首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The house dust mite (HDM) Dermatophagoides pteronyssinus is an important source of allergens, which can cause allergic conditions. The cysteine protease activity of Der p 1 may enhance the potency of this major mite allergen through cleavage of CD23 and CD25 from the surface of immune cells, IgE independent mast cell activation, increases in epithelial cell permeability and inactivation of an endogenous serine protease inhibitor. Inhibition of the enzymatic activity of Der p 1 may therefore be of therapeutic benefit. OBJECTIVE: To examine the activity of PTL11028, a newly developed Der p 1 inhibitor, in a range of assays that directly or indirectly measure Der p 1 protease activity and to compare its activity to endogenous cysteine protease inhibitors. METHODS: The proteolytic activities of purified Der p 1 or HDM extract and inhibitory properties of PTL11028 were examined through cleavage of an artificial peptidyl substrate, cleavage of CD23 from human B cells and permeability studies on primary human bronchial epithelial cells. RESULTS: PTL11028 is a highly potent and specific Der p 1 inhibitor, being effective against both purified protease and Der p 1 within HDM extract. PTL11028 can completely inhibit Der p 1-mediated CD23 cleavage from human B cells and also reduces HDM-induced human bronchial epithelial cell permeability by 50%. Der p 1 is potently inhibited by cystatin A and to a lesser extent by cystatins C and E/M. CONCLUSION: PTL11028 is a highly potent and selective irreversible inhibitor of the cysteine protease activity of Der p 1, an activity that may be modulated in vivo by some human cystatins. PTL11028 prevents the Der p 1-mediated cleavage of CD23 from human B cells and significantly reduces HDM-induced permeabilization of the epithelial barrier. PTL11028 is an important tool to examine the biological effects of Der p 1 in a range of in vitro and in vivo model systems.  相似文献   

2.
Although studies have suggested that exposure to cigarette smoke (CS) may be associated with the development of atopy, the mechanisms underlying this are not clearly understood. It has been suggested that CS impairs the barrier function of the airway epithelium, leading to increased access of allergens such as those of the house dust mite (HDM) Dermatophagoides pteronyssinus (Der p) to antigen-presenting cells, with subsequent allergic sensitization. In order to test this hypothesis, we established primary explant cultures of human bronchial epithelial cells (HBEC) in cell culture inserts, and exposed these for 20 min, 1 h, 3 h, and 6 h to CS or air in the absence or presence of 300 ng/ml Der p, and then further incubated the cultures over a period of 24 h. The HBEC cultures were assessed for changes in permeability as measured by changes in: (1) electrical resistance (ER); and (2) passage of 14C-labeled bovine serum albumin (14C-BSA) and Der p allergens across the HBEC cultures. We also assessed the effects of protease inhibitors and the antioxidant glutathione (GSH) in this experimental system. Damage to HBEC cultures was assessed by the release of [51Cr]sodium chromate from prelabeled cells, and by release of lactate dehydrogenase (LDH). Twenty minutes of exposure to CS as compared with exposure to air did not significantly alter either the ER or passage of 14C-BSA across the HBEC cultures. In contrast, incubation with Der p led to a significant increase in the permeability of HBEC cultures, an effect that was enhanced by exposure to CS but was abrogated by the specific protease inhibitors and GSH. Passage of Der p was also increased by exposure to CS. Exposure of HBEC cultures to CS led to a significant release of 51Cr and LDH from these cells as compared with cells exposed to air. This effect was augmented further when HBEC cultures were incubated with Der p. Exposure of HBEC cultures for 1 h, 3 h, and 6 h to CS led to a markedly significant dose- and time-dependent increase in the permeability of these cells. These results suggest that exposure to CS significantly enhances Der p-induced decreases in electrical resistance and the increased passage across HBEC cultures of 14C-BSA and of the Der p allergen itself.  相似文献   

3.
Although cigarette smoking is of paramount importance in the development of chronic obstructive pulmonary disease (COPD), only a small proportion of smokers develop the disease. We tested the hypothesis that the response of the bronchial epithelium to cigarette smoke (CS) differs in patients with COPD. Such a difference might explain in part why only some cigarette smokers develop the disease. We established primary explant cultures of human bronchial epithelial cells (HBEC) from biopsy material obtained from never-smokers who had normal pulmonary function, smokers with normal pulmonary function, and smokers with COPD, and exposed these for 20 min to CS or air. Measurements were subsequently made over a period of 24 h of transepithelial permeability and release of interleukin (IL)-1beta and soluble intercellular adhesion molecule-1 (sICAM-1). In addition, intracellular reduced glutathione (GSH) levels were measured after 24 h incubation. Exposure to CS increased the permeability of these cultures in all study groups, but the most marked effect was observed in cultures from patients with COPD (mean increase, 85.5%). The smallest CS-induced increase in the permeability was observed in HBEC cultured from smokers with normal pulmonary function (mean, 25.0%), and this was significantly lower than that of HBEC from never-smokers (mean, 53.4%) (P<0.001). Compared with exposure to air, exposure to CS led to a significantly increased release of these mediators from cultures of the never-smoker group (mean 250.0% increase in IL-1beta and mean 175.3% increase in sICAM-1 24 h after exposure) and COPD group (mean 383.3% increase in IL-1beta and mean 97.4% increase in sICAM-1 24 h after exposure). In contrast, CS exposure did not influence significantly the release of either mediator from the cells of smokers with normal pulmonary function. Levels of intracellular GSH were significantly higher in cultures of HBEC derived from smokers, both those with normal pulmonary function and those with COPD, compared with cultures from healthy never-smokers. Exposure to CS significantly decreased the concentration of intracellular GSH in all cultures. However, the fall in intracellular GSH was significantly greater in cells from patients with COPD (mean 72.9% decrease) than in cells from never-smokers (mean 61.4% decrease; P = 0.048) or smokers with normal pulmonary function (mean 43.9% decrease; P = 0.02). These results suggest that whereas smokers with or without COPD demonstrate increased levels of GSH within bronchial epithelial cell cultures, those with COPD have a greater susceptibility to the effects of CS in reducing GSH levels and causing increased permeability and release of proinflammatory mediators such as IL-1beta and sICAM-1.  相似文献   

4.
BACKGROUND: Recent studies have demonstrated that some antihistamines can attenuate histamine-induced release of inflammatory mediators from bronchial epithelial cells. OBJECTIVE: The purpose of study was to test the hypothesis that loratadine may influence pollution-induced inflammation of the airways by modulating epithelial membrane integrity and the synthesis and/or release of inflammatory mediators from airway epithelial cells. METHODS: We have cultured human bronchial epithelial cell (HBEC) cultures from surgical explants and investigated the effect of loratadine on NO2-induced changes in both electrical resistance of HBEC cultures and release of IL-8, RANTES, and soluble intercellular adhesion molecule-1 (sICAM-1) from these cells after exposure for 6 hours to either air or 400 ppb NO2. RESULTS: Exposure for 6 hours to NO2 significantly decreased the electrical resistance of HBEC cultures by 18.1% from baseline (P <.05). Incubation with 0.25 to 25 micromol/L loratadine did not alter the NO2-induced decrease in the electrical resistance of HBEC cultures. NO2 also significantly increased the release of IL-8 from a control value of 52.5 pg/microgram cellular protein to 81.9 pg/microgram cellular protein (P <.05), RANTES from a control value of 0.023 pg/microgram cellular protein to 0.062 pg/microgram cellular protein (P <.05), and sICAM-1 from a control value of 7.7 pg/microgram cellular protein to 16.3 pg/microgram cellular protein (P <.05). The NO2-induced release of all 3 mediators was significantly attenuated by incubation of HBECs with 25 micromol/L loratadine. Incubation with 2.5 micromol/L loratadine also significantly attenuated the NO2-induced release of RANTES and sICAM-1, but not IL-8. CONCLUSIONS: These results suggest that loratadine has the potential to reduce airway inflammation by modulating the release of inflammatory cytokines from airway epithelial cells.  相似文献   

5.
Background House dust mites (HDM) are well‐known as a source of indoor aeroallergens and for causing allergic airway diseases. Some proteolytic HDM allergens are known to activate respiratory epithelial cells to produce pro‐inflammatory mediators, while there is limited knowledge regarding such activity among non‐proteolytic HDM allergens. Objective To investigate whether Der p 2, a major non‐proteolytic allergen of Dermatophagoides pteronyssinus, activates respiratory epithelial cells to produce mediators involved in asthma pathogenesis and to elucidate the mechanism of such activation. Methods The human bronchial epithelial cell line BEAS‐2B, normal human bronchial epithelial (NHBE) cells and the alveolar epithelial cell line A549 were exposed to recombinant Der p 2. Following exposure, we analysed a panel of soluble mediators and cell adhesion receptors involved in asthma pathogenesis by promoting recruitment, survival and binding of inflammatory cells. The involvement of nuclear factor (NF)‐κB and mitogen‐activated protein kinases (MAPKs) was studied using specific inhibitors. Results Der p 2 activated bronchial BEAS‐2B and NHBE cells, but not alveolar A549 cells. In BEAS‐2B cells Der p 2 induced dose‐dependent up‐regulation in both mRNA level and protein secretion of granulocyte‐macrophage colony‐stimulating factor, IL‐6, IL‐8, monocyte‐chemotactic protein‐1 and macrophage inflammatory protein‐3α. Secretion as well as surface expression of intercellular adhesion molecule (ICAM)‐1 was also up‐regulated, which was associated with increased adhesion of monocytes to the epithelial cells. The release of cytokines and chemokines was regulated by NF‐κB and MAPK activation in different ways, while expression of ICAM‐1 was solely dependent on NF‐κB activation. Conclusion These results show that Der p 2 activates respiratory epithelial cells, indicating that this non‐proteolytic allergen, in addition to its immunogenic properties, can aggravate respiratory airway disease by adjuvant‐like activation of the lung epithelium.  相似文献   

6.
7.
Although a similar prevalence of smoking is evident among patients with asthma and the general population, little is known about the impact of cigarette smoke on the immune inflammatory processes elicited by common environmental allergens. We investigated the impact of exposure to cigarette smoke on house dust mite (HDM)-induced allergic airway inflammation and its consequences for tissue remodeling and lung physiology in mice. BALB/c mice received intranasal HDMs daily, 5 days per week, for 3 weeks to establish chronic airway inflammation. Subsequently, mice were concurrently exposed to HDMs plus cigarette smoke, 5 days per week, for 2 weeks (HDMs + smoke). We observed significantly attenuated eosinophilia in the bronchoalveolar lavage of mice exposed to HDMs + smoke, compared with animals exposed only to HDMs. A similar activation of CD4 T cells and expression of IL-5, IL-13, and transforming growth factor-β was observed between HDM-treated and HDM + smoke-treated animals. Consistent with an effect on eosinophil trafficking, HDMs + smoke exposure attenuated the HDM-induced expression of eotaxin-1 and vascular cell adhesion molecule-1, whereas the survival of eosinophils and the numbers of blood eosinophils were not affected. Exposure to cigarette smoke also reduced the activation of B cells and the concentrations of serum IgE. Although the production of mucus decreased, collagen deposition significantly increased in animals exposed to HDMs + smoke, compared with animals exposed only to HDMs. Although airway resistance was unaffected, tissue resistance was significantly decreased in mice exposed to HDMs + smoke. Our findings demonstrate that cigarette smoke affects eosinophil migration without affecting airway resistance or modifying Th2 cell adaptive immunity in a murine model of HDM-induced asthma.  相似文献   

8.
9.
BACKGROUND: Although studies have suggested that ozone (O3) and nitrogen dioxide (NO2) may play a role in the pathogenesis of asthma, the underlying mechanisms are not clear. OBJECTIVE: We aimed to investigate the effects of O3 and NO2 on the release of IL-8, GM-CSF, RANTES, and soluble intercellular adhesion molecule 1 (sICAM-1) from human bronchial epithelial cells (HBECs) of nonatopic nonasthmatic subjects (nonasthmatic subjects) and atopic subjects with mild asthma (asthmatic subjects) in vitro. METHODS: We cultured HBECs from bronchial biopsy specimens of nonasthmatic and asthmatic subjects; exposed these for 6 hours to air, 10 to 100 ppb O3, or 100 to 400 ppb NO2; and analyzed the release of IL-8, GM-CSF, RANTES, and sICAM-1 after 24 hours' incubation. RESULTS: There was no significant difference between the constitutive release of IL-8, GM-CSF, and sICAM-1 from HBECs of asthmatic and nonasthmatic subjects. RANTES was detected only in HBECs derived from asthmatic subjects. Exposure of HBECs of asthmatic subjects to both 50 to 100 ppb O3 and 200 to 400 ppb NO2 significantly increased the release of IL-8, GM-CSF, RANTES, and sICAM-1 from these cells after 24 hours of incubation. However, 50 to 100 ppb O3 and 200 to 400 ppb NO2 led to a significant increase in release of only IL-8 and sICAM-1 from HBECs of nonasthmatic subjects after 24 hours' incubation. A comparison between the pollutant-induced release of mediators demonstrated that 100 ppb O3-induced release of GM-CSF and sICAM-1 was significantly greater in HBECs of asthmatic subjects (medians, 0.59 and 27.4 pg/microg cellular protein, respectively) than in HBECs of nonasthmatic subjects (medians, 0.27 and 14.4 pg/microg cellular protein, respectively; P < .02). CONCLUSION: These results suggest that O3 and NO2 may modulate airway diseases, such as asthma, by increasing the release of inflammatory mediators from bronchial epithelial cells and that the cells of asthmatic subjects may be more susceptible to the adverse effects of these pollutants.  相似文献   

10.

Purpose

The environmental factors human rhinoviruses (HRVs) and house dust mites (HDMs) are the most common causes of acute exacerbations of asthma. The aim of this study was to compare the chemokine production induced by HRVs in airway epithelial cells with that induced by other respiratory viruses, and to investigate synergistic interactions between HRVs and HDMs on the induction of inflammatory chemokines in vitro.

Methods

A549 human airway epithelial cells were infected with either rhinovirus serotype 7, respiratory syncytial virus (RSV)-A2 strain, or adenovirus serotype 3 and analyzed for interleukin (IL)-8 and regulated on activation, normal T-cell expressed and secreted (RANTES) release and mRNA expression. Additionally, activation of nuclear factor (NF)-κB and activator protein (AP)-1 were evaluated. The release of IL-8 and RANTES was also measured in cells stimulated simultaneously with a virus and the HDM allergen, Der f1.

Results

HRV caused greater IL-8 and RANTES release and mRNA expression compared with either RSV or adenovirus. NF-κB and AP-1 were activated in these processes. Cells incubated with a virus and Der f1 showed an increased IL-8 release. However, compared with cells incubated with virus alone as the stimulator, only HRV with Der f1 showed a statistically significant increase.

Conclusions

IL-8 and RANTES were induced to a greater extent by HRV compared with other viruses, and only HRV with Der f1 acted synergistically to induce bronchial epithelial IL-8 release. These findings may correspond with the fact that rhinoviruses are identified more frequently than other viruses in cases of acute exacerbation of asthma.  相似文献   

11.
《Mucosal immunology》2018,11(2):404-414
CX3CL1 has been implicated in allergen-induced airway CD4+ T-lymphocyte recruitment in asthma. As epidemiological evidence supports a viral infection–allergen synergy in asthma exacerbations, we postulated that rhinovirus (RV) infection in the presence of allergen augments epithelial CX3CL1 release. Fully differentiated primary bronchial epithelial cultures were pretreated apically with house dust mite (HDM) extract and infected with rhinovirus-16 (RV16). CX3CL1 was measured by enzyme-linked immunosorbent assay and western blotting, and shedding mechanisms assessed using inhibitors, protease-activated receptor-2 (PAR-2) agonist, and recombinant CX3CL1-expressing HEK293T cells. Basolateral CX3CL1 release was unaffected by HDM but stimulated by RV16; inhibition by fluticasone or GM6001 implicated nuclear factor-κB and ADAM (A Disintegrin and Metalloproteinase) sheddases. Conversely, apical CX3CL1 shedding was stimulated by HDM and augmented by RV16. Although fluticasone or GM6001 reduced RV16+HDM-induced apical CX3CL1 release, heat inactivation or cysteine protease inhibition completely blocked CX3CL1 shedding. The HDM effect was via enzymatic cleavage of CX3CL1, not PAR-2 activation, yielding a product mitogenic for smooth muscle cells. Extracts of Alternaria fungus caused similar CX3CL1 shedding. We have identified a novel mechanism whereby allergenic proteases cleave CX3CL1 from the apical epithelial surface to yield a biologically active product. RV16 infection augmented HDM-induced CX3CL1 shedding—this may contribute to synergy between allergen exposure and RV infection in triggering asthma exacerbations and airway remodeling.  相似文献   

12.
BACKGROUND: Recent evidence suggests that the airways of asthmatics are more susceptible to adverse effects of air pollutants than the airways of non-asthmatics, but the underlying mechanisms are not clear. METHODS: We have cultured bronchial epithelial cells (HBEC) from biopsies of atopic mild asthmatic patients and non-atopic non-asthmatic subjects, and investigated constitutive and diesel exhaust particles (DEP)-induced release of several pro-inflammatory mediators. RESULTS: HBEC of asthmatic patients constitutively released significantly greater amounts of IL-8, GM-CSF and sICAM-1 than HBEC of non-asthmatic subjects. RANTES was only released by HBEC of asthmatic patients. Incubation of the asthmatic cultures with 10 micrograms/ml DEP significantly increased the release of IL-8, GM-CSF and sICAM-1 after 24 h. In contrast, only the higher concentrations of 50-100 micrograms/ml DEP significantly increased the release of IL-8 and GM-CSF from HBEC of non-asthmatics. CONCLUSIONS: These results suggest that the increased sensitivity of the airways of asthmatics to air pollutants such as DEP may, at least in part, be a consequence of greater constitutive and pollutant-induced release of specific pro-inflammatory mediators from their bronchial epithelial cells.  相似文献   

13.
Background Human rhinoviruses (HRVs) and house dust mites (HDMs) are among the most common environmental factors able to induce airway inflammation in asthma. Although epidemiological studies suggest that they also synergize in inducing asthma exacerbations, there is no experimental evidence to support this, nor any information on the possible mechanisms involved. Objective To investigate their interaction on the induction of airway epithelial inflammatory responses in vitro. Methods BEAS‐2B cells were exposed to activated HDM Dermatophagoides pteronyssinus major allergen I (Der p I), HRVs (HRV1b or HRV16) or both in different sequences. IL‐8/CXCL8 release, intercellular adhesion molecule (ICAM)‐1 surface expression and nuclear factor κB (NF‐κB) translocation were evaluated. Complementary, primary human bronchial epithelial cells (HBECs) exposed to both Der p I and RVs and IL‐8, IL‐6, IFN‐γ‐induced protein (IP)‐10/CXCL10, IFN‐λ1/IL‐29, regulated upon activation normal T lymphocyte expressed and secreted (RANTES)/CCL5 release were measured. Results RV and Der p I up‐regulated IL‐8 release, ICAM‐1 expression and NF‐κB translocation in BEAS‐2B cells. Simultaneous exposure to both factors, as well as when cells were initially exposed to HRV and then to Der p I, resulted in further induction of IL‐8 in a synergistic manner. Synergism was not observed when cells were initially exposed to Der p I and then to HRV. This was the pattern in ICAM‐1 induction although the phenomenon was not synergistic. Concurrent exposure induced an early synergistic NF‐κB translocation induction, differentiating with time, partly explaining the above observation. In HBECs, both HRV and Der p I induced IL‐8, IL‐6, IL‐29 and IP‐10, while RANTES was induced only by HRV. Synergistic induction was observed only in IL‐8. Conclusion HRV and enzymatically active Der p I can act synergistically in the induction of bronchial epithelial IL‐8 release, when HRV infection precedes or is concurrent with Der p I exposure. Such a synergy may represent an important mechanism in virus‐induced asthma exacerbations.  相似文献   

14.
Background:  The association between cigarette smoke exposure and allergic airway disease is a matter for debate. We sought to investigate in an in vitro system whether active smoking reduces the integrity and barrier function of the respiratory epithelium and thus facilitates allergen penetration.
Methods:  We cultured the human bronchial epithelial cell line 16HBE14o− in a transwell culture system as a surrogate for the intact respiratory epithelium. The cell monolayer was exposed to standardized cigarette smoke extract (CSE). The extent and effects of trans-epithelial allergen penetration were measured using 125I-labelled purified major respiratory allergens (rBet v 1, rPhl p 5 and rDer p 2) and histamine release experiments.
Results:  Exposure of cells to concentrations of CSE similar to those found in smokers induced the development of para-cellular gaps and a decrease in trans-epithelial resistance. CSE exposure induced a more than threefold increase in allergen penetration. Increased subepithelial allergen concentrations provoked a substantial augmentation of histamine release from sensitized basophils.
Conclusions:  Our results indicate that cigarette smoke is a potent factor capable of reducing the barrier function of the respiratory epithelium for allergens and may contribute to increased allergic inflammation, exacerbation of allergic disease and boosting of IgE memory.  相似文献   

15.
《Mucosal immunology》2014,7(2):379-390
In the present study, we show therapeutic amelioration of established ovalbumin (OVA)-induced allergic airway disease following house dust mite (HDM) peptide therapy. Mice were sensitized and challenged with OVA and HDM protein extract (Dermatophagoides species) to induce dual allergen sensitization and allergic airway disease. Treatment of allergic mice with peptides derived from the major allergen Der p 1 suppressed OVA-induced airway hyperresponsiveness, tissue eosinophilia, and goblet cell hyperplasia upon rechallenge with allergen. Peptide treatment also suppressed OVA-specific T-cell proliferation. Resolution of airway pathophysiology was associated with a reduction in recruitment, proliferation, and effector function of TH2 cells and decreased interleukin (IL)-17+ T cells. Furthermore, peptide immunotherapy induced the regulatory cytokine IL-10 and increased the proportion of Fox p3+ cells among those expressing IL-10. Tolerance to OVA was not associated with increased IL-35. In conclusion, our results provide in vivo evidence for the creation of a tolerogenic environment following HDM peptide immunotherapy, leading to the therapeutic amelioration of established OVA-induced allergic airway disease.  相似文献   

16.
Although many patients with SLE also have allergies, the immunological events triggering the onset and progression of the clinical manifestations of SLE by allergens have yet to be clarified. A total of three autoantigens, phosphoglycerate kinase 1 (PGK-1), triosephosphate isomerase (TIM) and enolase were identified by autologous serum in B cell lysate derived from HDM allergic SLE patients after Der p 2 stimulation. Autoantigen, TRIM-21 expression were also significantly increased in B cells derived from HDM allergic SLE patients. In PBMCs derived from SLE patients, the concentration of anti-PGK-1 was significantly upregulated after Der p 2 stimulation compared to HDM allergic without SLE patients and healthy subjects. Inflammatory related cytokines and chemokines include IL-1β, IL-6, IL-8, CXCL5 could be upregulated after Der p 2 stimulation in PBMCs derived from HDM allergic SLE patients. In conclusion, our data demonstrated that long-term allergen exposure could be a contributing factor in the development of SLE.  相似文献   

17.
18.
Background Group 1 allergens from grass pollen (e.g. Phl p 1, the major allergen of timothy grass Phleum pratense ) cause IgE reactivity in about 95% of allergic subjects and exist in all grass species. The respiratory epithelium represents a first line of contact of the immune system with airborne allergens, functions as physical barrier and is an important immunological regulation system.
Objective The aim of this study was to investigate the interaction of Phl p 1 with human respiratory epithelium to elucidate the contribution of epithelial cells to the development of allergic reactions.
Methods Purified Phl p 1 was used to stimulate A549 cells and transient transfected HEK293 cells. mRNA level of different mediators were investigated by real-time PCR, release of the mediators was determined by ELISA. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and an ex vivo model of the murine trachea were used to investigate a potential proteolytic activity of Phl p 1.
Results Phl p 1 activates respiratory epithelial cells as measured by induction of IL-6, IL-8 and TGF-β mRNA and release. Phl p 1, in contrast to Der p 1 from the house dust mite, does not exert proteolytic activity, as investigated by microscopic observation and MTT test. In an ex vivo model of the murine trachea we were able to show that Der p 1, in contrast to Phl p 1, enhances the transportation velocity of particles by the trachea, presumably by ATP released from the injured epithelium.
Conclusion We conclude that under physiological conditions Phl p 1 affects tracheal epithelial cells through a non-proteolytic activity. Enhancement of TGF-β expression induced by Phl p 1 together with the increased release of IL-6 and IL-8 might provide an indirect mechanism through which the allergen may cross the epithelial barrier and attracts immunocompetent cells.  相似文献   

19.
The human bronchial epithelial cell is one of the first cell types to be exposed to the irritants and toxins present in inhaled cigarette smoke. The ability of the bronchial epithelium to modulate inflammatory and immune events in response to cigarette smoke is important in the pathogenesis of smoke-induced airway injury. We have shown that cigarette smoke extract and the complement anaphylatoxin C5a both independently induce increased expression of intercellular adhesion molecule (ICAM)-1 on airway epithelial monolayers compared with unstimulated cells in vitro. This enhanced ICAM-1 expression is associated with a greater capacity of the airway epithelial cells to bind mononuclear cells, a process that appears to require the proinflammatory cytokine tumor necrosis factor-alpha and protein kinase C intracellular signaling. Exposure of epithelial monolayers to the combination of cigarette smoke followed by C5a results in an additive response for ICAM-1 expression and mononuclear cell adhesion compared with smoke or C5a challenge alone. Inhibiting C5a receptor expression can attenuate these responses. These findings suggest that smoke exposure in some way enhances the functional responsiveness of the C5a receptor expressed on these airway epithelial cells for subsequent C5a-mediated increases in ICAM-1 expression and mononuclear cell adhesion. Our results may help explain the initiation and propagation of inflammatory events in vivo induced by chronic airway exposure to cigarette smoke.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号