首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The candidate tumor-suppressor gene ING1 encodes p33(ING1), a nuclear protein which physically interacts with TP53. It has been shown that p33(ING1) acts in the same biochemical pathway as TP53, leading to cell growth inhibition. Interestingly, a rearrangement of the ING1 gene was found in a neuroblastoma cell line, supporting its involvement in tumor development. Because ING1 resides on the long arm of chromosome 13 (13q34) (a region frequently deleted in many tumor types), we sought to characterize its role in head and neck squamous-cell carcinoma (HNSCC). We first analyzed 44 primary tumors for loss of heterozygosity (LOH) at 13q, using four widely spaced microsatellite markers (13q14, 13q14.3-q22, 13q22, and 13q34). Twenty (48%) of the tumor samples showed LOH in all of the informative markers tested, including D13S1315 at 13q34. Two of the tumors displayed partial losses restricted to one marker (D13S118 at 13q14 in tumor 1164, and D13S135 at 13q14.3-q22 in tumor 1398). We then determined the genomic structure of the ING1 gene and sequenced the entire coding region in 20 primary tumors showing 13q LOH and in five head and neck cancer cell lines. A single germline polymorphism was detected in 10 of the tumors analyzed (T to C change) located 110 nucleotides upstream of the starting methionine. No somatic mutations were found in any of the samples, suggesting that ING1 is not a tumor suppressor gene target in head and neck cancer. Genes Chromosomes Cancer 27:319-322, 2000.  相似文献   

2.
Deletions of 3p25, gains of chromosomes 7 and 10, and isochromosome 17q are known cytogenetic aberrations in sporadic renal cell carcinoma (RCC). In addition, a majority of RCCs have loss of heterozygosity (LOH) of the Von Hippel-Lindau (VHL) gene located at chromosome band 3p25. Patients who inherit a germline mutation of the VHL gene can develop multifocal RCCs and other solid tumors, including malignancies of the pancreas, adrenal medulla, and brain. VHL tumors follow the two-hit model of tumorigenesis, as LOH of VHL, a classic tumor suppressor gene, is the critical event in the development of the neoplastic phenotype. In an attempt to define the cytogenetic aberrations from early tumors to late RCC further, we applied spectral karyotyping (SKY) to 23 renal tumors harvested from 6 unrelated VHL patients undergoing surgery. Cysts and low-grade solid lesions were near-diploid and contained 1-2 reciprocal translocations, dicentric chromosomes, and/or isochromosomes. A variety of sole numerical aberrations included gains of chromosomes 1, 2, 4, 7, 10, 13, 21, and the X chromosome, although no tumors had sole numerical losses. Three patients shared a breakpoint at 2p21-22, and three others shared a dicentric chromosome 9 or an isochromosome 9q. In contrast to the near-diploidy of the low-grade lesions, a high-grade lesion and its nodal metastasis were markedly aneuploid, revealed loss of VHL by fluorescence in situ hybridization (FISH), and contained recurrent unbalanced translocations and losses of chromosome arms 2q, 3p, 4q, 9p, 14q, and 19p as demonstrated by comparative genomic hybridization (CGH). By combining SKY, CGH, and FISH of multiple tumors from the same VHL kidney, we have begun to identify chromosomal aberrations in the earliest stages of VHL-related renal cell tumors. Our current findings illustrate the cytogenetic heterogeneity of different VHL lesions from the same kidney, which supports the multiclonal origins of hereditary RCCs. Published 2001 Wiley-Liss, Inc.  相似文献   

3.
Mutational activation of KIT or PDGFRA is considered an early step in pathogenesis of gastrointestinal stromal tumors (GISTs); however, other nonrandom genetic changes have also been identified. At least three common regions of deletions on chromosome 22q, which may harbor putative tumor suppressor genes, have been defined. However, mapping of these regions has been inconsistent. It has also been speculated that GI autonomous nerve tumors (GANTs), GISTs with ultrastructural features suggestive of autonomic nerve differentiation, are characterized by a specific deletion involving 22q13 cytogenetic region. This study was undertaken to evaluate loss of heterozygosity (LOH) on chromosome 22q in 50 GISTs, including 10 GANTs. Four tumors were incidental minimal lesions 相似文献   

4.
Chromosomal deletions at segment 11q23-q24 have been identified in a variety of human epithelial tumors, including cervical carcinoma (CC), indicating the presence in this region of at least a tumor suppressor gene (TSG) involved in the development of these neoplasms. To localize the 11q deletion target more precisely, 54 primary cervical carcinomas were examined for loss of heterozygosity (LOH) using a panel of microsatellite DNA markers mapping to 11p.15 and spanning region 11q23-qter. Nineteen tumors were found to have LOH at chromosome 11q. The highest frequency of LOH was observed at locus APOC-3, located in 11q23.1-q23.2, which was deleted in 42% of the informative cases. In contrast, LOH was infrequent at distal 11q in current series of CC. The smallest common region of loss included APOC-3 and was defined distally by marker D11S925 in region 11q23. The present data strongly suggest that the 11q suppressor gene(s) involved in cervical tumorigenesis is likely to be located at chromosome region 11q22-q23.  相似文献   

5.
Gastrointestinal stromal/smooth muscle tumors are uncommon neoplasms for which current criteria for diagnosing malignancy (size and mitotic index) sometimes fail to predict outcome. Cytogenetic studies reveal frequent chromosome 1 abnormalities in these tumors, but significant underlying molecular changes have not been elucidated, and their significance is unknown. DNA was obtained from the formalin-fixed, paraffin-embedded tissue of 80 gastrointestinal stromal/smooth muscle tumors. Tumors were topographically microdissected from surrounding normal tissue; microsatellite markers from tumor and normal tissue were amplified by PCR in the regions of chromosome 1p36 (D1S199, D1S228, D1S450, D1S214, D1S243), 1p12 (D1S418),1p13 (D1S252, D1S514), and 1q32(D1S103). The presence or absence of heterozygosity for each case was mapped at each informative marker. Relationships among loss of heterozygosity (LOH), tumor size, mitotic index, and survival were investigated using correlation analysis, Kaplan-Meier plots, and the Cox model. LOH at 1p36 was found in 24 of 80 cases, suggesting the possibility of a tumor suppressor gene at 1 p36 near the site of a suspected neuroblastoma tumor suppressor gene. Patients whose tumors demonstrated LOH at 1 p36 had significantly shorter survival (p = 0.017) than those whose tumors did not. LOH at 1 p36 retained independent prognostic significance in a multivariate model that included KIT mutation status and tumor size; the mitotic index, however, did not retain independent significance in such a model. LOH was observed at 1 p12-1p13 (most frequently at 1p13.3) in 19 of 80 cases, but loss of heterozygosity at this site did not influence survival. No LOH was observed near 1q32. These findings provide strong evidence for a prognostically significant tumor suppressor gene in the region of chromosome 1p36.3.  相似文献   

6.
We have previously identified deletions of 9p and 9q in a cytogenetic analysis of a large series of non-Hodgkin's lymphomas (NHLs), which suggested loss of candidate tumor suppressor genes (TSGs). In order to define these deletions at the molecular level, we performed an LOH analysis of a panel of paired normal and tumor DNAs comprising 13 cases of diffuse lymphoma with a large cell component (DLLC) and 18 cases of Burkitt's lymphoma (BL). The loci tested comprised eight polymorphic probes mapped to 9p (D9S33, D9S25, IFNB, IFNA, IFNW, D9S126, D9S3, and D9S19) and seven polymorphic probes mapped to 9q (D9S29, ASS, AKI, ABL, D9S10, D9S7, and D9S14). In this analysis, among cases informative for all loci in each subset, 5/13 (38%) DLLC and 4/18 (22%) BL showed LOH at 9p loci, whereas 5/13 (38%) DLLC and 3/18 (16%) BL showed LOH at 9q loci. Among the 9p loci partial homozygous or heterozygous losses were observed in 20–50% of informative cases of DLLC at D9S25, IFNB, IFNA, IFNW, D9S126, and D9S3, whereas in BL, losses at these loci ranged from 0% to 11%. Among the 9q loci, heterozygous losses were observed in >20% of informative cases of DLLC at D9S7 (23%) and D9S29 (27%), whereas no losses were seen at these two loci in BL. These data demonstrate a high level of molecular deletion in DLLC, but not in BL, suggesting that loss of one or more TSGs on chromosome 9 plays an important role in DLLC development.  相似文献   

7.
Loss of heterozygosity (LOH) of tumor suppressor genes (TSGs) in ovarian epithelial tumors of differing cell types and biological behavior has not been thoroughly investigated. Moreover, there have been conflicting reports correlating LOH of the p53 gene to overexpression of p53 protein. This study evaluated 34 formalin-fixed, paraffin-embedded ovarian epithelial tumors for LOH by polymerase chain reaction (PCR) for the following microsatellite markers: TP53(17p13.1/p53 gene), D17S579(17q/BRCA1 gene), and ESR (6q24-27/estrogen receptor gene). LOH of the TP53 marker was detected in 4 (44%) of 9 informative serous cystadenocarcinomas (SCa) but in 0 of 4 informative clear cell carcinomas (CCa) and 0 of 5 informative serous tumors of low malignant potential (SLMP). LOH of the BRCA1 marker was detected in 5 (83%) of 6 informative SCa, but in 1 (13%) of 8 informative CCa and 1 (14%) of 7 informative SLMP. LOH of the ESR marker was detected in 4 (50%) of 8 informative SCa, but in 0 of 4 informative CCa and 1 (16%) of 6 informative SLMP. p53 protein overexpression was present in 8 of 12 SCa but did not correlate to TP53 LOH. LOH for TP53, D17S579/ BRCA1, and ESR is common in ovarian SCa, and is observed in primary tumors as well as metastases. In contrast, these genetic alterations are less common in CCa and in the biologically less aggressive SLMP tumors. These data suggest different mechanisms of oncogenesis in ovarian epithelial tumors of different cell types and biological behavior.  相似文献   

8.
The role of somatic deletions in chromosome 9 and chromosome 22 loci in hepatocellular carcinomas (HCC) was studied. Twenty-one paired HCC and adjacent tumor-free liver tissue samples were examined for loss of heterozygosity at six chromosome 9 and ten chromosome 22 loci. Among informative cases, the highest LOH rates were observed at 9p21 (40% or 4/10 at IFNA) and 9q23 (23% or 3/13 at D9S318). Our observed LOH rate at 9p21 was significantly higher than the background level previously reported for the same tumor type. Clinical data indicate that chromosome 9p21 deletions occurred preferentially in larger tumors (>5 cm diameter). However, a sequence analysis of the MTS1 gene coding region in cases of 9p21 LOH did not reveal any change, suggesting another tumor suppressor gene as the LOH target.  相似文献   

9.
Loss of heterozygosity (LOH) from the short arm of chromosome 8 (8p) is frequent in many human cancers, including breast, colon, prostate, and bladder cancers. LOH occurs in two regions of 8p, 8p21 and 8p22, and suggests the presence of two separate tumor suppressor genes. In breast cancers, 8p LOH occurs in both early and late clinical stage tumors, while in colon, prostate, and bladder cancers, there is an association between 8p LOH and advanced clinical stage. We investigated this discrepancy by comparing 8p LOH in infiltrating ductal carcinomas (IDC) to breast cancers of earlier clinical stage, i.e., tumors with no invasion [ductal carcinoma in situ (DCIS)-only tumors]. We used three markers which sample several reported loci of 8p LOH. We microdissected tumor from paraffin blocks of 39 IDC and 23 DCIS-only breast cancers and amplified tumor/normal DNA pairs for the microsatellite markers D8S254 (8p22), D8S133 (8p21.3), and NEFL (8p21). All cases of IDC were informative with at least one marker, with a combined rate of LOH of 46%. The results for each marker were [no. LOH/no. informative (%)]: D8S254, 8/26 (31%); D8S133 12/31 (39%), and NEFL, 9/25 (36%). In the DCIS-only group, all 23 were informative for at least one marker, but 8p LOH was absent. We conclude that 8p LOH from 8p21–22 is frequent in IDC of the breast, but absent in DCIS-only cases, and may play a role in breast cancer progression by conferring invasive ability. Genes Chromosom Cancer 16:189–195 (1996). © 1996 Wiley-Liss, Inc.  相似文献   

10.
Lung cancer is the leading cause of death in both women and men in the United States and many European countries. Molecular cytogenetic and LOH analyses of non-small cell lung cancer have shown somatic genetic alterations in a variety of chromosomes, such as 1p, 3p, 5q, 8p, 9p, 11p, 11q and 17p. Allelic deletions of the known tumor suppressor gene APC at 5q21 are frequently observed in advanced stages of lung cancer and have been correlated with poor prognosis in previous reports. We investigated 33 cases of NSCL for LOH at 5q21: 22 squamous cell and 11 adenocarcinomas. Normal and tumor cells were microdissected from paraffin embedded tissues and PCR amplification was performed utilising the specific markers D5S299 and D5S346 at 5q21 and PYGM at 11q13, respectively. Clinicopathological data, survival and recurrence rates were obtained in all cases. We detected LOH at 5q21 in 4/9 (44%) informative adenocarcinomas and in 13/16 (81%) informative SCC. LOH was frequent in early stages (12/15 stage I cases) and did not correlate with recurrence or poor survival. Our results show that LOH at 5q21 is more frequent in squamous cell carcinomas than in adenocarcinomas, is frequent in early stages of the disease, and does not have prognostic significance.  相似文献   

11.
Malignant melanoma (MM), the most common metastatic solid tumor to involve the breast, may present as a diagnostic problem, frequently requiring the use of ancillary studies for accurate diagnosis. The implication of hormonal interplay is strong since metastatic MM to the breast is seen nearly always in women. However, the role of hormonal status as a predisposing factor in the development of this entity is largely unresolved. A number of chromosomal loci, including 1p36 and 9p21-22, appear to harbor critical genes important to melanoma tumorigenesis, and additionally chromosome 9q22.3-31. We wanted to know if metastatic MM in breast showed chromosome 1p and 9p genetic alterations (loss of heterozygosity) similar to those that occur in primary cutaneous MM, and whether additional 9q LOH changes are present. Hormonal receptor status of the metastatic MM was also determined. We identified 20 patients with known MM metastatic to the breast, which we analyzed with the following genetic markers: D9S12 (9q22.3), D9S171 (9p21), IFNA (9p22), and D1S450 (1p). Visually directed microdissection was performed on archival histologic slides containing both tumor and adjacent normal breast epithelium, followed by single-step DNA extraction and polymerase chain reaction (PCR) amplification for evaluation of loss of heterozygosity (LOH) for the above-listed markers. Immunohistochemical (IHC) stains for estrogen receptor (ER) and progesterone receptor (PR) was performed on 10 of the cases. Twelve of the 20 cases contained DNA suitable for PCR amplification following direct visualization microdissection. Four of 8 (50%) informative cases showed LOH at 9p21 with D9S171. Ten cases were heterozygous for IFNA, with 2 cases (20%) showing LOH at this locus. These particular cases also showed LOH at 9p21. One of 9 (11%) informative cases showed LOH for D1S450 (1p36). Five cases were heterozygous for D9S12, and 2 (40%) showed LOH in the tumor at 9q22.3. IHC stains for ER and PR were negative in the 10 tumors studied. Metastatic MM presenting as a breast mass is an interesting entity often requiring IHC studies for diagnosis, particularly when the histologic features simulate breast carcinoma or when no primary tumor is known. These tumors are ER and PR negative. Metastatic MM involving the breast shows similar genetic allelic losses on chromosome 9p21-22 (50%) and 1p36 (11%), as previously described in primary cutaneous MM. Additional LOH was observed at the 9q22.3-31 locus (40%). We suggest this locus to be investigated for harboring potential genes important in the tumorigenesis of cutaneous MM.  相似文献   

12.
Our previous comparative genomic hybridization study on sporadic endocrine pancreatic tumors (EPTs) revealed frequent losses on chromosomes 11q, 3p, and 6q. The aim of this study was to evaluate the importance of 6q losses in the oncogenesis of sporadic EPTs and to narrow down the smallest regions of allelic deletion. A multimodal approach combining polymerase chain reaction-based allelotyping, double-target fluorescence in situ hybridization, and comparative genomic hybridization was used in a collection of 109 sporadic EPTs from 93 patients. Nine polymorphic microsatellite markers (6q13 to 6q25-q27) were investigated, demonstrating a loss of heterozygosity (LOH) in 62.2% of the patients. A LOH was significantly more common in tumors >2 cm in diameter than below this threshold as well as in malignant than in benign tumors. We were able to narrow down the smallest regions of allelic deletion at 6q22.1 (D6S262) and 6q23-q24 (D6S310-UTRN) with LOH-frequencies of 50.0% and 41.2 to 56.3%, respectively. Several promising tumor suppressor candidates are located in these regions. Additional fluorescence in situ hybridization analysis on 46 EPTs using three locus-specific probes (6q21, 6q22, and 6q27) as well as a centromere 6-specific probe revealed complete loss of chromosome 6 especially in metastatic disease. We conclude that the two hot spots found on 6q may harbor putative tumor suppressor genes involved not only in the oncogenesis but maybe also in the malignant and metastatic progression of sporadic EPTs.  相似文献   

13.
Allelic loss of chromosomal arm 8p in breast cancer progression.   总被引:6,自引:0,他引:6       下载免费PDF全文
Loss of heterozygosity (LOH) of chromosomal arm 8p has been reported to occur at high frequency for a number of common forms of human cancer, including breast cancer. The objectives of this study were to define the regions on this chromosomal arm that are likely to contain breast cancer tumor suppressor genes and to determine when loss of chromosomal arm 8p occurs during breast cancer progression. For mapping the tumor suppressor gene loci, we evaluated 60 cases of infiltrating ductal cancer for allelic loss using 14 microsatellite markers mapped to this chromosomal arm and found LOH of 8p in 36 (60%) of the tumors. Whereas most of these tumors had allelic loss at all informative markers, five tumors had partial loss of 8p affecting two nonoverlapping regions. LOH for all but one of the tumors with 8p loss involved the region between markers D8S560 and D8S518 at 8p21.3-p23.3, suggesting that this is the locus of a breast cancer tumor suppressor gene. We then studied LOH of 8p in 38 cases of ductal carcinoma in situ (DCIS) with multiple individually microdissected tumor foci evaluated for each case. LOH of 8p was found in 14 of the DCIS cases (36%), including 6 of 16 cases of low histological grade and 8 of 22 cases of intermediate or high histological grade. In four of these DCIS cases, 8p LOH was seen in some but not all of the multiple tumor foci examined. These data suggest that during the evolution of these tumors, LOH of 8p occurred after loss of other chromosomal arms that were lost in all tumor foci. Thus, LOH of 8p, particularly 8p21.3-p23, is a common genetic alteration in infiltrating and in situ breast cancer. Although 8p LOH is common even in low histological grade DCIS, this allelic loss often appears to be preceded by loss of other alleles in the evolution of breast cancer.  相似文献   

14.
Pancreatic endocrine tumors occur sporadically and as part of the multiple endocrine neoplasia type 1 (MEN 1) and von Hippel-Lindau (VHL) syndromes. The MEN1 locus on 11q13 and a candidate tumor suppressor locus on 3p are known to be hemi- or homozygously mutated in a subset of these tumors. Chromosome arm 18q harbors the SMAD4/DPC4 tumor suppressor gene that is frequently deleted and inactivated in tumors of the exocrine pancreas. We have analyzed 22 nonfamilial and 16 MEN 1-associated pancreatic endocrine tumors for loss of heterozygosity (LOH) at 3p, 11q13, and 18q. LOH at 3p was revealed in 45% and 36% of tumors from 31 patients with nonfamilial and MEN 1-associated disease, respectively. The corresponding proportions for 11q13 were 55% and 91%, and for 18q 27% and 25%, respectively. A striking relation between LOH at 11q13 and 3p and a malignant phenotype was found for the nonfamilial tumors. None of the six benign tumors (all of them insulinomas) had allelic loss at 3p or 11q13, whereas 92% (P < 0.01) of the malignant tumors (including malignant insulinomas) had such deletions. Besides the 11q13 abnormality, more than half of the MEN 1-associated tumors had additional genetic lesions affecting 3p or 18q. LOH analysis of several tumors from two MEN 1 patients suggested different clonal origin of the lesions. Sequencing of the SMAD4/DPC4 gene did not identify mutations in coding regions or at exon/intron boundaries in tumors with LOH at 18q. The data indicate involvement of tumor suppressor genes on 3p and 18q, in addition to the MEN1 gene at 11q13, in the tumorigenesis of both nonfamilial and MEN 1-associated pancreatic endocrine tumors.  相似文献   

15.
Allelic losses on chromosome arm 22q are frequently observed in human meningiomas and in carcinomas of the colon, ovary, and breast. Among 140 primary breast cancers we examined for loss of heterozygosity (LOH) at 16 polymorphic loci on the long arm of chromosome 22, 56 (40%) showed LOH for at least one locus. Eleven of these tumors had retained heterozygosity for markers proximal to the NF2 locus but showed LOH for markers distal to NF2. Deletion mapping indicated a new common region of deletion, 2-cM in extent, at q13.1 between Interleukin 2 receptor β (IL2RB) and D22S279. Our results raise the possibility that one or more tumor suppressor genes associated with breast cancer may exist at 22q13.1. Comparison of these results with clinicohistological data indicated that allelic losses on 22q tend to occur more frequently in tumors of malignant histological types. Genes Chromosomes Cancer 21:108–112, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Chromosome 6 suffers frequent and multiple aberrations in thymoma   总被引:2,自引:0,他引:2       下载免费PDF全文
Thymoma is the most frequent tumor arising in human thymus. In this study, we performed a detailed mapping of deleted regions on chromosome 6 shown previously to harbor the most frequent genetic aberrations in this cancer. We analyzed 40 thymomas using 41 microsatellites. Two hundred ninety-four (23.5%) of 1253 informative genotypes showed loss of heterozygosity (LOH), only 39 (2.4%) were positive for microsatellite instability (MSI). Genetic aberrations on chromosome 6 were found in 31 of 40 cases (77.5%) in five hot spots. The most frequent LOHs (48.6%) occurred in region 6q25.2 within a 0.7-Mb interval flanked by markers D6S441 and D6S290. Another hot spot showing LOH in 32.4% of tumors was located between markers D6S442 and D6S1708 (0.4 Mb apart) on 6q25.2-25.3, just 1.1 Mb from the D6S441-D6S290 deletions. The third hot spot (30%) showing LOH appeared in region 6p21.31 including the MHC locus (markers D6S1666-D6S1560, 1 Mb apart). The fourth hot spot (26.3%) was detected on 6q14.1-14.3 (D6S1596-D6S284, 5.2 Mb apart). Some tumors (21.6%) showed LOHs within a fifth hot spot on 6q21 (D6S447-D6S1592, 0.3 Mb apart). Thus, several tumor suppressor genes on chromosome 6 seem to be involved in the pathogenesis of thymoma.  相似文献   

17.
Tumor specimens from 78 epithelial ovarian cancer patients were examined for loss of heterozygosity (LOH) at 11 microsatellite markers at chromosomes 3p14.2, 6q27, 8p12, 11p15.5, 11q23.1-q24, 16q24.3, and 17p13.1, to evaluate the involvement, possible clustering, and prognostic significance of these lesions in the progression of the disease. The LOH analysis was performed on polymerase chain reaction (PCR)-amplified DNA from sections of paraffin-embedded tumor and normal tissue pairs. In addition to primary tumors, specimens of metastatic tissues were studied from 19 patients. In the combined results from primary and metastatic tumors, LOH frequencies varied between 31% (6q27) and 69% (17p13.1). Only LOH at chromosomal regions 3p14.2 (D3S1300), 11p15.5 (D11S1318), 11q23.3-q24 (D11S1340 and D11S912), 16q24.3 (D16S476 and D16S3028), and 17p13.1 (D17S938) was associated with an adverse disease course. Our results indicate that LOH at 17p13.1 occurs independently from the other chromosomal sites studied, and is an early event in ovarian tumorigenesis. The LOH at 16q24.3, 11q23.3/q24, and 11p15.5 seems to occur later. The LOH at 11p15.5 and 11q23.3 was associated with reduced cancer-specific survival time; therefore, the studied markers could be located close to genes with influence on patient survival. Of the studied chromosomal regions, the most important tumor suppressor genes involved in the evolution of ovarian cancer appear to be located on chromosomes 11, 16, and 17. The genetic heterogeneity observed in primary and metastatic specimens demonstrates that there are multiple pathways involved in the progression of ovarian cancer.  相似文献   

18.
A fine mapping of loss of heterozygosity (LOH) was performed in oral squamous cell carcinoma (OSCC), using 12 markers on 21q11.1 approximately q21.1. We studied 43 resected primary invasive tumors and their paired normal tissues, concurrent dysplasia or carcinoma in situ in separate areas from 8 of the specimens, and 6 local recurrent carcinomas. LOH status was compared between lesions of different phases of progression within the same patient. A high frequency of LOH was observed for D21S1410, D21S120, and D21S1433 (60% each) in the primary lesions, constituting two interstitial deleted regions encompassing eight known genes. Cases showing LOH of D21S120 were significantly associated with advanced clinical stages (III and IV; P=0.02). Consistent allelic loss was observed in 64.2% of the informative cases between the precursor lesions and their corresponding invasive tumors, and in 59.5% of those between the primary lesions and their recurrent counterparts. Fewer than half of the different lesions within a given patient showed discordant allelic loss for tested markers. Our results suggest that 21q11.1 approximately q21.1 harbors tumor suppressor genes in OSCC. Genetic divergence may develop during tumor clone evolution.  相似文献   

19.
Chromosome 13 is one of the most frequently altered chromosomes in cancer, including carcinoma of the prostate. Two known tumor suppressor genes, RB1 and BRCA2, map to chromosome 13; however, recent reports suggest that unknown genes on 13q are more likely to be involved in the development of prostate cancer. In order more fully to define the genetic changes on chromosome 13 in prostate neoplasms, we analyzed 27 polymorphic microsatellite markers spanning the q arm for loss of heterozygosity in 40 primary tumors and in metastases from 11 other patients who died of prostate cancer. Of the 40 primary tumors, 23 (58%) showed LOH for at least one marker. Three distinct regions at q14, q21-22, and q33, defined by markers D13S267-->D13S153, D13S166-->D13S1225, and D13S259-->D13S274, showed the most frequent LOH, suggesting their involvement in the development of prostate cancer. For the 12 patients whose tumors showed LOH at these markers, the average age at diagnosis was 58 years, which was younger than that (63 years, P < 0.05) for the 28 patients whose tumors lacked LOH. Ten of the 11 (91%) metastases showed LOH with one or more markers. Two of the three most frequently deleted regions (i.e., q14 and q21-22) in the primary tumors and markers linked to the RB1, BRCA2, and EDNRB genes showed high frequencies (56-71%) of LOH in metastases. These results demonstrate that allelic loss on chromosome 13 at q14, q21-22, and q33 occurs in a subset of primary prostate tumors and is a frequent event in metastatic lesions of prostate cancer.  相似文献   

20.
INTRODUCTION: Apocrine carcinomas of the breast are an unusual special category of predominantly AR+, ER-, and PR- breast cancer, characterized by cells with abundant, eosinophilic cytoplasm and nuclei with often prominent nucleoli. To further investigate these lesions, loss of heterozygosity (LOH) was evaluated at multiple chromosomal loci, including loci frequently mutated in breast cancer. MATERIALS AND METHODS: Twenty-five intraductal apocrine carcinomas, 11 invasive apocrine carcinomas, and six apocrine hyperplasias were retrieved from the files of the Armed Forces Institute of Pathology (Washington, DC) and Fairfax Hospital (Fairfax, VA). Cells from lesional as well as normal tissues were microdissected. LOH was performed at a number of chromosomal loci, including loci commonly altered in breast cancer: 1p35-36 (NB), 3p25.5 (VHL), 8p12 (D8S136), 9p21 (p16), 11p13 (D11S904), 11q13 (INT-2 and PYGM), 16p13.3 (TSC2/PKD1 gene region), 17p13 (TP53), 17q13 (NM23), and 22q12 (D22S683). RESULTS: Among informative in situ and invasive apocrine carcinomas, LOH was present in 33% of 15 cases for 17p13 (TP53), as well as 36% of 14 cases for 3p25 (VHL), 30% of 10 cases for 1p35-36 (NB), and 27% of 11 cases for 16p13.3 (TSC2/PKD1). A higher frequency of LOH was noted among invasive apocrine carcinomas (30 to 50%) compared with in situ apocrine carcinomas (23 to 33%) at these loci. LOH was present simultaneously for TP53 and either VHL or NB in five cases. Infrequent (< or =12%) or absent LOH was detected at the remaining loci, including several loci commonly mutated in breast cancer (i.e., INT2, PYGM, and NM23). LOH was not detected in any of the six apocrine hyperplasias. CONCLUSION: An intermediate frequency of allelic loss was detected at multiple tumor suppressor gene loci, including 17p13 (TP53), as well as 1p35-336 (NB), 3p25 (VHL), and 16p13 (PKD1/ TSC2), in apocrine carcinomas of the breast, with a higher overall frequency of LOH noted among invasive tumors compared with in situ tumors. Aside from LOH at p53, LOH was infrequent or absent at several other loci commonly mutated in breast cancer. This preliminary molecular evidence supports immunohistochemical data that apocrine carcinomas of the breast may possess unique mechanisms of carcinogenesis, compared with ordinary ductal carcinomas. However, further study is needed to support this assertion and to determine if the LOH detected is truly etiologic or if it is the result of genetic progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号