首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work analyzed the changes in evoked field potentials of freely moving rats after kindling induced by a convulsant inverse agonist of the GABA(A)-benzodiazepine receptor complex, methyl beta-carboline-3-carboxylate (beta-CCM). Two doses of beta-CCM (2 mg/kg and 4 mg/kg) were used. In kindled and control animals, a stimulating electrode was implanted in the perforant pathway and a recording electrode in the dentate gyrus. Results showed that, after an acutely injected dose of 20 mg/kg pentylenetetrazol (PTZ), all kindled animals showed a decrease in population spike amplitude after 20 min. After 60 min, only fully kindled rats showed a long-lasting potentiation, also visible up to 24 h later, as compared to controls or nonkindled animals. Changes in glutamate and GABA receptor binding measured in previous experiments may explain this potentiation effect observed in fully kindled rats.  相似文献   

2.
Pentobarbitone depresses synaptic excitation in the guinea-pig olfactory cortex slice in vitro. A study has been made to elucidate the possible role of gamma-aminobutyric acid (GABA) in this depression by testing pentobarbitone in the presence of high concentrations of the GABA blockers, i.e. picrotoxin or bicuculline. These blockers reduced the action of pentobarbitone; the dose-depression curve for pentobarbitone was shifted to the right by a factor of 2.3. It is concluded that pentobarbitone has a bimodal action, one action via GABA and another unrelated to GABA or Cl- conductances.  相似文献   

3.
Hasuo H  Akasu T 《Neuroscience》2001,105(2):343-352
Long-term potentiation of the hippocampal-septal pathway was examined by intracellular recording techniques. High frequency stimulation (two 100-Hz 1-s trains with a 20-s interval between them) of the hippocampal CA3 area resulted in a transient depolarization in rat lateral septal nucleus neurons. High frequency stimulation was followed by a facilitation of fast and slow inhibitory postsynaptic potentials, lasting for more than 2 h, but not by a long-lasting increase in the excitatory postsynaptic potential in the normal solution. Long-term potentiation (>2 h) of the excitatory postsynaptic potential did not appear in 74% of neurons tested, even when the fast inhibitory postsynaptic potential was blocked by bicuculline (30 microM), a GABA(A) receptor antagonist. High frequency stimulation produced long-term potentiation of the excitatory postsynaptic potential in the Mg(2+)-free solution containing bicuculline. When the fast and slow inhibitory postsynaptic potentials were blocked by GABA(A) and GABA(B) receptor antagonists (bicuculline and CGP 55845A respectively), high frequency stimulation produced a large and sustained depolarization followed by long-term potentiation of the excitatory postsynaptic potential. However, the excitatory postsynaptic potential was not enhanced by administration of these drugs after termination of high frequency stimulation. Pretreatment with 2-amino-5-phosphonopentanoate, a NMDA receptor antagonist, resulted in loss of long-term potentiation in both sets of experiments. Paired-pulse stimulation of the hippocampal CA3 region with interstimulus intervals between 200 and 800 ms depressed the second excitatory postsynaptic potential in the presence of bicuculline. CGP 35348, a GABA(B) receptor antagonist, reversed the depression of excitatory postsynaptic potentials to facilitation. These data suggest that high frequency stimulation of hippocampal CA3 neurons enhances the efficacy of GABAergic inhibitory circuits which, in turn, depress the ability of lateral septal nucleus neurons to express long-term potentiation.  相似文献   

4.
Abnormalities in GABA(A) receptor structure and/or function have been associated with various forms of epilepsy in both humans and animals. Whether this is true for patients with gelastic seizures and hypothalamic hamartoma (HH) is unknown. In this study, we characterized the pharmacological properties and native subunit composition of GABA(A) receptors on acutely dissociated single neurons from surgically resected HH tissues using patch-clamp, immunocytochemical, and RT-PCR techniques. We found that 1) GABA induced an inward current (I(GABA)) at a holding potential of -60 mV; 2) I(GABA) was mimicked by the GABA(A) receptor agonist muscimol and blocked by the GABA(A) receptor antagonist bicuculline, suggesting that I(GABA) was mediated principally through the GABA(A) receptor; 3) the EC(50) and Hill coefficient derived from the I(GABA) concentration-response curve were 6.8 muM and 1.9, respectively; 4) the current-voltage curve was linear at a reversal potential close to zero; and 5) I(GABA) exhibited low sensitivity to zinc and diazepam but higher sensitivity to pentobarbital and pregnanolone. Additionally, using Xenopus oocytes microtransplanted with normal human hypothalamic tissue, we confirmed that the functional properties of GABA(A) receptors were similar to those seen in small isolated HH neurons. Finally, the expression profile of GABA(A) receptor subunits obtained from normal control human hypothalamic tissue was identical to that from surgically resected human HH tissue. Taken together, our data indicate that GABA(A) receptors on small HH neurons exhibit normal pharmacosensitivity and subunit composition. These findings bear relevance to a broader understanding of inhibitory neurotransmission in human HH tissue.  相似文献   

5.
Characteristics of gamma-aminobutyric acid (GABA) were investigated in the rat central nervous system by radioreceptor assay (RRA). Scatchard analysis revealed that the rat brain had two distinct GABA binding sites with an apparent dissociation constant (Kd) of 11.7 nM and 34.7 nM. The highest level of specific [3H]-GABA binding was found in the rat cerebellum. Imidazole acetic acid, a potent GABA agonist, was effective in displacing [3H]-GABA binding but beta-alanine was slightly effective in inhibiting [3H]-GABA binding. Muscimol, the most potent GABA agonist, has been used as a ligand to characterize the postsynaptic GABA receptors. However, the maximal binding capacity (Bmax) of muscimol-RRA was about 3 times larger than that of GABA-RRA, suggesting that muscimol might label not only GABA receptors but other unknown receptors as well. An endogenous inhibitor of GABA receptor binding was purified from the P2 fraction of rat brain with 0.05% Triton X-100. The endogenous inhibitor was competitive with GABA on GABA binding sites. The inhibition by the endogenous inhibitor of GABA receptor binding was blocked by the allosteric effect of diazepam. In the presence of diazepam, [3H]-GABA binding with the endogenous inhibitor was larger than that with GABA, whereas there was no difference in the absence of diazepam. This indicated that the endogenous inhibitor was not GABA itself. The molecular weight of the endogenous inhibitor was estimate by gel filtration to be less than 3,000 daltons.  相似文献   

6.
Pan ZH  Zhang X  Lipton SA 《Neuroscience》2000,98(2):333-338
We previously reported that GABA-evoked currents of rat retinal ganglion cells were modulated by redox agents. In this study, we further characterized the effects of redox modulation on GABA receptors using recombinant human subunits in the Xenopus oocyte expression system with two-electrode voltage-clamp recording. GABA receptors composed of subunits alpha(1-3), beta(1-3), gamma(1), gamma(2S,) and rho(1) were expressed. The sulfhydryl reducing agent dithiothreitol reversibly potentiated the responses of various combinations of functional recombinant GABA(A) subunits, whether expressed as triplets (alpha(1)beta(1-3)gamma(1,2S)), pairs (alpha(1-3)beta(1-3); beta(1-3)gamma(1,2S)), or singly (beta(2)). These effects of dithiothreitol were rapidly reversible, and the oxidizing agent 5-5'-dithiobis-2-nitrobenzoic acid exerted the opposite effect. In contrast to these effects on GABA(A) receptors, dithiothreitol had no effect on the responses of homomeric GABA rho(1) (GABA(C)) receptors. The degree of dithiothreitol potentiation of GABA(A) receptor responses depended on subunit composition. Co-expression of gamma(2S) with alpha(1)beta(1-3) subunits resulted in markedly less dithiothreitol potentiation of GABA-evoked currents than that observed for alpha(1-3)beta(1-3) subunits in the absence of gamma(2S). None the less, the magnitude of dithiothreitol potentiation could be restored by using a combination of lower GABA concentrations (5-10 microM) and higher dithiothreitol concentrations (5-20mM). N,N,N', N'-tetrakis(2-pyridyl-methyl)ethylenediamine, a high-affinity Zn(2+) chelator, also potentiated GABA(A) receptor currents. However, the potentiation produced by 10mM dithiothreitol was larger than that produced by saturating concentrations of N,N,N', N'-tetrakis(2-pyridyl-methyl)ethylenediamine (100 microM), implying that at least part of the effect of dithiothreitol was due to redox modulation rather than Zn(2+) chelation. Dithiothreitol also potentiated the spontaneous current of homomeric GABA(A) receptors composed of beta subunits. Mutation of a single cysteine residue in the M3 domain, yielding homomeric beta(3)(C313A) receptors, abrogated dithiothreitol potentiation of the spontaneous current.In summary, this study further characterizes the modulatory effects of redox agents on recombinant GABA(A) receptors. The degree of redox modulation of GABA(A) receptors depended on subunit composition. In contrast to their effect on GABA(A) receptors, redox agents were not found to modulate GABA(C) receptors composed of homomeric rho(1) subunits. Using site-directed mutagenesis, a cysteine residue was located in the beta(3) subunit which may comprise one of the redox-active sites that underlies the modulation of heteromeric GABA(A) receptors by reducing and oxidizing agents.  相似文献   

7.
GABA, the main inhibitory neurotransmitter in the adult brain, exerts its effects through multiple GABA(A) receptor subtypes with different pharmacological profiles, the alpha subunit variant mainly determining the binding properties of benzodiazepine site on the receptor protein. In adult experimental epileptic animals and in humans with epilepsy, increased excitation, i.e. seizures, alters GABA(A) receptor subunit expression leading to changes in the receptor structure, function, and pharmacology. Whether this also occurs in the developing brain, in which GABA has a trophic, excitatory effect, is not known. We have now applied autoradiography to study properties of GABA(A)/benzodiazepine receptors in 9-day-old rats acutely (6 h) and sub-acutely (7 days) after kainic acid-induced status epilepticus by analyzing displacement of [(3)H]flunitrazepam binding by zolpidem, a ligand selective for the alpha1beta2gamma2 receptor subtype. Regional changes in the binding properties were further corroborated at the cellular level by immunocytochemistry. The results revealed that status epilepticus significantly decreased displacement of [(3)H]flunitrazepam binding by zolpidem 6 h after the kainic acid-treatment in the dentate gyrus of the hippocampus, parietal cortex, and thalamus, and in the hippocampal CA3 and CA1 cell layers 1 week after the treatment. Our results suggest that status epilepticus modifies region-specifically the pharmacological properties of GABA(A) receptors, and may thus disturb the normal, strictly developmentally-regulated maturation of zolpidem-sensitive GABA(A) receptors in the immature rat brain. A part of these changes could be due to alterations in the cell surface expression of receptor subtypes.  相似文献   

8.
The effects of GABA on benzodiazepine receptor binding in cerebral cortical, hippocampal, and cerebellar membranes from 2-3 months old and 28-32 months old rats were studied. GABA modulation of agonist, antagonist, and inverse agonist binding to the receptor was examined using the displacement of 3H-Ro15-1788 by diazepam, Ro15-1788, and beta-carboline-3-carboxylate methyl ester, respectively, in the absence and presence of 100 microM GABA and 150 mM sodium chloride. GABA modulation was alike in old and young rats, with respect to the particular ligand and brain region. The results support the hypothesis that, in the brain regions studied, the allosteric modulation of benzodiazepine receptor binding by GABA remains intact as a function of aging.  相似文献   

9.
Occurrence of GABA and GABA receptors in human spermatozoa   总被引:2,自引:0,他引:2  
Gamma-aminobutyric acid (GABA) concentrations in seminal plasma and washed spermatozoa from normal donors were assessed by a sensitive radioreceptor assay, and were detectable in both fractions. Specific binding of [3H]-muscimol was shown to be dependent on protein concentration, temperature and incubation time. [3H]-muscimol specific binding to human sperm membranes was significantly inhibited by the GABA type A receptor (GABA(A)) antagonist, bicuculline, and by the GABA(A) agonists, muscimol and isoguvacine, but not by the GABA type B receptor (GABA(B)) agonist baclofen. Scatchard analysis of [3H]- muscimol binding yielded a linear plot consistent with a single population of binding sites with a dissociation constant in the low nanomolar range. Incubation with GABA at a high micromolar concentration for 3 h under capacitating conditions resulted in an increase in the percentage of spermatozoa showing hyperactivated motility as assessed by computerized motility analyser. However, low micromolar concentrations of the GABA(A) agonist, muscimol, were sufficient to significantly increase sperm hyperactivity. These results suggest that the effect of GABA on human sperm motility might be mediated through a specific GABA(A) receptor.   相似文献   

10.
The inhibitory neurotransmitters glycine and gamma-aminobutyric acid (GABA) both activate transmembrane chloride channels of similar physical characteristics. A common ion channel component has therefore been postulated for both the glycine and GABA receptor proteins. Different convulsant drugs as picrotoxin and t-butyl bicyclophosphorothionate (TBPS) have been reported as channel-blocking ligands of the GABA receptor. Here, we show that the distribution of [35S]TBPS binding sites parallels the binding of the GABA receptor ligand [3H]flunitrazepam, but not that of the glycine receptor antagonist [3H]strychnine. Binding was examined in membrane fractions from different regions of the rat CNS and of the mutant mouse spastic, an animal deficient in glycine receptors. Also, affinity purification of the glycine receptor on aminostrychnine-agarose resulted in almost complete removal of [35S]TPBS binding sites from the receptor preparation. It is concluded that TBPS selectively binds to the GABA, but not glycine, receptor chloride channel complex.  相似文献   

11.
gamma-Aminobutyric acid (GABA) modulation of triazolam and nicotinamide binding to benzodiazepine (BDZ) receptors in vitro was compared with the neurotoxicity and anticonvulsant activity of these two drugs in vivo. GABA had no significant effect on the inhibitory potency of triazolam in [3H]flunitrazepam receptor binding, whereas GABA decreased the inhibitory potency of nicotinamide. When administered to mice, both triazolam and nicotinamide exhibited neurotoxicity by the rotorod test and anticonvulsant activity by the pentylenetetrazol seizure threshold test. This suggests that GABA modulation of the receptor binding of a BDZ ligand in vitro is not a reliable predictor of the pharmacologic activity of the ligand.  相似文献   

12.
The ionophore function of gamma-aminobutyric acid A (GABA(A)) receptors was studied by whole-cell patch clamp electrophysiology in primary cultures of rat cerebellar cortex. Chloride currents elicited by 1 microM GABA were potentiated by allopregnanolone with a plateau of high affinity (EC(50) = 14 nM) and a peak of potentiation around 1 microM allopregnanolone. Furosemide (0.1 mM) eliminated the high affinity phase and increased the EC(50) to 685 nM. GABA(A) receptors of rat cerebellar synaptosomal membranes were labelled with [(3)H]ethynylbicycloorthobenzoate (EBOB). Allopregnanolone displaced [(3)H]EBOB binding with IC(50) = 320 nM. The displacing potency of allopregnanolone was strongly enhanced (IC(50) = 39 nM) in the presence of 400 nM GABA and 60 nM SR 95531. Nanomolar potentiation by allopregnanolone can be associated with cerebellar GABA(A) receptors containing alpha(6), beta(2-3) and delta subunits. This might be suitable for physiological modulation of tonic inhibitory neurotransmission via extrasynaptic GABA(A) receptors in cerebellar granule cells by neurosteroids.  相似文献   

13.
Effects of etifoxine on ligand binding to GABA(A) receptors in rodents   总被引:1,自引:0,他引:1  
The GABA(A) receptor/chloride ionophore is allosterically modulated by several classes of anxiolytic and anticonvulsant agents, including benzodiazepines, barbiturates and neurosteroids. Etifoxine, an anxiolytic and anticonvulsant compound competitively inhibited the binding of [(35)S]t-butylbicyclophosphoro-thionate (TBPS), a specific ligand of the GABA(A) receptor chloride channel site. To investigate the etifoxine modulatory effects on the different binding sites of the GABA(A) receptor complex, we have examined the effects of etifoxine on binding of the receptor agonist [(3)H]muscimol and the benzodiazepine modulator [(3)H]flunitrazepam in rat brain membrane preparations. The anticonvulsant properties of etifoxine combined with muscimol and flunitrazepam were performed in mice with picrotoxin-induced clonic seizures. Etifoxine modestly enhanced binding of [(3)H]muscimol and of [(3)H]flunitrazepam by increasing the number of binding sites without changing the binding affinity of [(3)H]flunitrazepam. In contrast, the compound decreased the affinity of muscimol for its binding site. In vivo, the combination of subactive doses of etifoxine with muscimol or flunitrazepam produced an anticonvulsant additive effect against the picrotoxin-induced clonic seizures in mice. These results suggest that the interaction of etifoxine on the GABA(A) receptor complex would allosterically modify different binding sites due to conformational changes. Functionally, the resulting facilitation of GABA transmission underlies the pharmacological properties of etifoxine.  相似文献   

14.
The involvement of the GABA-benzodiazepine receptor complex in the regulation of melanotropin secretion has been investigated using perfused frog neurointermediate lobes. The GABAA agonist 3-amino-1 propane sulfonic acid mimicked the biphasic effect of GABA on alpha-melanocyte-stimulating hormone secretion: a brief stimulation followed by an inhibition of melanotropin secretion. The GABAA antagonist SR 95531 (10(-4) M) inhibited both stimulation and inhibition of alpha-melanocyte-stimulating hormone release induced by GABA (10(-4) M). Since the inhibitory effect of baclofen (10(-4) M) was partially antagonized by SR 95531 (10(-4) M), it appears that the GABAergic control of alpha-melanocyte-stimulating hormone release is mainly achieved through activation of GABAA receptors. GABA-induced stimulation of alpha-melanocyte-stimulating hormone release was inhibited by tetrodotoxin (10(-5) M), an Na+ -channel blocker, or nifedipine (10(-5) M), a voltage-dependent Ca2+ -channel blocker, suggesting that Na+ and Ca2+ ions are involved in the stimulatory phase of GABA action. Only central-type benzodiazepine binding site agonists such as clonazepam (10(-4) M) modified alpha-melanocyte-stimulating hormone release. In fact, clonazepam (10(-7) to 10(-5) M) led to a dose-dependent potentiation of both GABA-induced stimulation and inhibition of alpha-melanocyte-stimulating hormone release. This potentiating effect was antagonized by the GABAA antagonist SR 95531 (10(-4) M) or by the central-type benzodiazepine binding site antagonist flumazenil (10(-4) M), whereas picrotoxin (10(-4) M) abolished only the stimulatory phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Hong Z  Wang DS 《Neuroscience》2005,132(4):1045-1053
Etomidate (ET), an imidazole general anesthetic, has been medically widely used. Recent evidence suggests that the inhibitory neurotransmitter GABA receptor may be one of the important molecular target(s) of general anesthetics. Up to date, little attention has been directed toward the sacral dorsal commissural nucleus (SDCN), which serves as a relay of sensory information from the pelvic viscera in the spinal cord. Therefore, the effect of ET on GABA(A) receptor function in neurons acutely dissociated from the SDCN was investigated using the nystatin-perforated patch-recording configuration under voltage-clamp conditions. At a holding potential of -40 mV, ET (above 10 microM) induced an inward ET-activated current (I(ET)) with the EC(50) value of 33 +/- 3 microM, which was reversibly blocked by bicuculline and picrotoxin. The reversal potential of I(ET) was close to the Cl(-) equilibrium potential. ET also displayed a biphasic modulatory effect on GABA responses. At lower concentrations (0.1-100 microM), ET reversibly potentiated GABA (1 microM)-activated Cl(-) currents in a bell-shaped manner, with the maximal facilitative effect at 10 microM, whereas at concentrations >100 microM, the peak of the ET-induced current was suppressed in the absence or presence of GABA (1 microM). These results suggest that in SDCN, in addition to the potentiation of GABA(A) receptor-mediated responses at low concentrations and the direct activation of GABA(A) receptors at moderate concentrations as expected, ET produced a fast blocking action at high concentrations. The general anesthetic-induced effects in SDCN, at least the potentiation of GABA responses, may significantly contribute to anesthesia of pelvic viscera during the general anesthesia.  相似文献   

16.
Presence of GABA receptors in rat oviduct   总被引:4,自引:0,他引:4  
A low concentration of high-affinity, saturable and specific [3H]GABA binding sites has been identified in a membrane fraction of rat oviduct. The specific binding of [3H]GABA was displaced by unlabelled GABA, muscimol and bicuculline. Furthermore in oviductal slices, GABA and a known GABA receptor agonist, i.e. muscimol, produced a significant elevation of cyclic AMP levels, which could be antagonized by GABA receptor blockers, i.e. picrotoxin and bicuculline. The present results indicate that GABA receptors may have a functional significance in rat oviduct.  相似文献   

17.
In unanaesthetized decerebrate cats the time course of recovery of the firing of spinal interneurones after electrophoretic glycine and GABA are virtually identical; systemically administered pentobarbitone increased that of GABA and had little or no effect on that of glycine. Such an action could be important in the enhancement and prolongation of GABA-mediated synaptic inhibition by pentobarbitone and other anaesthetics.  相似文献   

18.
The effect of diazepam (DZP) on the GABA-induced macroscopic and microscopic Cl- current was investigated in isolated frog sensory neurons using both 'concentration-clamp' and patch-clamp techniques. At concentration range between 10(-9) and 10(-4) M, DZP itself evoked no response but potentiated time- and dose-dependently the subthreshold GABA responses, though at high DZP concentrations beyond 10(-5) M the potentiation ratio decreased. The potentiation effect was long-lasting and desensitized slowly over the course of several 10 minutes after washing-out of DZP. DZP potentiated GABA response without shifting the GABA reversal potential. The entire GABA dose-response curve was shifted in a parallel manner to the left by adding DZP without changing cooperatively: the Hill slope was 2.0. The potentiation of GABA response by DZP did not depend on either inward or outward direction of the Cl- current but slightly on the membrane potential. The time constants of activation of desensitization of GABA-gated Cl- current consisted of fast and slow components, respectively. The slow components were concentration-dependent, and significantly changed in the presence of DZP, while DZP had little effects on fast components. In the 'inside-out' configuration, the addition of DZP activated GABA-receptor ionophore complexes under subthreshold without changing the single Cl- channel conductance. It is concluded that DZP may act at a site to modulate GABA binding, in which DZP increases GABA binding affinity and also affects the kinetics of GABA-gated Cl- channels, indicating that DZP has dual action on the GABA-induced responses.  相似文献   

19.
Neuronal cultures of the chick embryo cerebrum were used to study the chronic effects of gamma-aminobutyric acid (GABA) on the expression of the GABA/benzodiazepine receptor complex. A 7 day exposure of developing neurons to 100 microM GABA produced a 70% reduction in the level of [3H]flunitrazepam binding to intact cells, when compared to untreated controls. The reduction was due to a decrease in receptor density (Bmax) rather than the affinity. The same treatment also caused a 75% reduction in the rates of GABA-gated 36Cl- uptake by intact cells, without an effect on the basal (GABA-independent) flux. Eight days after removal of GABA from the medium of treated cultures, the neurons recovered [3H]flunitrazepam binding to levels corresponding to 74% of unexposed, age-matched controls. The results are consistent with a GABA-induced down-regulation of the GABA/benzodiazepine receptor.  相似文献   

20.
Gamma-Aminobutyric acid (GABA)-induced Cl- fluxes in cultured rat cerebellar granule cells were measured using the chloride-sensitive fluorescent probe SPQ (6-methoxy-N-(3-sulphopropyl)quinolinium) incorporated into the cells. The fluorescence of SPQ is quenched by Cl-ions. GABA and pentobarbitone increased the fluorescence of the probe when the Cl- gradient was directed outward by bathing cells, grown in the presence of GABA, in a low Cl- medium. Picrotoxin and bicuculline inhibited the response to GABA. The results suggest that SPQ is a suitable probe for measuring GABA-induced Cl- fluxes in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号