IL‐17A and IFN‐γ, and they acquire the capacity to produce these cytokines within the thymus. However, the precise stages and required signals that guide this differentiation are unclear. Here we show that the CD24low CD44high effector γδ T cells of the adult thymus are segregated into two lineages by the mutually exclusive expression of CCR6 and NK1.1. Only CCR6+ γδ T cells produced IL‐17A, while NK1.1+ γδ T cells were efficient producers of IFN‐γ but not of IL‐17A. Their effector phenotype correlated with loss of CCR9 expression, particularly among the NK1.1+ γδ T cells. Accordingly, both γδ T‐cell subsets were rare in gut‐associated lymphoid tissues, but abundant in peripheral lymphoid tissues. There, they provided IL‐17A and IFN‐γ in response to TCR‐specific and TCR‐independent stimuli. IL‐12 and IL‐18 induced IFN‐γ and IL‐23 induced IL‐17A production by NK1.1+ or CCR6+ γδ T cells, respectively. Importantly, we show that CCR6+ γδ T cells are more responsive to TCR stimulation than their NK1.1+ counterparts. In conclusion, our findings support the hypothesis that CCR6+ IL‐17A‐producing γδ T cells derive from less TCR‐dependent selection events than IFN‐γ‐producing NK1.1+ γδ T cells.  相似文献   

6.
CD11b+/Gr‐1+ myeloid‐derived suppressor cells (MDSC) contribute to tumor immune evasion by restraining the activity of CD8+ T‐cells. Two major MDSC subsets were recently shown to play an equal role in MDSC‐induced immune dysfunctions: monocytic‐ and granulocytic‐like. We isolated three fractions of MDSC, i.e. CD11b+/Gr‐1high, CD11b+/Gr‐1int, and CD11b+/Gr‐1low populations that were characterized morphologically, phenotypically and functionally in different tumor models. In vitro assays showed that CD11b+/Gr‐1int cell subset, mainly comprising monocytes and myeloid precursors, was always capable to suppress CD8+ T‐cell activation, while CD11b+/Gr‐1high cells, mostly granulocytes, exerted appreciable suppression only in some tumor models and when present in high numbers. The CD11b+/Gr‐1int but not CD11b+/Gr‐1high cells were also immunosuppressive in vivo following adoptive transfer. CD11b+/Gr‐1low cells retained the immunosuppressive potential in most tumor models. Gene silencing experiments indicated that GM‐CSF was necessary to induce preferential expansion of both CD11b+/Gr‐1int and CD11b+/Gr‐1low subsets in the spleen of tumor‐bearing mice and mediate tumor‐induced tolerance whereas G‐CSF, which preferentially expanded CD11b+/Gr‐1high cells, did not create such immunosuppressive environment. GM‐CSF also acted on granulocyte–macrophage progenitors in the bone marrow inducing local expansion of CD11b+/Gr‐1low cells. These data unveil a hierarchy of immunoregulatory activity among MDSC subsets that is controlled by tumor‐released GM‐CSF.  相似文献   

7.
8.
Galectin‐9 (Gal‐9) plays pivotal roles in the modulation of innate and adaptive immunity to suppress T‐cell‐mediated autoimmune models. However, it remains unclear if Gal‐9 plays a suppressive role for T‐cell function in non‐autoimmune disease models. We assessed the effects of Gal‐9 on experimental hypersensitivity pneumonitis induced by Trichosporon asahii. When Gal‐9 was given subcutaneously to C57BL/6 mice at the time of challenge with T. asahii, it significantly suppressed T. asahii‐induced lung inflammation, as the levels of IL‐1, IL‐6, IFN‐γ, and IL‐17 were significantly reduced in the BALF of Gal‐9‐treated mice. Moreover, co‐culture of anti‐CD3‐stimulated CD4 T cells with BALF cells harvested from Gal‐9‐treated mice on day 1 resulted in diminished CD4 T‐cell proliferation and decreased levels of IFN‐γ and IL‐17. CD11b+Ly‐6ChighF4/80+ BALF M? expanded by Gal‐9 were responsible for the suppression. We further found in vitro that Gal‐9, only in the presence of T. asahii, expands CD11b+Ly‐6ChighF4/80+ cells from BM cells, and the cells suppress T‐cell proliferation and IFN‐γ and IL‐17 production. The present results indicate that Gal‐9 expands immunosuppressive CD11b+Ly‐6Chigh M? to ameliorate Th1/Th17 cell‐mediated hypersensitivity pneumonitis.  相似文献   

9.
Yuehua Wang  WenWei Liu  Wei Gong 《Immunology》2015,146(3):379-391
Gr‐1+ CD11b+ myeloid‐derived suppressor cells (MDSCs) accumulate in tumor‐bearing animals and play a critical negative role during tumor immunotherapy. Strategies for inhibition of MDSCs are expected to improve cancer immunotherapy. Polysaccharide Agaricus blazei Murill (pAbM) has been found to have anti‐cancer activity, but the underlying mechanism of this is poorly understood. Here, pAbM directly activated the purified MDSCs through inducing the expression of interleukin‐6 (IL‐6), IL‐12, tumour necrosis factor and inducible nitric oxide synthase (iNOS), CD86, MHC II, and pSTAT1 of it, and only affected natural killer and T cells in the presence of Gr‐1+ CD11b+ monocytic MDSCs. On further analysis, we demonstrated that pAbM could selectively block the Toll‐like receptor 2 (TLR2) signal of Gr‐1+ CD11b+ MDSCs and increased their M1‐type macrophage characteristics, such as producing IL‐12, lowering expression of Arginase 1 and increasing expression of iNOS. Extensive study showed that Gr‐1+ CD11b+ MDSCs by pAbM treatment had less ability to convert the CD4+ CD25? cells into CD4+ CD25+ phenotype. Moreover, result from selective depletion of specific cell populations in xenograft mice model suggested that the anti‐tumour effect of pAbM was dependent on Gr‐1CD11b+ monocytes, nether CD8+ T cells nor CD4+ T cells. In addition to, pAbM did not inhibit tumour growth in TLR2–/– mice. All together, these results suggested that pAbM, a natural product commonly used for cancer treatment, was a specific TLR2 agonist and had potent anti‐tumour effects through the opposite of the suppressive function of Gr‐1+ CD11b+ MDSCs.  相似文献   

10.
Micro‐RNA (miR) are increasingly recognized as critical regulators of tissue‐specific patterns of gene expression. CD4+ T cells lacking miR‐155, for example, exhibit bias towards Th2 differentiation, indicating that the absence of individual miR could alter CD4+ T‐cell differentiation. We now show that miR‐155 is induced upon T‐cell activation and that it promotes Th1 differentiation when over‐expressed in activated CD4+ T cells. Antagonism of miR‐155 leads to induction of IFN‐γ receptor α‐chain (IFN‐γRα, and a functional miR‐155 target site is identified within the 3′ untranslated region of IFN‐γRα. These results identify IFN‐γRα as a second miR‐155 target in T cells and suggest that miR‐155 contributes to Th1 differentiation in CD4+ T cells by inhibiting IFN‐γ signaling.  相似文献   

11.
12.
Clinical efficacy in the treatment of rheumatoid arthritis with anti‐CD20 (Rituximab)‐mediated B‐cell depletion has garnered interest in the mechanisms by which B cells contribute to autoimmunity. We have reported that B‐cell depletion in a murine model of proteoglycan‐induced arthritis (PGIA) leads to an increase in Treg cells that correlate with decreased autoreactivity. Here, we demonstrate that the increase in Treg cells after B‐cell depletion is due to an increase in the differentiation of naïve CD4+ T cells into Treg cells. Since the development of PGIA is dependent on IFN‐γ and B cells are reported to produce IFN‐γ, we hypothesized that B‐cell‐specific IFN‐γ plays a role in the development of PGIA. Accordingly, mice with B‐cell‐specific IFN‐γ deficiency were as resistant to the induction of PGIA as mice that were completely IFN‐γ deficient. Importantly, despite a normal frequency of IFN‐γ‐producing CD4+ T cells, B‐cell‐specific IFN‐γ‐deficient mice exhibited a higher percentage of Treg cells compared with that in WT mice. These data indicate that B‐cell IFN‐γ production inhibits Treg‐cell differentiation and exacerbates arthritis. Thus, we have established that IFN‐γ, specifically derived from B cells, uniquely contributes to the pathogenesis of autoimmunity through prevention of immunoregulatory mechanisms.  相似文献   

13.
Inducible Treg (iTreg) cells generated from Ag‐stimulated naïve CD4+ T cells in the periphery play an important role in regulating immune responses. TGF‐β is a key cytokine that promotes this conversion process; however, how this process is regulated in vivo remains unclear. Here, we report that γδ T cells play a crucial role in controlling iTreg generation and suppressor function. Ag‐induced iTreg generation was significantly enhanced in C57BL/6 mice in the absence of γδ T cells. Inhibition of iTreg conversion was mediated by IFN‐γ produced by activated γδ T cells but not by activated CD4+ T cells. BM chimera experiments further confirmed γδ‐derived IFN‐γ‐dependent mechanism in regulating iTreg generation in vivo. Lastly, human peripheral blood γδ T cells also interfere with iTreg conversion via IFN‐γ. Our results suggest a novel function of γδ T cells in limiting the generation of iTreg cells, potentially balancing immunity and tolerance.  相似文献   

14.
Occlusive transplant vasculopathy (TV) is the major cause for chronic graft rejection. Since endothelial cells (EC) are the first graft cells encountered by activated host lymphocytes, it is important to delineate the molecular mechanisms that coordinate the interaction of EC with activated T cells. Here, the interaction of CD8+ T cells with Ag‐presenting EC in vivo was examined using a transgenic heart transplantation model with β‐galactosidase (β‐gal) expression exclusively in EC (Tie2‐LacZ hearts). We found that priming with β‐gal peptide‐loaded DC failed to generate a strong systemic IFN‐γ response, but elicited pronounced TV in both IFN‐γ receptor (IFNGR)‐competent, and ifngr?/? Tie2‐LacZ hearts. In contrast, stimulation of EC‐specific CD8+ T cells with β‐gal‐recombinant mouse cytomegalovirus (MCMV‐LacZ) in recipients of ifngr+/+ Tie2‐LacZ hearts did not precipitate significant TV. However, MCMV‐LacZ infection of recipients of ifngr?/? Tie2‐LacZ hearts led to massive activation of β‐gal‐specific CD8 T cells, and led to development of fulminant TV. Further analyses revealed that the strong systemic IFN‐γ “storm” associated with MCMV infection induced upregulation of programmed death‐1 ligand 1 (PD‐L1) on EC, and subsequent attenuation of programmed death‐1 (PD‐1)‐expressing EC‐specific CD8+ T cells. Thus, IFNGR signaling in ECs activates a potent peripheral negative feedback circuit that protects vascularized grafts from occlusive TV.  相似文献   

15.
16.
A role for NKT cells has been implicated in sepsis, but the mechanism by which NKT cells contribute to sepsis remains unclear. Here, we examined WT and NKT‐cell‐deficient mice of C57BL/6 background during cecal ligation and puncture‐induced sepsis. The levels of C5a, IFN‐γ, and IL‐10 were higher in the serum and peritoneal fluid of WT mice than in those of CD1d?/? mice, while the mortality rate was lower in CD1d?/? mice than in WT mice. C5a blockade decreased mortality of WT mice during sepsis, whereas it did not alter that of CD1d?/? mice. As assessed by intracellular staining, NKT cells expressed IFN‐γ, while neutrophils expressed IL‐10. Upon coculture, IL‐10‐deficient NKT cells enhanced IL‐10 production by WT, but not IFN‐γR‐deficient, neutrophils. Meanwhile, CD1d?/? mice exhibited high CD55 expression on neutrophils during sepsis, whereas those cells from WT mice expressed minimal levels of CD55. Recombinant IL‐10 administration into CD1d?/? mice reduced CD55 expression on neutrophils. Furthermore, adoptive transfer of sorted WT, but not IFN‐γ‐deficient, NKT cells into CD1d?/? mice suppressed CD55 expression on neutrophils, but increased IL‐10 and C5a levels. Taken together, IFN‐γ‐producing NKT cells enhance C5a generation via IL‐10‐mediated inhibition of CD55 expression on neutrophils, thereby exacerbating sepsis.  相似文献   

17.
Recent studies have revealed IL‐33 as a key factor in promoting antiviral T‐cell responses. However, it is less clear as to how IL‐33 regulates innate immunity. In this study, we infected wild‐type (WT) and IL‐33?/? mice with lymphocytic choriomeningitis virus and demonstrated an essential role of infection‐induced IL‐33 expression for robust innate IFN‐γ production in the liver. We first show that IL‐33 deficiency resulted in a marked reduction in the number of IFN‐γ+ γδ T and NK cells, but an increase in that of IL‐17+ γδ T cells at 16 h postinfection. Recombinant IL‐33 (rIL‐33) treatment could reverse such deficiency via increasing IFN‐γ‐producing γδ T and NK cells, and inhibiting IL‐17+ γδ T cells. We also found that rIL‐33‐induced type 2 innate lymphoid cells were not involved in T‐cell responses and liver injury, since the adoptive transfer of type 2 innate lymphoid cells neither affected the IFN‐γ and TNF‐α production in T cells, nor liver transferase levels in lymphocytic choriomeningitis virus infected mice. Interestingly, we found that while IL‐33 was not required for costimulatory molecule expression, it was critical for DC proliferation and cytokine production. Together, this study highlights an essential role of IL‐33 in regulating innate IFN‐γ‐production and DC function during viral hepatitis.  相似文献   

18.
19.
IL‐17, produced by a distinct lineage of CD4+ helper T (Th) cells termed Th17 cells, induces the production of pro‐inflammatory cytokines from resident cells and it has been demonstrated that over‐expression of IL‐17 plays a crucial role in the onset of several auto‐immune diseases. Here we examined the role of IL‐17 in the pathogenesis of autoimmune gastritis, a disease that was previously believed to be mediated by IFN‐γ. Significantly higher levels of IL‐17 and IFN‐γ were found in the stomachs and stomach‐draining lymph nodes of mice with severe autoimmune gastritis. Unlike IL‐17, which was produced solely by CD4+ T cells in gastritic mice, the majority of IFN‐γ‐producing cells were CD8+ T cells. However, CD8+ T cells alone were not able to induce autoimmune gastritis. T cells that were deficient in IL‐17 or IFN‐γ production were able to induce autoimmune gastritis but to a much lower extent compared with the disease induced by wild‐type T cells. These data demonstrate that production of neither IL‐17 nor IFN‐γ by effector T cells is essential for the initiation of autoimmune gastritis, but suggest that both are required for the disease to progress to the late pathogenic stage that includes significant tissue disruption.  相似文献   

20.
Although CD8+ Treg‐mediated suppression has been described, CD8+ Treg remain poorly characterized. Here we identify a novel subset of CD8+ Treg that express latency‐associated peptide (LAP) on their cell surface (CD8+LAP+ cells) and exhibit regulatory activity in vitro and in vivo. Only a small fraction of CD8+LAP+ cells express Foxp3 or CD25, although the expression levels of Foxp3 for these cells are higher than their LAP? counterparts. In addition to TGF‐β, CD8+LAP+ cells produce IFN‐γ, and these cells suppress EAE that is dependent on both TGF‐β and IFN‐γ. In an adoptive co‐transfer model, CD8+LAP+ cells suppress myelin oligodendrocyte glycoprotein (MOG)‐specific immune responses by inducing or expanding Foxp3+ cells and by inhibiting proliferation and IFN‐γ production in vivo. Furthermore, in vivo neutralization of IFN‐γ and studies with IFN‐γ‐deficient mice demonstrate an important role for IFN‐γ production in the function of CD8+LAP+ cells. Our findings identify the underlying mechanisms that account for the immunoregulatory activity of CD8+ T cells and suggest that induction or amplification of CD8+LAP+ cells may be a therapeutic strategy to help control autoimmune processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号