首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ledipasvir is a novel antiviral agent used in the treatment of hepatitis C. We aim in our study to increase its delivery to hepatocytes and prolong its retention within liver. Several formulae of ledipasvir loaded liposomes were prepared and the best formula regarding particle size, zeta potential, polydispersity index and entrapment efficiency was selected. On the other hand, galactosylated chitosan was synthesized in a chemical reaction. Then the best liposomes formula was coated with the galactosylated chitosan. Having galactose residues on their surface, the coated liposomes can bind to the asialoglycoprotein receptors on the targeted hepatocytes enhancing ledipasvir uptake into them. The galactosylated chitosan coated liposomes had particle size of 218.2 nm ± 7.21, zeta potential of 27.15 mV ± 1.76, polydispersity index of 0.278 ± 0.055 and entrapment efficiency % of 54.63% ± 0.05 respectively. The pharmacokinetic study revealed a significant increase in the liver peak concentration (Cmax) and the area under liver concentration versus time curve AUC(0–72 h) and significant prolongation in the liver terminal half life (t½) and mean residence time (MRT) in comparison to the oral dispersion of ledipasvir with values of 11,400 ng/g, 88,855 ng1h/g, 32.00 h and 18.11 h respectively.  相似文献   

2.
The main purpose of this study was to assess a lidocaine hydrochloride-loaded chitosan-pectin-hyaluronic polyelectrolyte complex for rapid onset and sustained release in dry socket wound treatment. Nine formulations (LCs) of lidocaine hydrochloride (LH) loaded into a chitosan–pectin–hyaluronic polyelectrolyte complex (PEC) were assessed using full factorial design (two factors × three levels). The formulations ranged between 4 and 10% w/w LH and 0.5–1.5% w/w HA. The following physicochemical properties of LCs were characterized: size, zeta potential, % entrapment efficiency, viscosity, mucoadhesiveness, % drug release, morphology, storage stability, and cytotoxicity. The particle size, zeta potential, % EE, viscosity, and % mucoadhesion increased with increasing LH and HA concentrations. Rapid release of LH followed a zero-order model, and a steady-state percentage of the drug was released over 4 h. LCs were found to be non-cytotoxic compared to LH solution. LH loaded into PEC demonstrated appropriate characteristics—including suitable rate of release—and fit a zero-order model. Furthermore, it was not cytotoxic and showed good stability in a high-HA formula, making it a promising candidate for future topical oral formulations.  相似文献   

3.
In this study, we designed a novel nucleus-targeted nanocarrier (NLS-KALA-SA, NKSN) consisting of Kala peptide (KALA), nuclear localization signal (NLS) and stearic acid (SA) using Fmoc solid phase synthesis method. We chose Curcumin (CUR), Paclitaxel (PTX), Ginsenoside compound K(CK) as models of poorly water-soluble antitumor drugs, The drugs loaded NLS-KALA-SA nanoparticles (CUR/NKSN, PTX/NKSN, CK/NKSN) were obained by the dialysis method, their physicochemical properties were determined and antitumor activity were evaluated. The NLS-KALA-SA nanoparticles were spherical shaped with an average size of 76.4 ± 7.6 mm and a zeta potential of 43.7 ± 5.8 mV. The drug-loaded NLS-KALA-SA nanoparticles were above 86.1% and 17.1% in entrapment efficiency and drug loading capacity, and had sustained drug release behavior. Biodistribution and cellular uptake study exhibited that PTX/NKSN mainly distributed in tumor site of A549-bearing mice, and coumarin-6(C6) loaded NLS-KALA-SA nanoparticle (C6/NKSN) was predominantly accumulated in the nucleus of A549 cells. Western blot analysis indicated that PTX/NKSN could more remarkably inhibit Bcl-2 expression and enhance the expression of Bax and Caspase-3 as compared to the controls in A549 cells. Cell apoptosis and antitumor activity study showed that PXT/NKSN could more obviously induce apoptosis of A549 cells compared with free PXT, the PTX/NKSN administration was more effective than free PTX for lung cancer treatment and displayed mild toxicity in A549-bearing mice. The results demonstrates that the NLS-KALA-SA nanoparticles system could enhance the antitumor effects of the encapsulated drug and reduce tissue toxicity due to its long circulating properties and tumor targeting, which might provide a promising strategy for lung cancer treatment.  相似文献   

4.
This study sought to prepare a self-microemulsion drug delivery system containing zingerone (Z-SMEDDS) to improve the low oral bioavailability of zingerone and anti-tumor effect. Z-SMEDDS was characterized by particle size, zeta potential and encapsulation efficiency, while its pharmacokinetics and anti-tumor effects were also evaluated. Z-SMEDDS had stable physicochemical properties, including average particle size of 17.29 ± 0.07 nm, the zeta potential of -22.81 ± 0.29 mV, and the encapsulation efficiency of 97.96% ± 0.02%. In vitro release studies have shown the release of zingerone released by Z-SMEDDS was significantly higher than free zingerone in different release media. The relative oral bioavailability of Z-SMEDDS was 7.63 times compared with free drug. Meanwhile, the half inhibitory concentration (IC50)of Z-SMEDDS and free zingerone was 8.45 μg/mL and 13.30 μg/mL, respectively on HepG2. This study may provide a preliminary basis for further clinical research and application of Z-SMEDDS.  相似文献   

5.
Silver nanoparticles (AgNP) can be found in different consumer products and various medical devices due to their excellent biocidal properties. Despite extensive scientific literature reporting biological effects of AgNP, there is still a lack of scientific evidence on how different surface functionalization affects AgNP interaction with the human skin and the oral epithelium.This study aimed to investigate biological consequences following the treatment of HaCaT and TR146 cells with AgNP stabilized with negatively charged sodium bis(2-ethylhexyl)-sulfosuccinate (AOT), neutral polyvinylpyrrolidone (PVP), and positively charged poly-l-lysine (PLL). All AgNP were characterized by means of size, shape and surface charge. Interactions with biological barriers were investigated in vitro by determining cell viability, particle uptake, oxidative stress response and DNA damages following AgNP treatment. Results showed a significant difference in cytotoxicity depending on the surface coating used for AgNP stabilization. All three types of AgNP induced apoptosis, oxidative stress response and DNA damages in cells, but AOT- and PVP-coated AgNP exhibited lower toxicity than positively charged PLL-AgNP.Considering the number of data gaps related to the safe use of nanomaterials in biomedicine, this study highlights the importance of particle surface functionalization that should be considered during design and development of future AgNP-based medical products.  相似文献   

6.
7.
BackgroundAutologous hematopoietic stem cell transplantation is an effective therapeutic strategy for lymphoma patients. However, some patients have to give up receiving transplantation because of failing to obtain sufficient CD34+ cells yields. Therefore, we ex vivo expanded HSCs of lymphoma patients using UM171 to solve the problem of HSCs deficiency.MethodsMobilized peripheral blood-derived CD34+ cells from lymphoma patients were cultured for 10 days with or without UM171. The fold of cell expansion and the immunophenotype of expanded cells were assessed by flow cytometry. RNA-seq experiment was performed to identify the mechanism by which UM171 promoted HSCs expansion.ResultsUM171 treatment increased the proportion of CD34+ (68.97 ± 6.91%), CD34+ CD38 cells (44.10 ± 9.20%) and CD34+CD38CD45RACD90+ LT-HSCs (3.05 ± 2.08%) compared to vehicle treatment (36.08 ± 11.14%, 18.30 ± 9.49% and 0.56 ± 0.45%, respectively). UM171 treatment led to an 85.08-fold increase in LT-HSC numbers relative to initial cells. Importantly, UM171 promoted expansion of LT-HSCs achieved 138.57-fold in patients with poor mobilization. RNA-seq data showed that UM171 upregulated expression of HSC-, mast cell-specific genes and non-canonical Wnt signaling related genes, and inhibited genes expression of erythroid, megakaryocyte and inflammatory mediated chemokine.ConclusionsOur study shows that UM171 can efficiently promote ex vivo expansion of HSCs from lymphoma patients, especially for poorly mobilizing patients. In terms of mechanism, UM171 upregulate HSC-specific genes expression and suppress erythroid and megakaryocytic differentiation, as well as activate non-classical Wnt signaling.  相似文献   

8.
《Saudi Pharmaceutical Journal》2022,30(10):1448-1453
BackgroundThe introduction of direct-acting antivirals (DAA) to treat the hepatitis C virus (HCV) overcame many drawbacks of interferon-based therapy. DAA achieved sustained viral response (SVR) rates above 90% and overcame many drawbacks of pegylated interferon regimens.The HCV genotype (GT) distribution varies by geographical area, with GT-4 being most prevalent in the Middle East region, including Saudi Arabia. Yet, the real-world evidence about using DAAs in the Saudi population is limited.Thus, the aim of this study to investigate the effectiveness and safety of DAAs in Saudi patients with HCV infection.MethodsA retrospective cohort study included patients treated with DAAs from 2015 to 2017 at a tertiary care hospital in Riyadh, Saudi Arabia. All patients with HCV treated with either ledipasvir plus sofosbuvir (LDS/SOF) ± ribavarin (RBV) or ombitasvir-paritaprevir-ritonavir (OBV/PTV/r) ± dasabuvir (DSV) ± RBV were included. Using a per-protocol analysis, the effectiveness outcome was the end-of-treatment response (EOTr) and Sustained virologic reponce12 weeks after competing the regimen (SVR12). The secondary safety outcome was the adverse event related to the therapy reported by the patients.ResultsA total of 97 patients were included; with the majority infected with GT-4 (64 %), followed by GT-1 (18 %), in addition to 8 % having a mixed GT (1 + 4). The EOTr and SVR12 rates were 98 % and 96 %, respectively. SVR12 was 94.4 % within the LDS/SOF ± RBV group and 97.7 % within the OBV/PTV/r ± DSV ± RBV group. Only 4 % had a response failure due to relapse or breakthrough, and all were infected with mixed GT1 + 4. Medications were well tolerated with minimal side effects, including vomiting, nausea, and weakness.ConclusionDAAs regimens are associated with high rates of SVR12 and are well tolerated with a good safety profile in Saudi HCV-infected patients.  相似文献   

9.
BackgroundCisplatin (CSP) is a potent anticancer drug widely used in treating glioblastoma multiforme (GBM). However, CSP's clinical efficacy in GBM contrasted with low therapeutic ratio, toxicity, and multidrug resistance (MDR). Therefore, we have developed a system for the active targeting of cisplatin in GBM via cisplatin loaded polymeric nanoplatforms (CSP-NPs).MethodsCSP-NPs were prepared by modified double emulsion and nanoprecipitation techniques. The physiochemical characterizations of CSP-NPs were performed using zeta sizer, scanning electron microscopy (SEM), drug release kinetics, and drug content analysis. Cytotoxicity, induction of apoptosis, and cell cycle-specific activity of CSP-NPs in human GBM cell lines were evaluated by MTT assay, fluorescent microscopy, and flow cytometry. Intracellular drug uptake was gauged by fluorescent imaging and flow cytometry. The potential of CSP-NPs to inhibit MDR transporters were assessed by flow cytometry-based drug efflux assays.ResultsCSP-NPs have smooth surface properties with discrete particle size with required zeta potential, polydispersity index, drug entrapment efficiency, and drug content. CSP-NPs has demonstrated an ‘initial burst effect’ followed by sustained drug release properties. CSP-NPs imparted dose and time-dependent cytotoxicity and triggered apoptosis in human GBM cells. Interestingly, CSP-NPs significantly increased uptake, internalization, and accumulations of anticancer drugs. Moreover, CSP-NPs significantly reversed the MDR transporters (ABCB1 and ABCG2) in human GBM cells.ConclusionThe nanoparticulate system of cisplatin seems to has a promising potential for active targeting of cisplatin as an effective and specific therapeutic for human GBM, thus eliminating current chemotherapy's limitations.  相似文献   

10.
Neurotherapeutic potentials of Centella asiatica and its reputation to boost memory, prevent cognitive deficits and improve brain functions are widely acknowledged. The plant's bioactive compounds, i.e. asiaticoside, madecassoside and asiatic acid were reported to have central nervous system (CNS) actions, particularly in protecting the brain against neurodegenerative disorders. Hence, it is important for these compounds to cross the blood-brain barrier (BBB) to be clinically effective therapeutics. This study aimed to explore the capability of asiaticoside, madecassoside and asiatic acid to cross the BBB using in vitro BBB model from primary porcine brain endothelial cells (PBECs). Our findings showed that asiaticoside, madecassoside and asiatic acid are highly BBB permeable with apparent permeability (Papp) of 70.61 ± 6.60, 53.31 ± 12.55 and 50.94 ± 10.91 × 10?6 cm/s respectively. No evidence of cytotoxicity and tight junction disruption of the PBECs were observed in the presence of these compounds. Asiatic acid showed cytoprotective effect towards the PBECs against oxidative stress. This study reported for the first time that Centella asiatica compounds demonstrated high capability to cross the BBB, comparable to central nervous system drugs, and therefore warrant further development as therapeutics for the treatment of neurodegenerative diseases.  相似文献   

11.
The purpose of this study was to elucidate the involvement of Mate1 in the tubular secretion of trimethoprim and saturation of Mate1-mediated efflux to address the mechanisms underlying the pharmacokinetic drug interactions with trimethoprim. Trimethoprim is a more potent inhibitor of MATE2-K than MATE1 with Ki values (μM) of 0.030–0.28 and 2.4–5.9, respectively. Trimethoprim is a substrate of human MATE1 and MATE2-K with Km values of 2.3 ± 0.9 and 0.018 ± 0.004 μM, and mouse Mate1, but not human OCT2, mouse Oct1 and Oct2. Pyrimethamine significantly reduced the renal clearance (CLR) of trimethoprim (mL/min/kg) from 40.0 ± 5.1 to 20.1 ± 3.7 (p < 0.05). Trimethoprim was given to mice at three infusion rates (150, 500, and 1500 nmol/min/kg). Together with an increase in the plasma concentrations of trimethoprim, the CLR (mL/min/kg) of trimethoprim decreased to 25.9 ± 3.2, 13.5 ± 5.7, and 8.92 ± 1.50 at the respective rates. Trimethoprim decreased the CLR of rhodamine 123 in an infusion rate-dependent manner: 11.5 ± 1.3 (control), 5.17 ± 1.55, 1.31 ± 0.50, and 0.532 ± 0.180. These results suggest that Mate1 mediates the tubular secretion of trimethoprim, and at therapeutic doses, MATEs-mediated efflux can be saturated, and thereby, cause drug interactions with other MATE substrates.  相似文献   

12.
This work was aimed to improve the efficacy of tacrolimus in the treatment of endotoxin-induced uveitis (EIU) using propylene glycol modified lipid vesicles termed as proglycosome nano-vesicles (PNVs). PNVs were prepared by modified film hydration method. Experimental uveitis in rabbit eye was induced by an intravitreal injection of 20 μL of the endotoxin solution containing 100 ng of lipopolysaccharide endotoxin. In vivo efficacy of PNVs was determined by studying clinical symptoms of uveitis using slit lamp examination and by quantitatively measuring levels of tumor necrosis factor-alpha, interleukin-6, leukocytes and total proteins in aqueous humor, 24 h after intravitreal injection of endotoxin. Comparison was made with healthy, untreated and tacrolimus solution treated eyes. PNVs developed were nano-sized, deformable and showed sustained release of tacrolimus over period of 12 h. In vivo results indicated statistically significant difference between the effects of PNVs in the treatment of EIU compared to tacrolimus. PNV treatment not only subsides clinical symptoms of uveitis but also prevented breakdown of blood aqueous barrier. Tacrolimus loaded PNVs are potential new topical treatment for uveitis.  相似文献   

13.
To overcome the drug toxicity and frequent resistance of parasites against the conventional drugs for the healing of human visceral leishmaniasis, innovative plant derived antileishmanial components are very imperative. Fuelled by the complications of clinically available antileishmanial drugs, a novel potato serine protease inhibitor was identified with its efficacy on experimental visceral leishmaniasis (VL). The serine protease inhibitors from potato tuber extract (PTEx) bearing molecular mass of 39 kDa (PTF1), 23 kDa (PTF2) and 17 kDa (PTF3) were purified and identified. Among them, PTF3 was selected as the most active inhibitor (IC50 143.5 ± 2.4 µg/ml) regarding its antileishmanial property. Again, intracellular amastigote load was reduced upto 83.1 ± 1.7% in pre-treated parasite and 88.5 ± 0.5% in in vivo model with effective dose of PTF3. Protective immune response by PTF3 was noted with increased production of antimicrobial substances and up-regulation of pro-inflammatory cytokines. Therapeutic potency of PTF3 is also followed by 80% survival in infected hamster. The peptide mass fingerprint (MALDI-TOF) results showed similarity of PTF3 with serine protease inhibitors database. Altogether, these results strongly propose the effectiveness of PTF3 as potent immunomodulatory therapeutics for controlling VL.  相似文献   

14.
15.
Toxic and environmental harmful organic solvents are widely applied to prepare poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NP) in standard preparation methods. Alternative non-toxic solvents suffer from disadvantages like high viscosity and plasticizing effects. To overcome these hurdles, Cyrene? as a new sustainable, non-toxic and low viscous solvent was used to formulate PLGA NPs. A new preparation method was developed and optimized. Small sized blank NPs around 220 nm with a narrow size distribution and highly negative charge (<?23 mV) were obtained. To test the application for drug delivery, the lipophilic model drug atorvastatin was encapsulated in high drug loads with comparable physicochemical characteristics as the blank NPs, and a total drug release within 24 h. No changes of the crystallinity or plasticizing effects could be observed. Highly purified NPs were obtained with a residual Cyrene? content <2.5%. Finally, the biocompatibility of Cyrene? itself and of the NPs formed in the presence of Cyrene? was demonstrated in a hen's egg test. Conclusively, the use of Cyrene? as solvent offers a simple, fast and non-toxic procedure for preparation of PLGA NPs as drug delivery systems circumventing the downsides of standard methods.  相似文献   

16.
Risedronate is a nitrogen-containing bisphosphonate for the treatment and prevention of postmenopausal osteoporosis. The current work aims to develop a novel green HPLC-UV method for the rapid analysis of risedronate sodium in bulk and tablet formulation. The analyzed samples were separated on Waters Atlantis dC18 (150 mm × 3.9 mm; 5 μm) column using a green mobile phase consisting of potassium phosphate buffer pH 2.9 and potassium edetate buffer pH 9.5 in a ratio of 1:2, the final pH was adjusted to 6.8 with phosphoric acid, the mobile phase was pumped at a rate of 1.0 mL/min, with column temperature set at 30 °C, eluted samples were detected at 263 nm and the chromatographic run time was 3.0 min. The method was found to be linear over the concentration range of 14–140 μg/mL with a correlation coefficient (r2) of 0.9994. Accuracy and precision were evaluated from three QC samples (LQC, MQC and HQC) together with the five calibrators where the percentage accuracy was found to be 101.84%. Processed quality control samples of risedronate sodium were tested for stability at different conditions, short term, long term and freeze- thaw stability. The current method was further extended to study the content uniformity of Actonel® tablets following United States Pharmacopoeia (USP) guidelines. The proposed method was fully validated as per ICH guidelines.  相似文献   

17.
Two cytotoxic sesquiterpene lactones, 17-epichlorohyssopifolin A (1) and chlorjanerin (2), and a monoterpene lactone, loliolide (3) were isolated from Centaurea pseudosinaica. The cytotoxicity of the total extract and terpenoids 13 were evaluated against three human cancer cells (HepG2, PC-3, and HT-29), along with the human normal primary epidermal keratinocytes (HEKa) cells. With IC50 values ranging between 0.6 ± 0.04 and 5.0 ± 0.61 μg/mL against HepG2; 0.2 ± 0.01 and 11.9 ± 1.31 μg/mL against PC-3, and 0.04 ± 0.013 and 8.9 ± 0.97 μg/mL against HT-29, the total extract, and lactones 13 demonstrated cytotoxic effects. Compound 1 displayed the strongest impact on all cancer cells and a slightly safe effect on the normal cells HEKa. Compound 1 caused accumulation of HepG2 and HT-29 cells in G1 phase as displayed cell cycle analysis. On the other hand, the cell distributions were increased in the S phase in PC-3 cells. Furthermore, 1 caused apoptosis in PC-3 and HePG2 cells with 91.50%, and 79.72 %, respectively. A higher fraction of necrotic cells was observed in HT-29 cells amounting to 23.60%. These results suggested that the promising cytotoxicity exhibited by 1 is brought by the apoptosis induction in the cancer cells, which were evaluated. As the compounds showed antiproliferative effect against the HT-29 cells, the docking simulation was performed aiming at determining how they would interact with the EGFR enzyme, whose PDB: 4I23 is considered one of the two distinct wild types of EGFR enzymes. The antibacterial activity results revealed that 3 showed the most remarkable antibacterial effects, especially against the examined Gram-positive bacteria. The total extract exhibited potent activity against all examined bacteria. The total extract showed a potent antifungal effect against two Candida and two Aspergillus pathogens. The antioxidant activity revealed the potency of the total extract and 3 as antioxidant candidates. The obtained results refer to the importance of Centaurea pseudosinaica as a source of potent antiproliferative agents and the whole plant as an antipathogenic and antioxidant agent.  相似文献   

18.
Interleukin-1 receptor-associated kinases (IRAKs), particularly IRAK1 and IRAK4, are important in transducing signal from Toll-like receptor 4. We interrogated if a selective inhibition of IRAK1 could alleviate lipopolysaccharide (LPS)-induced sepsis. In this study, we tested the impact of a novel selective IRAK1 inhibitor Jh-X-119-01 on LPS-induced sepsis in mice. Survival at day 5 was 13.3% in control group where septic mice were treated by vehicle, while the values were 37.5% (p = 0.046, vs. control) and 56.3% (p = 0.003, vs. control) for 5 mg/kg and 10 mg/kg Jh-X-119-01-treated mice. Jh-X-119-01 alleviated lung injury and reduced production of TNFα and IFNγ in peritoneal macrophages. Jh-X-119-01 decreased phosphorylation of NF-κB and mRNA levels of IL-6 and TNFα in LPS-treated macrophages in vitro. Jh-X-119-01 selectively inhibited IRAK1 phosphorylation comparing with a non-selective IRAK1/4 inhibitor which simultaneously inhibited phosphorylation of IRAK1 and IRAK4. Both Jh-X-119-01 and IRAK1/4 inhibitor increased survival of septic mice, but Jh-X-119-01-treated mice had higher blood CD11b+ cell counts than IRAK1/4 inhibitor-treated ones [24 h: (1.18 ± 0.26) × 106/ml vs. (0.79 ± 0.20) × 106/ml, p = 0.001; 48 h: (1.00 ± 0.30) × 106/ml vs. (0.67 ± 0.23) × 106/ml, p = 0.042]. IRAK1/4 inhibitor induced more apoptosis of macrophages than Jh-X-119-01 did in vitro. IRAK1/4 inhibitor decreased protein levels of anti-apoptotic BCL-2 and MCL-1 in RAW 264.7 and THP-1 cells, an effect not seen in Jh-X-119-01-treated cells. In conclusion, Jh-X-119-01 selectively inhibited activation of IRAK1 and protected mice from LPS-induced sepsis. Jh-X-119-01 showed less toxicity on macrophages comparing with a non-selective IRAK1/4 inhibitor.  相似文献   

19.
《药学学报(英文版)》2021,11(12):3857-3868
Drug-induced liver injury (DILI) is a leading reason for preclinical safety attrition and post-market drug withdrawals. Drug-induced mitochondrial toxicity has been shown to play an essential role in various forms of DILI, especially in idiosyncratic liver injury. This study examined liver injury reports submitted to the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) for drugs associated with hepatotoxicity via mitochondrial mechanisms compared with non-mitochondrial mechanisms of toxicity. The frequency of hepatotoxicity was determined at a group level and individual drug level. A reporting odds ratio (ROR) was calculated as the measure of effect. Between the two DILI groups, reports for DILI involving mitochondrial mechanisms of toxicity had a 1.43 (95% CI 1.42–1.45; P < 0.0001) times higher odds compared to drugs associated with non-mitochondrial mechanisms of toxicity. Antineoplastic, antiviral, analgesic, antibiotic, and antimycobacterial drugs were the top five drug classes with the highest ROR values. Although the top 20 drugs with the highest ROR values included drugs with both mitochondrial and non-mitochondrial injury mechanisms, the top four drugs (ROR values > 18: benzbromarone, troglitazone, isoniazid, rifampin) were associated with mitochondrial mechanisms of toxicity. The major demographic influence for DILI risk was also examined. There was a higher mean patient age among reports for drugs that were associated with mitochondrial mechanisms of toxicity [56.1 ± 18.33 (SD)] compared to non-mitochondrial mechanisms [48 ± 19.53 (SD)] (P < 0.0001), suggesting that age may play a role in susceptibility to DILI via mitochondrial mechanisms of toxicity. Univariate logistic regression analysis showed that reports of liver injury were 2.2 (odds ratio: 2.2, 95% CI 2.12–2.26) times more likely to be associated with older patient age, as compared with reports involving patients less than 65 years of age. Compared to males, female patients were 37% less likely (odds ratio: 0.63, 95% CI 0.61–0.64) to be subjects of liver injury reports for drugs associated with mitochondrial toxicity mechanisms. Given the higher proportion of severe liver injury reports among drugs associated with mitochondrial mechanisms of toxicity, it is essential to understand if a drug causes mitochondrial toxicity during preclinical drug development when drug design alternatives, more clinically relevant animal models, and better clinical biomarkers may provide a better translation of drug-induced mitochondrial toxicity risk assessment from animals to humans. Our findings from this study align with mitochondrial mechanisms of toxicity being an important cause of DILI, and this should be further investigated in real-world studies with robust designs.  相似文献   

20.
《药学学报(英文版)》2022,12(2):907-923
Although several artificial nanotherapeutics have been approved for practical treatment of metastatic breast cancer, their inefficient therapeutic outcomes, serious adverse effects, and high cost of mass production remain crucial challenges. Herein, we developed an alternative strategy to specifically trigger apoptosis of breast tumors and inhibit their lung metastasis by using natural nanovehicles from tea flowers (TFENs). These nanovehicles had desirable particle sizes (131 nm), exosome-like morphology, and negative zeta potentials. Furthermore, TFENs were found to contain large amounts of polyphenols, flavonoids, functional proteins, and lipids. Cell experiments revealed that TFENs showed strong cytotoxicities against cancer cells due to the stimulation of reactive oxygen species (ROS) amplification. The increased intracellular ROS amounts could not only trigger mitochondrial damage, but also arrest cell cycle, resulting in the in vitro anti-proliferation, anti-migration, and anti-invasion activities against breast cancer cells. Further mice investigations demonstrated that TFENs after intravenous (i.v.) injection or oral administration could accumulate in breast tumors and lung metastatic sites, inhibit the growth and metastasis of breast cancer, and modulate gut microbiota. This study brings new insights to the green production of natural exosome-like nanoplatform for the inhibition of breast cancer and its lung metastasis via i.v. and oral routes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号