首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
1 To investigate the effect of moderate hypoxia alone or combined with an inflammatory reaction or after 3-methylcholanthrene (3MC) pre-treatment on cytochrome P450 (P450), conscious rabbits were exposed for 24 h to a fractional concentration of inspired O2 of 10% (mean PaO2 of 34 mmHg). Hypoxia decreased theophylline metabolic clearance (ClM) from 1.73+/-0.43 to 1.48+/-0.13 ml min-1 kg-1 (P<0. 05), and reduced (P<0.05) the formation clearance of theophylline metabolites, 3-methylxanthine (3MX), 1-methyluric acid (1MU) and 1,3-dimethyluric acid (1,3DMU). Hypoxia reduced the amount of CYP1A1 and 1A2 but increased CYP3A6 proteins. 2 Turpentine-induced inflammatory reaction reduced (P<0.05) the formation clearance of 3MX, 1MU, and 1,3DMU, and diminished the amount of CYP1A1, 1A2 and 3A6 proteins. However, when combined with hypoxia, inflammation partially prevented the decrease in ClM, especially by impeding the reduction of 1,3DMU. The amount of CYP1A1 and 1A2 remained reduced but the amount of CYP3A6 protein returned to normal values. 3 Pre-treatment with 3MC augmented the ClM by 114% (P<0.05) due to the increase in the formation clearance of 3MX, 1MU and 1,3DMU. 3MC treatment increased the amount of CYP1A1 and 1A2 proteins. Pre-treatment with 3MC prevented the hypoxia-induced decrease in amount and activity of the P450. 4 It is concluded that acute moderate hypoxia and an inflammatory reaction individually reduce the amount and activity of selected apoproteins of the P450. However, the combination of hypoxia and the inflammatory reaction restores P450 activity to near normal values. On the other hand, pre-treatment with 3MC prevents the hypoxia-induced depression of the P450.  相似文献   

3.
Chronic renal failure (CRF) is associated with a decrease in renal excretion of drugs, but its effects on the liver metabolism of xenobiotics are poorly defined. The objectives of this study were to determine the effects of CRF on hepatic cytochrome P450 (CYP450) and its repercussions on in vivo hepatic metabolism of drugs. Two groups of rats were studied: control paired-fed and CRF. CRF was induced by subtotal nephrectomy. Total CYP450 activity and protein expression of several CYP450 isoforms (CYP1A2, CYP2C11, CYP3A1, CYP3A2) were assessed in liver microsomes. In vivo cytochrome P450 activity was evaluated with breath tests using substrates for different isoenzymes: caffeine (CYP1A2), aminopyrine (CYP2C11), and erythromycin (CYP3A2). Creatinine clearance was reduced by 60% (P <. 01) in rats with CRF. Compared with control paired-fed rats, total CYP450 activity was reduced by 40% in rats with CRF. Protein expression of CYP2C11, CYP3A1, and CYP3A2 was considerably reduced (more than 45%, P <.001) in rats with CRF, whereas the levels of CYP1A2 were unchanged. In rats with CRF, there was a 35% reduction in the aminopyrine (CYP2C11) and the erythromycin (CYP3A2) breath tests compared with control animals (P <.001). The caffeine (CYP1A2) breath tests remained comparable to controls. Creatinine clearance correlated with the aminopyrine and erythromycin breath tests (r(2) = 0.73 and r(2) = 0.81, respectively, P <.001). In conclusion, CRF is associated with a decrease in total liver CYP450 activity in rats (mainly in CYP2C11, CYP3A1, and CYP3A2), which leads to a significant decrease in the metabolism of drugs.  相似文献   

4.
There is circumstantial evidence suggesting that 5-hydroxytryptamine (5-HT) could be biotransformed by enzymatic systems other than monoamino oxidase A, and that the isoforms of cytochrome P450 may be a source of nitric oxide. This study aimed to assess whether cytochrome P450 contributes to 5-HT biotransformation, and to provide evidence that 5-HT metabolism generates nitric oxide. Addition of 5-HT to cultured hepatocytes yielded 5-hydroxyindol acetic acid, a formation modulated by cytochrome P450 enzyme inducers and inhibitors. Recombinant human CYP2B6, 2C9 and 2C19 biotransformed 5-HT in 5-hydroxyindol acetic acid, but not CYP1A2, 2D6 or 3A4. Cultured hepatocytes with 5-HT generated nitric oxide, the amount of which was altered by cytochrome P450 enzyme inducers and inhibitors. In the presence of CYP2B6, 2C9 and 2C19, 5-HT relaxed precontracted isolated aortic rings, with or without endothelium, an effect prevented by the addition of methylene blue and an inhibitor of catalase, but not by myoglobin. In the absence of catalase, hydroxylamine was always assayed as a byproduct of 5-HT metabolism. In conclusion, CYP2B6, 2C9 and 2C19 biotransform 5-HT, yielding hydroxylamine, which is converted to nitric oxide in the presence of catalase.British Journal of Pharmacology (2004) 141, 407-414. doi:10.1038/sj.bjp.0705632  相似文献   

5.
The aim of this study was to determine the selectivities of chemical inhibitors for human cytochrome P450 (P450) isoforms toward the corresponding rat P450 isoforms by using cDNA-expressed rat P450s (CYP1A2, CYP2A1, CYP2C6, CYP2C11, CYP2D2, CYP2E1, CYP3A1, and CYP3A2). Among the inhibitor probes for human P450s used in this study, only sulfaphenazole showed a selective inhibitory effect on the activity of the corresponding rat P450 isoform (CYP2C6). Furafylline also preferentially inhibited the activity of rat CYP1A2. However, methoxalen and ketoconazole more strongly inhibited the activities of other P450 isoforms than those of the corresponding rat P450 isoforms, CYP2A1 and CYP3A1/2, respectively. On the other hand, quinidine and aniline had little effect on the activities of the corresponding rat P450 isoforms, CYP2D2, and rat CYP2E1, respectively. These results suggest that chemical probes that have been used for human P450 isoforms do not always exhibit the same selectivity for the corresponding rat P450 isoforms. However, it appears that sulfaphenazole can be used as a selective inhibitor for rat CYP2C6. In addition, furafylline may also be a relatively selective inhibitor for rat CYP1A2.  相似文献   

6.
In humans, indirect evidence suggests that hypoxia reduces the rate of biotransformation of drugs cleared by cytochrome P450 (P450) subfamilies CYP1A, 2B, and 2C. The aim of this study was to assess whether acute moderate hypoxia modulates the expression of CYP2B4, 2C5, and 2C16 in vivo, and to determine whether the changes in hepatic P450 are conveyed by serum mediators. Moreover, because hypoxia increases the expression of P-glycoprotein in vitro, we examined whether in vivo acute moderate hypoxia modulates the expression of several membrane transporters in the liver. Rabbits and rats were exposed to a fractional concentration of oxygen of 8% for 48 h to generate a stable arterial partial pressure of O2 of 34 +/- 1 mm Hg. Compared with rabbits breathing room air, hypoxia in rabbits reduced the amount of CYP1A1, 1A2, 2B4, 2C5, and 2C16 proteins and increased the expression of CYP3A6. Sera of rabbits with hypoxia were fractionated by size exclusion chromatography, the fractions were tested for their ability to modify the expression of P450 isoforms, and serum mediators were identified through neutralization experiments. The serum mediators responsible for the down-regulation of P450 isoforms were interferon-gamma, interleukin-1beta (IL-1beta), and IL-2. In vivo, in rats, hypoxia increased the mRNA and protein expression of P-glycoprotein but did not affect the mRNA of breast cancer resistance protein and organic anion-transporting polypeptide 2. It is concluded that in vivo, hypoxia down-regulates rabbit hepatic CYP1A1, 1A2, 2B4, 2C5, and 2C16 and up-regulates CYP3A6. CYP3A11 and P-glycoprotein were up-regulated in the livers of hypoxic rats.  相似文献   

7.
Incubation of serum from rabbits with a turpentine-induced inflammatory reaction and from humans with an upper respiratory viral infection with hepatocytes from rabbits with a turpentine-induced inflammatory reaction for 4h reduces total cytochrome P450 content and activity of cytochrome P450 isoforms CYP1A1/1A2 and 3A6 without affecting the expression of these proteins. To document the signal transduction pathways implicated in the decrease in CYP1A1/1A2 and 3A6 activity, hepatocytes from rabbits with a turpentine-induced inflammatory reaction were incubated with serum from rabbits with a turpentine-induced inflammatory reaction, serum from individuals with a viral infection and interleukin-6 for 4h in presence of inhibitors of protein kinases. The sera-induced decrease in CYP1A1/1A2 and 3A6 activity was partially prevented by the inhibition of Janus-associated protein tyrosine kinase, double-stranded RNA-dependent protein kinase, protein kinase C, and p42/44 mitogen-activated protein kinase. The serum from rabbits with a turpentine-induced inflammatory reaction increased the phosphorylation of Erk1/2, effect prevented by PD98059 but not by bis-indolylmaleimide, a specific inhibitor of protein kinase C. The results demonstrated that the decrease in total cytochrome P450 content and in CYP1A1/1A2 and 3A6 activity by sera and interleukin-6 involves the activation of protein tyrosine kinases, p42/44 mitogen-activated protein kinase and protein kinase C. Indirect evidence supported that nitric oxide is implicated in the decrease in activity of these enzymes.  相似文献   

8.
The need for better acute and long-term treatment for depressive disorders has led to the development of new agents, including escitalopram, duloxetine (Boehringer Ingelheim Corp/Eli Lilly & Co/Eli Lilly Japan KK/Shionogi & Co Ltd) and gepirone. These drugs undergo extensive biotransformation, with cytochrome P450 (CYP) isoforms playing a major role. Escitalopram is biotransformed by CYP2C19, CYP3A4 and CYP2D6; partly extrapolating from studies of citalopram, polymorphism at CYP2C19 and drug interactions at CYP2D6 may be clinically significant. Duloxetine is metabolized by CYP2D6 and CYP1A2, with moderate potential for interactions at CYP2D6. The metabolism of gepirone involves CYP3A4 and to a lesser extent CYP2D6.  相似文献   

9.
Sandwich-cultured human hepatocytes (SCHH) have been widely used for in vitro assessments of biliary clearance. However, the modulation of metabolism enzymes has not been fully evaluated in this system. The present study was therefore undertaken to determine the activity of cytochrome P450 (P450) 1A2, 2C8, 2C9, 2C19, 2D6, and 3A and to evaluate the impact of 1-aminobenzotriazole (ABT) on hepatic uptake and biliary excretion in SCHH. The SCHH maintained integrity and viability as determined by lactate dehydrogenase release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium assays conducted over the culture period. Although all assessed P450 activity decreased in day 2 SCHH, the extent of the decrease and the subsequent rebound in activity varied across the different isoforms. Day 5 CYP1A2 activity was approximately 2.5-fold higher than day 1 activity, whereas the CYP3A and CYP2C9 activities were 90 and 60% of the day 1 levels, respectively. In contrast, the initial CYP2C8, CYP2C19, and CYP2D6 activity losses did not rebound over the 5-day culture period. Furthermore, ABT was not found to have an effect, whether directly or indirectly as a P450 inactivator, with respect to the hepatic transport of rosuvastatin, atrovastatin, and midazolam in SCHH. Taken together, these results suggest that the SCHH model is a reliable tool to characterize hepatic uptake and biliary excretion. Due to the differential modulation of P450 activity, SCHH may not be considered a suitable tool for metabolic stability assessments with compounds predominantly cleared by certain P450 enzymes.  相似文献   

10.
1.?4′-(p-Toluenesulfonylamide)-4-hydroxychalcone (TSAHC) is a synthetic sulfonylamino chalcone compound possessing anti-cancer properties. The aim of this study was to elucidate the metabolism of TSAHC in human liver microsomes (HLMs) and to characterize the cytochrome P450 (P450) enzymes that are involved in the metabolism of TSAHC.

2.?TSAHC was incubated with HLMs or recombinant P450 isoforms (rP450) in the presence of an nicotinamide adenine dinucleotide phosphate, reduced form (NADPH)-regenerating system. The metabolites were identified and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). P450 isoforms, responsible for TSAHC metabolite formation, were characterized by chemical inhibition and correlation studies in HLMs and enzyme kinetic studies with a panel of rP450 isoforms.

3.?Two hydroxyl metabolites, that is M1 and M2, were produced from the human liver microsomal incubations (Km and Vmax values were 2.46?µM and 85.1?pmol/min/mg protein for M1 and 9.98?µM and 32.1?pmol/min/mg protein for M2, respectively). The specific P450 isoforms responsible for two hydroxy-TSAHC formations were identified using a combination of chemical inhibition, correlation analysis and metabolism by expressed recombinant P450 isoforms. The known P450 enzyme activities and the rate of TSAHC metabolite formation in the 15 HLMs showed that TSAHC metabolism is correlated with CYP2C and CYP3A activity. The P450 isoform-selective inhibition study in HLMs and the incubation study of cDNA-expressed enzymes also showed that two hydroxyl metabolites M1 and M2 biotransformed from TSAHC are mainly mediated by CYP2C and CYP3A, respectively. These findings suggest that CYP2C8, CYP2C9, CYP2C19, CYP3A4 and CYP3A5 isoforms are major enzymes contributing to TSAHC metabolism.  相似文献   

11.
1. Acute moderate hypoxia modifies the catalytic activity and expression of certain isoenzymes of hepatic cytochrome P450 (P450). The aim of this study was to document whether hypoxia affects hepatic P450 directly or through the release of serum mediators. 2. Rabbits were subjected to a FiO(2) of 8% for 48 h, sacrificed, and serum and hepatocytes were isolated; hepatocytes from control and rabbits with hypoxia were incubated with serum from control and hypoxic rabbits for 4 and 24 h, and total P450 content, CYP1A1, 1A2 and 3A6 activities and expressions were assessed. Sera were fractionated by size exclusion chromatography and fractions tested for their ability to modify activity and amount of P450, and serum mediators were identified through neutralization experiments. 3. Total serum and fractions with proteins of 15-23 and 65-94 kDa of M(r) reduced P450 content and expression of CYP1A1, 1A2 and 3A6, as well as CYP1A1, 1A2 and 3A6 mRNA. Total serum and the fraction with 32-44 kDa proteins increased CYP3A6 activity and protein and mRNA. The serum mediators implicated in the decrease in activity and expression of CYP1A1, 1A2 and 3A6 were interferon-gamma (IFN-gamma), interleukin-1beta (IL-1beta) and IL-2. Erythropoietin (Epo) was partly responsible for the increase in P450 content and CYP3A6 expression. 4. In conclusion, acute moderate hypoxia diminishes the activity and expression of CYP1A1, 1A2 and CYP1A1, 1A2 mRNA, and increases CYP3A6 protein, activity and CYP3A6 mRNA. Several mechanisms contribute to these changes in P450, among them the release of cytokines acting as serum mediators.  相似文献   

12.
Beraprost sodium (BPS), a chemically stable and orally active prostacyclin analogue used for the treatment of chronic occlusive disease and primary pulmonary hypertension, was investigated in terms of its drug-drug interaction mediated by cytochrome P450. In a metabolic enzyme characterization study using P450-expressing insect cell microsomes, beraprost (BP) was slightly metabolized in the presence of CYP2C8, but not metabolized by the other P450 isoforms (CYP1A1, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP4A11) at a concentration of 20 microM. These results suggest that none of the P450 isoforms is a major metabolic enzyme of BP. In a P450 induction study using human hepatocytes, BP did not induce any P450 isoform (CYP1A2, CYP2C9, CYP2C19, and CYP3A4) at concentrations of 1-100 microM. Furthermore, in a P450 inhibition study using human liver microsomes, BP did not inhibit any P450 isoform (CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) at concentrations of 0.05-1 microM. Therefore it is concluded that BP is not involved in drug-drug interaction mediated by P450 isoforms.  相似文献   

13.
细胞色素P450(CYP450)是体内参与药物代谢的重要酶系,其活性在受到诱导或抑制后将干扰药物的作用。植物成分普遍存在于食物与药物中,与CYP450的相互作用将产生广泛影响。总结近年来植物成分与细胞色素P450的7个亚型CYP1A2、CYP2A6、CYP2C9、CYP2C19、CYP2D6、CYP2E1、CYP3A4相互作用的研究结果,为临床上合理用药提供参考。  相似文献   

14.
细胞色素P450(CYP450)是体内参与药物代谢的重要酶系,其活性在受到诱导或抑制后将干扰药物的作用。植物成分普遍存在于食物与药物中,与CYP450的相互作用将产生广泛影响。总结近年来植物成分与细胞色素P450的7个亚型CYP1A2、CYP2A6、CYP2C9、CYP2C19、CYP2D6、CYP2E1、CYP3A4相互作用的研究结果,为临床上合理用药提供参考。  相似文献   

15.
Drug-herb interactions can result from the modulation of the activities of cytochrome P450 (P450) and/or drug transporters. The effect of extracts and individual constituents of goldenseal, Ginkgo biloba (and its hydrolyzate), grape seed, milk thistle, and ginseng on the activities of cytochrome P450 enzymes CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 in human liver microsomes were determined using enzyme-selective probe substrates, and their effect on human P-glycoprotein (Pgp) was determined using a baculovirus expression system by measuring the verapamil-stimulated, vanadate-sensitive ATPase activity. Extracts were analyzed by HPLC to standardize their concentration(s) of constituents associated with the pharmacological activity, and to allow comparison of their effects on P450 and Pgp with literature values. Many of the extracts/constituents exerted > or = 50 % inhibition of P450 activity. These include those from goldenseal (normalized to alkaloid content) inhibiting CYP2C8, CYP2D6, and CYP3A4 at 20 microM, ginkgo inhibiting CYP2C8 at 10 microM, grape seed inhibiting CYP2C9 and CYP3A4 at 10 microM, milk thistle inhibiting CYP2C8 at 10 microM, and ginsenosides F1 and Rh1 (but not ginseng extract) inhibiting CYP3A4 at 10 microM. Goldenseal extracts/constituents (20 microM, particularly hydrastine) and ginsenoside Rh1 stimulated ATPase at about half of the activity of the model substrate, verapamil (20 microM). The data suggest that the clearance of a variety of drugs may be diminished by concomitant use of these herbs via inhibition of P450 enzymes, but less so by Pgp-mediated effects.  相似文献   

16.
目的:研究黄连解毒汤对人肝微粒体6个亚型CYP1A2、CYP2C8、CYP2C9、CYP2C19、CYP2D6和CYP3A4的体外抑制作用。方法:采用液相色谱-串联质谱法(LC-MS/MS)同时测定对乙酰氨基酚、6α-羟基紫杉醇、4-羟基双氯芬酸、4-羟基美芬妥英、右啡烷、1-羟基咪达唑仑和6β-羟基睾酮,分别代表CYP1A2、CYP2C8、CYP2C9、CYP2C19、CYP2D6和CYP3A4的活性;黄连解毒汤提取物和7种混合探针底物在人肝微粒体中共同孵育,并计算其IC50值表示对CYP450酶的抑制程度。结果:在人肝微粒体体外孵育体系中,黄连解毒汤对CYP2D6的IC50值为3.54μg/mL,对CYP1A2的IC50值为10.8μg/mL,对CYP2C8、CYP2C9、CYP2C19、CYP3A4_T和CYP3A4_M亚酶的IC50值依次为67.7、299、530、199和607μg/mL。结论:在正常剂量下,黄连解毒汤对人肝微粒体CYP2D6和1A2可能有抑制作用,对人肝微粒体CYP2C8、CYP2C9、CYP2C19和CYP3A4无明显抑制作用。  相似文献   

17.
We previously reported that magnesium sulfate (MgSO(4)) increases the threshold dose of bupivacaine in inducing seizure in rats. Cytochrome P450 (P450) isoforms involved in the biotransformation of bupivacaine to three oxidative metabolites and the effects of MgSO(4) in vivo on the P450 activities in rats were investigated. Of six cDNA-expressed rat P450 isoforms tested, CYP3A2 and CYP2C11 had high rates for N-debutlylation and 3'-hydroxylation of bupivacaine, respectively. The liver microsomes prepared from male rats pretreated with intravenous administration of MgSO(4) (a bolus dose of 25 mg/kg, followed by infusion of 2.0 mg/kg/min for 6 h) showed increased V(max) values for N-debutylation and 3'-hydroxylaiton of bupivacaine compared to the liver microsomes from control rats. Administration of MgSO(4) also increased the activities of testosterone 6beta- and 16alpha-hydroxylation. Although the level of expression of CYP3A and CYP2C isoforms in the liver microsomes were unchanged, NADPH-P450 reductase and cytochrome b(5) were found to be induced by intravenous administration of MgSO(4). These results suggest that CYP3A and CYP2C isoforms are activated by MgSO(4) in vivo as a consequence of enhanced microsomal electron transfer due to induction of NADPH-P450 reductase and cytochrome b(5), leading to the increased metabolism and clearance of bupivacaine.  相似文献   

18.
19.
Polymorphisms in cytochrome P450 enzymes can significantly alter the rate of drug metabolism, as well as the extent of drug-drug interactions. Individuals who homozygotically express the CYP2C9*3 allele (I359L) of CYP2C9 exhibit ~70 to 80% reductions in the oral clearance of drugs metabolized through this pathway; the reduction in clearance is ~40 to 50% for heterozygotic individuals. Although these polymorphisms result in a decrease in the activity of individual enzyme molecules, we hypothesized that decreasing the total number of active enzyme molecules in an in vitro system (CYP2C9*1/*1 human liver microsomes) by an equivalent percentage could produce the same net change in overall metabolic capacity. To this end, the selective CYP2C9 mechanism-based inactivator tienilic acid was used to reduce irreversibly the total CYP2C9 activity in human liver microsomes. Tienilic acid concentrations were effectively titrated to produce microsomal preparations with 43 and 73% less activity, mimicking the CYP2C9*1/*3 and CYP2C9*3/*3 genotypes, respectively. With probe substrates specific for other major cytochrome P450 enzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C19, CYP2D6, CYP2E1, and CYP3A4), no apparent changes in the rate of metabolism were noted for these enzymes after the addition of tienilic acid, which suggests that this model is selective for CYP2C9. In lieu of using rare human liver microsomes from CYP2C9*1/*3 and CYP2C9*3/*3 individuals, a tienilic acid-created knockdown in human liver microsomes may be an appropriate in vitro model to determine CYP2C9-mediated metabolism of a given substrate, to determine whether other drug-metabolizing enzymes may compensate for reduced CYP2C9 activity, and to predict the extent of genotype-dependent drug-drug interactions.  相似文献   

20.
The specific cytochrome P450 (P450) isoforms mediating the biotransformations of clobazam (CLB) and those of its major metabolites, N-desmethylclobazam (NCLB) and 4'-hydroxyclobazam were identified using cDNA-expressed P450 and P450-specific chemical inhibitors. Among the 13 cDNA-expressed P450 isoforms tested, CLB was mainly demethylated by CYP3A4, CYP2C19, and CYP2B6 and 4'-hydroxylated by CYP2C19 and CYP2C18. CYP2C19 and CYP2C18 catalyzed the 4'-hydroxylation of NCLB. The kinetics of the major biotransformations were studied: CYP3A4, CYP2C19, and CYP2B6 mediated the formation of NCLB with Km = 29.0, 31.9, and 289 microM, Vmax = 6.20, 1.15, and 5.70 nmol/min/nmol P450, and intrinsic clearance (CLint) = 214, 36.1, and 19.7 microl/min/nmol P450, respectively. NCLB was hydroxylated to 4'-hydroxydesmethylclobazam by CYP2C19 with Km = 5.74 microM, Vmax = 0.219 nmol/min/nmol P450, and CLint = 38.2 microl/min/nmol P450 (Hill coefficient = 1.54). These findings were supported by chemical inhibition studies in human liver microsomes. Indeed, ketoconazole (1 microM) inhibited the demethylation of CLB by 70% and omeprazole (10 microM) by 19%; omeprazole inhibited the hydroxylation of NCLB by 26%. Twenty-two epileptic patients treated with CLB were genotyped for CYP2C19. The NCLB/CLB plasma metabolic ratio was significantly higher in the subjects carrying one CYP2C19*2 mutated allele than in those carrying the wild-type genotype. CYP3A4 and CYP2C19 are the main P450s involved in clobazam metabolism. Interactions with other drugs metabolized by these P450s can occur; moreover, the CYP2C19 genetic polymorphism could be responsible for interindividual variations of plasma concentrations of N-desmethylclobazam and thus for occurrence of adverse events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号