首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that Fos-like immunoreactivity (Fos-LI) is evoked in the brainstem of ferrets following stimulation of pulpal A delta and C fibers originating from the maxillary canine. This study evaluated the effects of the mu-opioid receptor agonist fentanyl on Fos expression evoked by noxious thermal stimulation of the right maxillary and mandibular canines in pentobarbital/chloral hydrate anesthetized adult male ferrets. Pulpal heating evoked Fos expression in two distinct regions of the spinal trigeminal nuclear complex: the transitional region between subnucleus interpolaris and caudalis (Vi/Vc) and within the subnucleus caudalis (Vc). More Fos positive cells were expressed in both regions ipsilateral to the site of stimulation compared with the contralateral side (P < 0.05, ANOVA). Pretreatment with fentanyl significantly and dose-dependently suppressed the number of Fos positive cells in both the Vi/Vc transitional region and Vc (P < 0.05, ANOVA). The suppressive effect of fentanyl on Fos expression was blocked by the intravenous administration of naloxone, an opioid antagonist, indicating a specific opioid receptor effect. In addition, opioid receptor antagonism with naloxone alone enhanced Fos expression in Vi/Vc and Vc in response to heat stimulation. The administration of naloxone without heat stimulation failed to evoke Fos expression in Vi/ Vc and Vc. These findings suggest that the activation of trigeminal Vi/Vc and Vc neurons by noxious dental heat stimulation is controlled by a naloxone sensitive endogenous opioid system as indicated by Fos expression. Collectively, these results suggest that neuronal populations in Vi/Vc and Vc regions may contribute to pain responses to noxious dental stimulation and these responses can be modulated by both endogenous and exogenous opioids.  相似文献   

2.
Injury to peripheral dental tissues evokes dynamic alternations in central sensory pathways. We have previously reported that transient stimulation of the dental pulp with noxious heat evokes the induction of the immediate early gene product Fos in the transitional region between subnucleus interpolaris and caudalis (Vi/Vc) and subnucleus caudalis (Vc). A question arises as to whether similar changes occur in response to inflammation to the tooth pulp. In this study, the effects of pulpal inflammation produced by bacterial lipopolysaccharide (LPS) on face-grooming behavior and trigeminal Fos expression were examined. Face-grooming behaviors were recorded daily for 3 days pre- and 24, 48 and 72 h post- LPS or saline application. All animals were perfused 72 h post- LPS or saline application. Brainstems were processed for Fos-like immunoreactivity (Fos-LI). Teeth were processed for H&E staining. Histological examination of LPS-treated teeth revealed features of an acute pulpitis. Moreover, LPS-treated animals showed greater face-grooming activity (i.e. tongue protrusions) directed to the injured tooth than the sham-operated group. The number of Fos-positive neurons was greater in the trigeminal subnucleus caudalis (Vc) and the transitional regions (Vi/Vc) in LPS-treated animals compared with sham-operated animals, and greater in the deeper laminae than the superficial laminae of each trigeminal region. LPS treatment did not evoke Fos expression in the rostral trigeminal regions above Vi/Vc. These results demonstrate that LPS-induced pulpal inflammation results in significant alterations in the Vi/Vc and Vc, and such changes may underlie the observed nociceptive behavioral responses and may play an important role in producing a symptomatic pulpitis in humans.  相似文献   

3.
Bereiter DA  Bereiter DF  Ramos M 《Pain》2002,96(1-2):205-213
Acute injury to the temporomandibular joint (TMJ) region activates neurons in multiple, but spatially discrete, areas of the trigeminal spinal nucleus as seen by an increase in Fos-like immunoreactive neurons (Fos-LI). Pretreatment with morphine greatly reduces Fos-LI produced in the dorsal paratrigeminal area (dPa5), ventrolateral pole of the subnucleus interpolaris/caudalis (Vi/Vc-vl) transition region, and laminae I-II at the subnucleus caudalis/upper cervical cord junction (Vc/C2) suggesting a role for these areas in processing pain signals from the TMJ region. To determine if vagal afferents contribute to neural activation after TMJ injury or reduction of activity after morphine, Fos-LI was quantified in the lower brainstem and upper cervical spinal cord of intact and vagotomized male and female rats under barbiturate anesthesia. Bilateral cervical vagotomy (VgX) did not affect Fos-LI produced by TMJ injury in males or females in the absence of morphine. By contrast, morphine-induced reduction in Fos-LI produced at the Vi/Vc-vl transition region was prevented by prior VgX in males and diestrus females, but not in proestrus females. Morphine inhibition of Fos-LI produced in laminae I-II at the Vc/C2 junction region was diminished in vagotomized males compared to intact animals, but not affected in females. In an autonomic control area, the caudal ventrolateral medulla (CVLM), VgX reversed the morphine-induced reduction in Fos-LI in males and females similarly compared to their respective intact controls. These results were consistent with the hypothesis that the Vi/Vc-vl transition region plays a unique role in deep craniofacial pain processing and may integrate autonomic and opioid-related modulatory signals in a manner dependent on sex hormone status.  相似文献   

4.
Previous studies have established that the activation of peripheral nociceptors alters the central processing of nociceptive stimuli. In this study, we examined whether noxious heating of the dental pulp enhances the nociceptive jaw-opening reflex (JOR) and the expression of the immediate early gene c-fos in chloral hydrate/pentobarbital-anesthetized ferrets. We hypothesized that the application of noxious heat to the dental pulp, a procedure that evokes a preferential activation of pulpal C-fibers, will enhance JOR responses to electrical stimulation of the tooth pulp and that this enhanced response will be associated with the expression of Fos protein in discrete regions of the trigeminal nucleus. Consistent with our predictions, we observed that noxious heat conditioning enhanced the JOR as indicated by an increase in the magnitude of the signal averaged digastric electromyogram response evoked by electrical stimuli applied to either a heat-conditioned maxillary canine or the contralateral nonconditioned canine. The enhancement in JOR responses was independent of temporal summation of the electrical stimulus for test stimuli delivered at either 1.0 or 0.1 Hz. Sensitization of the JOR was associated with an increase in the number of immunohistochemically identified Fos-positive nuclei in trigeminal caudalis (Vc) and the transition zone between trigeminal interpolaris and caudalis (Vi/Vc) ipsilateral to the site of stimulation compared with sham stimulated animals. These findings suggest that neuronal populations in Vc and Vi/Vc play a role in the enhanced reflex responses to tooth pulp stimulation and may contribute to the pain and hyperalgesia associated with a symptomatic pulpitis.  相似文献   

5.
This study assessed the influence of integrins on trigeminal brainstem neural activity evoked during jaw movement (JM). Limited range of motion and pain during jaw opening are common complaints of patients with temporomandibular joint (TMJ) disorders. JM (0.5 Hz, 30 min) was presented to ovariectomized (OvX) female rats given estrogen replacement and males under barbiturate anesthesia. Quantification of Fos-like immunoreactivity (Fos-LI) after JM served as an index of evoked neural activity. Rats were injected locally in the TMJ with either an active (GRGDS, 300 microM, 25 microl) or an inactive integrin antagonist (SDGRG) prior to JM. The effect of prior inflammation of the TMJ region was assessed in separate groups of rats by injecting bradykinin (10 microM, 25 microl) with or without integrin drugs prior to JM. Active integrin antagonist significantly reduced JM-evoked Fos-LI in superficial laminae at the trigeminal subnucleus caudalis/upper cervical cord (Vc/C2) junction in OvX compared to male rats independent of bradykinin pretreatment. Fos-LI produced in the dorsal paratrigeminal and trigeminal subnucleus interpolaris/caudalis (Vi/Vc) transition regions was not reduced by active integrin antagonist in males or OvX females. Active integrin antagonist did not affect Fos-LI produced after injection of bradykinin alone into the TMJ. These results suggest that RGD binding integrins contribute to JM-evoked neural activity at the Vc/C2 junction under naive and inflamed conditions in a sex-dependent manner.  相似文献   

6.
Bereiter DA  Bereiter DF  Hirata H 《Pain》2002,99(3):547-556
Cannabinoids act at receptors on peripheral and central neurons to modulate diverse physiological functions and produce analgesia. Corneal sensory nerves express the CB1 cannabinoid receptor and project to two spatially discrete regions of the lower brainstem, the trigeminal interpolaris/caudalis (Vi/Vc) transition and subnucleus caudalis/upper cervical cord (Vc/C1) junction region. The function of CB1 expression on corneal nerves is not known. To determine if cannabinoid receptors in the anterior eye affect the activity of trigeminal brainstem neurons at the Vi/Vc and Vc/C1 the CB1 agonist, WIN55,212-2 (WIN-2), was applied topically prior to chemical excitation of corneal afferent fibers. In the first series of experiments WIN-2 was applied topically prior to excitation of corneal nociceptors by mustard oil (MO). WIN-2 reduced significantly the number of Fos-like immunoreactive neuronal nuclei (Fos-LI) at the Vi/Vc transition (-46.7+/-8.2%, P<0.05), while smaller non-significant reductions occurred at the Vc/C1 junction region (-20.3+/-7.6%). The selective CB1 antagonist, SR141716A (1mg/kg, i.v.), prevented WIN-2-evoked reduction in Fos-LI after MO. Systemic administration of WIN-2 (1 or 10mg/kg, i.p.) or SR141716A (1mg/kg, i.v.) or topical corneal application of morphine sulfate did not affect Fos-LI produced by MO. In parallel experiments, topical WIN-2 reduced the magnitude of single unit activity recorded at the Vi/Vc transition (-80+/-7%, P<0.025), but not at the Vc/C1 junction region (-34+/-30%) evoked by CO(2) pulses applied to the cornea. Topical morphine did not alter CO(2)-evoked unit activity at either recording location. These results indicated that cannabinoid receptor agonists acted, at least in part, at CB1 receptors in the anterior eye to reduce corneal stimulation-evoked trigeminal brainstem neural activity. Corneal nociceptor-evoked activity at the Vi/Vc transition was reduced significantly by topical WIN-2, while activity at the Vc/C1 junction region displayed only minor decreases. These findings were consistent with the hypothesis that CB1 receptors affect the activity of corneal-responsive neurons that preferentially contribute to homeostasis of the anterior eye and/or reflexive aspects of nociception rather than the sensory-discriminative aspects of corneal nociception.  相似文献   

7.
Bereiter DA  Okamoto K  Bereiter DF 《Pain》2005,117(1-2):58-67
The effect of persistent inflammation of the temporomandibular (TMJ) region on Fos-like immunoreactivity (Fos-LI) evoked by acute noxious stimulation of the same or opposite TMJ was assessed in male and cycling female rats. Two weeks after inflammation of the TMJ by complete Freund's adjuvant (CFA, 25 microg) the selective small fiber excitant, mustard oil (MO, 20%), was injected into the arthritic or opposite TMJ under barbiturate anesthesia. MO stimulation of the arthritic TMJ increased Fos-LI ipsilateral, but not contralateral, to MO compared to na?ve subjects in superficial laminae at the trigeminal subnucleus caudalis/upper cervical cord (Vc/C2) junction independent of sex hormone status. Unexpectedly, MO stimulation of the opposite TMJ in arthritic rats also produced a greater Fos-LI response ipsilateral to MO than na?ve animals. Fos-LI produced in the dorsal paratrigeminal region (dPa5) and Vc/C2 junction after MO stimulation of the normal TMJ was significantly greater in proestrous than diestrous females or male monoarthritic rats. In contrast to na?ve animals, Fos-LI was produced in deep laminae at the Vc/C2 junction ipsilateral to MO in CFA-treated animals independent of the site of prior CFA inflammation or sex hormone status. These results indicated that persistent monoarthritis of the TMJ region enhanced the excitability of trigeminal brainstem neurons to subsequent TMJ injury that occurred bilaterally in multiple regions of the lower trigeminal brainstem complex and depended on sex hormone status.  相似文献   

8.
Ro JY  Harriott A  Crouse U  Capra NF 《Pain》2003,104(3):539-548
Muscle tenderness and pain during movements are prominent symptoms associated with persistent jaw muscle pain. However, there is virtually no information on how trigeminal neurons respond to jaw movements (JM) or muscle palpation in the presence of muscle tissue injury or myositis. In this study, we investigated the effects of innocuous JM in the presence of acute masseteric inflammation on postsynaptic responses in the trigeminal brainstem nuclei by examining the expression of c-fos. In one group of rats, unilateral injections of an inflammatory substance, mustard oil (MO: 20%, 25 microl) were made into a masseter muscle. In another group, controlled and systematic JM were provided following MO injection. Three additional groups of rats were used to control for anesthetic, JM, and injection procedure. MO injected in the masseter muscle induced a high level of Fos protein expression in four principal trigeminal regions: the subnucleus caudalis (Vc), the ventral and dorsal regions of the Vc/Vi (subnucleus interpolaris) transition zone, and the paratrigeminal nucleus (PTN). Movements following MO injection consistently produced a significantly greater level of Fos expression in all these areas, especially in the Vc/Vi transition region and caudal Vc on the ipsilateral side. Importantly, movements also induced a significantly greater level of Fos expression in the caudal Vc on the contralateral side. The present results provide the first documentation that innocuous JM in the presence of muscle inflammation significantly increase the MO-induced c-fos expression in the trigeminal brainstem nuclei, which may explain the greater pain experienced during movement of inflamed or injured muscles.  相似文献   

9.
Meng ID  Hu JW  Bereiter DA 《Pain》2000,87(3):241-251
The cornea has been used extensively as a means to selectively stimulate trigeminal nociceptive neurons. The aim of this study was to determine the effects of descending modulatory control pathways on corneal unit activity by comparing the effects of conditioning stimulation of the pontine parabrachial area (PBA CS) and nucleus raphe magnus (NRM CS). Electrical stimulation of the cornea at A- and C-fiber intensities was used to activate neurons in two regions of the trigeminal spinal nucleus, the subnucleus interpolaris/caudalis transition (Vi/Vc, 'rostral units') and laminae I-II at the subnucleus caudalis/cervical cord transition (Vc/C1, 'caudal units'), in chloralose-anesthetized rats. Corneal units were further classified according to convergent cutaneous receptive field properties and PBA projection status. None of 48 rostral and 23/28 caudal units projected to the ipsilateral or contralateral PBA. PBA CS inhibited the cornea-evoked responses (<75% change from control) of approximately 65% of rostral and caudal units regardless of neuronal class. For rostral corneal units, PBA CS inhibited A- and C-fiber input equally (15+/-3 and 18+/-14% of control, respectively), whereas among caudal units, A-fiber input was inhibited more than C-fiber input (26+/-5 and 64+/-12% of control, respectively, P<0.01). The magnitude of NRM CS inhibition on cornea-evoked activity of both rostral and caudal units was not different from that seen after PBA CS. Glutamate microinjections into PBA also inhibited rostral and caudal corneal units (6/9 tested). These results indicate that corneal input to rostral and caudal units is modified by activation of descending controls from the PBA and NRM. The significance for processing corneal sensory information is discussed in terms of functional differences between rostral and caudal neurons.  相似文献   

10.
Nomura H  Ogawa A  Tashiro A  Morimoto T  Hu JW  Iwata K 《Pain》2002,95(3):225-238
After transection of the inferior alveolar nerve (IAN: the third branch of the trigeminal nerve), the whisker pad area, which is innervated by the second branch of the trigeminal nerve, showed hypersensitivity to mechanical stimulation. Two days after IAN transection, the threshold intensity for escape behavior to mechanical stimulation of the ipsilateral whisker pad area was less than 1.0 g, a sign of allodynia, and returned to the preoperative level (preoperative threshold: 52.0 g) at 32 days after surgery. This decrement of escape threshold lasted for more than 3 weeks. The whisker pad area contralateral to the IAN transection also showed a decrease in escape threshold to non-noxious mechanical stimulation as compared with sham-operated rats. However, the change in threshold intensity for the side contralateral to transection was not as pronounced as that on the ipsilateral side. Fos protein-like immunoreactive (LI) cells were observed in the superficial laminae but not dominant in deeper laminae of the trigeminal spinal nucleus caudalis (Vc) and the first segment of the spinal cord (C1) after non-noxious mechanical stimulation of the whisker pad area in the rats with IAN transection. Fos protein-LI cells were expressed bilaterally in the Vc and C1, but were more numerous on the ipsilateral side to transection than on the contralateral side. The largest number of Fos protein-LI cells was observed at 2400 microm caudal from the trigeminal subnucleus interporalis (Vi)-Vc border both in ipsilateral and contralateral sides. The number of Fos protein-LI cells increased after application of 1, 4, and 16 g stimuli as compared to rats without mechanical stimulation. Furthermore, an extensively greater number of Fos protein-LI cells were expressed both in superficial and deep laminae of the bilateral Vc and C1 of the spinal cord after subcutaneous injection of mustard oil into the whisker pad. Fos protein expression after mustard oil injection was much stronger than that observed after any mechanical stimulation in the rats with IAN transection. These data suggest that the change in the numbers and spatial arrangement of nociceptive neurons in the Vc and C1 after IAN transection reflect the development of mechanical hyperalgesia in the area adjacent to the IAN innervated region.  相似文献   

11.
Bereiter DA  Bereiter DF 《Pain》2000,85(1-2):65-77
Pain management in temporomandibular disorders (TMDs) often involves pharmacotherapy; however, the site of action for drugs that reduce TMD pain is not known. To determine possible central neural targets of analgesic drugs relevant in TMD pain, morphine or the N-methyl-D-aspartate receptor antagonist, MK-801, was given alone or in combination prior to TMJ injury. The number of neurons expressing the immediate early gene, c-fos, was quantified in the lower brainstem and upper cervical spinal cord as an index of neural activation. It was hypothesized that those neuronal groups most necessary for the sensory-discriminative aspects of acute TMJ injury should display the greatest reduction in c-fos expression after drug treatment. Barbiturate-anesthetized male rats were given morphine or MK-801 15 min prior to injection of mustard oil into the TMJ region. Morphine given centrally (i.c.v.) or peripherally (i.v.) caused a marked dose-related reduction in Fos-like immunoreactivity (Fos-LI) in laminae I-II at the middle portions of subnucleus caudalis (mid-Vc) and at the subnucleus caudalis/upper cervical spinal cord (Vc/C2) transition. Higher doses of morphine also reduced Fos-LI in the dorsal paratrigeminal region (dPa5) and at the subnucleus interpolaris/subnucleus caudalis (Vi/Vc-vl) transition. MK-801 given i.v. reduced Fos-LI only in laminae I-II at the Vc/C2 transition. Combined subthreshold doses of morphine and MK-801 reduced c-fos expression in the dPa5, mid-Vc, and the Vc/C2 transition region, below that predicted from the effects of either drug alone. These results suggest that neurons in laminae I-II of the mid-Vc and Vc/C2 transition and, to a lesser extent, in the dPa5 region play a critical role in mediating the sensory and/or reflex aspects of pain after acute injury to the TMJ region.  相似文献   

12.
We have developed a model to study central changes following inflammation of the tooth pulp in the ferret and have examined Fos expression in the trigeminal nucleus following stimulation of non‐inflamed and inflamed tooth pulps. The aim of this study was to establish the ability of this model to predict analgesic efficacy in clinical studies of inflammatory pain. We addressed this by assessing the effects of the neurokinin‐1 receptor antagonist GR205171A and ibuprofen on Fos expression following stimulation of the inflamed pulp and comparing this with known analgesic efficacy. Adult ferrets were prepared under anaesthesia to allow tooth pulp stimulation, recording from the digastric muscle and intravenous injections at a subsequent experiment. In some animals pulpal inflammation was induced, by introducing human caries into a deep buccal cavity. After 5 days, animals were reanaesthetised, treated with vehicle, GR205171A or ibuprofen and the teeth were stimulated at ten times the threshold of the jaw‐opening reflex. Stimulation of all tooth pulps induced ipsilateral Fos in trigeminal subnuclei caudalis and oralis. GR205171A had no significant effect on Fos expression in the trigeminal nucleus of animals with either non‐inflamed or inflamed tooth pulps. Ibuprofen reduced Fos expression in the trigeminal nucleus and this effect was most marked in animals with pulpal inflammation. These results differ from those previously described using a range of other animal models, but agree with known clinical efficacy of neurokinin‐1 receptor antagonists and ibuprofen. Therefore this model is likely to be of use in accurately predicting the analgesic efficacy of novel compounds.  相似文献   

13.
Although propofol (PRO) is widely used in clinic as a hypnotic agent, the underlying mechanisms of its action on pain pathways is still unknown. Sprague-Dawley rats were assigned to receive PRO or pentobarbital (PEN) and were divided into 2 groups as LIGHT and DEEP hypnotic levels based on the EEG analysis. Rats in each hypnotic level received capsaicin injection into the face and phosphorylated extracellular signal-regulated kinase (pERK) immunohistochemistry was performed in subnucleus caudalis (Vc) and upper cervical spinal cord. In the rats with PEN or PRO administration, a large number of pERK-like immunoreactive (LI) cells was observed in the trigeminal spinal subnuclei interpolaris and caudalis transition zone (Vi/Vc), middle Vc, and transition zone between Vc and upper cervical spinal cord (Vc/C2) following capsaicin injection into the whisker-pad region. The number of pERK-LI cells in Vi/Vc, middle Vc, and Vc/C2 was significantly larger in rats with PRO infusion than those with PEN infusion. The number of pERK-LI cells was increased following an increase in the dose of PRO but not in PEN. The pERK-LI cells were mainly distributed in the Vi/Vc, middle Vc, and Vc/C2 after the bolus infusion of PRO. The expression of pERK-LI cells was depressed after the intravenous lidocaine application before bolus PRO infusion. The present findings suggest that PRO induced an enhancement of the activity of trigeminal nociceptive pathways through nociceptors innervating the venous structure, as indicated by a lidocaine-sensitive increase in pERK. This may explain deep pain around the injection regions during intravenous bolus infusion of PRO.PerspectiveThe effect of propofol administration on ERK phosphorylation in the subregions of the spinal trigeminal complex and upper cervical spinal cord neurons were precisely analyzed in rats with PRO infusion. A large number of pERK-LI cells was observed following intravenous PRO administration, suggesting an enhancement of trigeminal nociceptive activity and that PRO may produce pain through nociceptors innervating the venous structures during infusion.  相似文献   

14.
J W Hu 《Pain》1990,41(3):331-345
An electrophysiological study was carried out in anesthetized rats to characterize the properties of single neurons in trigeminal (V) subnucleus caudalis. Each neuron was functionally classified in terms of its cutaneous mechanoreceptive field properties as low-threshold mechanoreceptive (LTM), wide dynamic range (WDR) or nociceptive-specific (NS), and its responsiveness was also tested to electrical stimulation of hypoglossal (XII) nerve muscle afferents. Some neurons were also tested with noxious stimulation of the tail or forepaw for the presence of diffuse noxious inhibitory controls (DNIC) of evoked responses. A mechanoreceptive field localized to the ipsilateral orofacial region was a feature of all the neurons which were located in laminae I-VI; the LTM neurons predominated in laminae III/IV whereas the nociceptive (WDR, NS) were located in the superficial and especially deeper laminae of caudalis. The majority of the WDR and NS neurons were also activated by noxious heating as well as by noxious mechanical and electrical stimulation of their orofacial mechanoreceptive field, and in contrast to our previous studies in cats, most of these caudalis nociceptive neurons received C fiber as well as A fiber cutaneous afferent inputs. In contrast to the LTM neurons, but consistent with our previous data in cats, many of the nociceptive neurons also received convergent excitatory inputs from XII muscle afferents, and the stimulus-response functions of the WDR neurons indicated that they were capable of coding the intensity of A and C fiber craniofacial muscle afferent inputs as well as those from cutaneous afferents. The study has also documented for the first time that muscle afferent-evoked responses as well as those evoked by cutaneous afferent inputs to nociceptive neurons are subject to DNIC. These findings indicate that subnucleus caudalis plays an important role in the transmission of superficial and deep nociceptive information from the craniofacial region of the rat, and also reveal that responses of the nociceptive neurons evoked by deep as well as superficial afferent inputs can be powerfully modulated by other nociceptive influences originating from widespread parts of the body.  相似文献   

15.
J L Henry  B J Sessle  G E Lucier  J W Hu 《Pain》1980,8(1):33-45
As little information is available on the chemistry of synaptic transmission in trigeminal brain stem nuclei, an iontophoretic study was done on the effects of glutamate and substance P on single neurons in trigeminal nuclei oralis and caudalis in cats anesthetized with chloralose and paralyzed. The neurons were additionally studied for their responses to natural noxious and innocuous cutaneous and intraoral stimuli as well as to bipolar stimulation of the ipsilateral and contralateral canine tooth pulps, the exposed infraorbital and superior laryngeal nerves and forepaw. Glutamate excited all units tested. Substance P also had an excitatory effect, but only on some units. The slow time course of this effect was similar to that reported in other CNS regions. Units excited by substance P were located only in nucleus caudalis, and all responded to noxious cutaneous stimuli and/or to stimulation of tooth pulp; units responding only to innocuous orofacial stimulation were not excited by substance P. Levorphanol and opioid peptides were also applied iontophoretically to some of the neurons and were found to have depressant effects on nociceptive units. The data support the possibility that substance P and endogenous opioids play a role in chemical transmission in nociceptive pathways in trigeminal nucleus caudalis. The regional specificity of substance P excitation adds support to the earlier evidence of a differential distribution of sensory inputs to nuclei oralis vs. caudalis, with facial nocicpetive afferents projecting only to caudalis. The functional specificity of substance P excitation also adds to the parallels found between the dorsal horn and nucleus caudalis. In addition, the similarity between the dorsal horn and nucleus caudalis with respect to the effects of substance P and the opioids suggest a parallel in the neurochemistry of synaptic transmission at the two levels.  相似文献   

16.
It has been reported that the whisker pad (WP) area, which is innervated by the second branch of the trigeminal nerve, shows allodynia/hyperalgesia following transection of the mental nerve (MN: the third branch of the trigeminal nerve). However, the mechanisms of this extra‐territorial pain induction still remain unclear. Glia and cytokines are known to facilitate perception of noxious input, raising a possibility that these non‐neuronal elements are involved in the induction and spread of allodynia/hyperalgesia at non‐injured skin territory. One day after MN transection, tactile allodynia/hyperalgesia developed on the ipsilateral WP area, which is in the non‐injured skin territory. The tactile allodynia/hyperalgesia lasted for more than 56 days. In response to MN transection, astrocytes and microglia appeared to be in an activated state, and interleukin (IL)‐1beta was up‐regulated in astrocytes in the trigeminal subnucleus caudalis (Vc). Allodynia/hyperalgesia at WP area induced by MN transection was attenuated dose‐dependently by IL‐1 receptor antagonist IL‐1ra (i.t., 0.05, 0.5, and 5pg/rat). Fos‐like immunoreactive (Fos‐Li) neurons were observed in the Vc after non‐noxious mechanical stimulation of the WP area in the rats with MN transection. Administration of IL‐1ra also attenuated the number of Fos‐Li neurons dose‐dependently. Administration of a noncompetitive antagonist of NMDA receptors MK‐801 (i.t., 5μg/rat) reversed allodynia/hyperalgesia. IL‐1 receptor type I (IL‐1RI) was localized in Fos‐ and phospho NR1‐immunoreactive neurons. These results suggest that IL‐1beta in the Vc plays an important role in the development of extra‐territorial tactile allodynia/hyperalgesia after MN transection.  相似文献   

17.
Bereiter DA  Shen S  Benetti AP 《Pain》2002,98(1-2):89-99
The neurological basis for painful temporomandibular disorders (TMD) and the higher prevalence of TMD pain in women than men is not known. To better define the circuitry and neurochemical mechanisms in the lower brainstem associated with noxious sensory inputs from the temporomandibular joint (TMJ) region a microdialysis method was used to measure the release of amino acid transmitters from the ventral trigeminal subnucleus interpolaris/caudalis transition region (Vi/Vc-vl). The irritant chemical, mustard oil, was injected into the TMJ region (TMJ-MO) under barbiturate anesthesia in males and normal cycling female rats. Males displayed significant increases in glutamate, serine, and glycine within 15 min after TMJ-MO and increases in citrulline occurred after a delay of 15-30 min. TMJ-MO did not enhance amino acid release in diestrus or proestrus females. GABA release was not affected by TMJ-MO in males or females. Pretreatment with morphine (3 mg/kg, i.v.) prevented the increase in amino acid release seen after TMJ-MO in males. Amino acid release at the Vi/Vc-vl transition region evoked by TMJ-MO also was prevented by prior microinjection of the GABA(A) receptor agonist, muscimol, into the most caudal portion of Vc suggesting this region acted as a critical relay for nociceptive inputs from the TMJ region. These results suggest that glutamatergic mechanisms acting at the Vi/Vc-vl transition region contribute to processing of nociceptive signals that arise from the TMJ region. These results also are consistent with the hypothesis that central neural mechanisms that integrate nociceptive inputs from deep craniofacial tissues are different in males and females.  相似文献   

18.
INTRODUCTION: Headache is thought to be generated by nociceptive processes within the meninges, followed by activation of trigeminal neurons within the brainstem. The noxious stimuli initially involved in these nociceptive processes are unknown. A preparation was developed in the barbiturate-anesthetized rat, in which the activation of trigeminal brain stem neurons by selective local stimulation of the dura mater could be observed. METHODS: The dura mater encephali was exposed by trepanizing the parietal bone up to the sagittal superior sinus. The surface of the dura was stimulated with electrical pulses using bipolar electrodes. Extracellular recordings were made from neurons in the subnucleus interpolaris and caudalis of the spinal trigeminal nucleus. Neurons driven by meningeal afferents were identified by electrical stimulation and by probing their receptive fields on the dura mater. For chemical stimulation a combination of several inflammatory mediators (bradykinin, serotonin, histamine and prostaglandin E(2), each 10(-4)M, 6.1) was topically applied to the dura mater or injected through a catheter into the sagittal sinus. RESULTS: Most of the trigeminal brain stem neurons with input from the parietal dura mater had convergent input from the facial skin with preponderance of the periorbital region. A high proportion of neurons (69%) could be activated by the combination of inflammatory mediators administered to the dura mater. CONCLUSION: We conclude that chemical stimuli activating the meningeal nociceptive system may play a decisive role in the generation of headache. This is particularly relevant for the nociceptive processes during neurogenic inflammation, which is believed to be an important step in the pathophysiology and development of migraine pain. The preparation presented here may be a valuable model for further studying the neurophysiological changes that are involved in the generation of headache.  相似文献   

19.
Okamoto K  Tashiro A  Hirata H  Bereiter DA 《Pain》2005,114(1-2):203-211
Sex differences in the cellular responses to morphine were examined in an animal model of temporomandibular joint (TMJ) pain. TMJ-responsive neurons were recorded in the superficial laminae at the trigeminal subnucleus caudalis/upper cervical cord (Vc/C(2)) junction region, the initial site of synaptic integration for TMJ afferents, in male and cycling female rats under barbiturate anesthesia. Unit activity was evoked by local injection of bradykinin into the TMJ capsule at 30 min intervals and the effects of morphine sulfate (0.03-3 mg/kg, i.v.) were assessed by a cumulative dose regimen. Morphine caused a dose-related inhibition of bradykinin-evoked unit activity in males and diestrous females in a naloxone-reversible manner, while evoked unit activity in proestrous females was not reduced. The apparent sex hormone-related aspect of morphine analgesia was selective for evoked unit activity, since the spontaneous activity of TMJ units was reduced similarly in all groups, while the convergent cutaneous receptive field area of TMJ units did not change in any group. These results were consistent with the hypothesis that sex hormone status interacts with pain control systems to modify neural activity at the level of the Vc/C(2) junction region relevant for TMD pain.  相似文献   

20.
K D Davis  J O Dostrovsky 《Pain》1986,25(3):395-401
Vascular head pain is thought to result from activation of trigeminal sensory nerve fibers innervating cranial blood vessels. Support for this hypothesis was sought by searching in the trigeminal brain-stem subnucleus caudalis (SNC) for neuronal responses evoked by electrical stimulation of the middle meningeal artery (MMA). Seventy-eight SNC neurons were found which could be excited by MMA stimulation of the facial skin. These results provide the first report of the existence and functional properties of brain-stem neurons likely to be involved in mediating vascular head pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号