首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The existence of individuals who remain cognitively intact despite presenting histopathological signs of Alzheimer's disease (AD), here referred to as “Nondemented with AD neuropathology” (NDAN), suggests that some mechanisms are triggered to resist cognitive impairment. Exposed phosphatidylserine (ePS) represents a neuronal “eat-me” signal involved in microglial-mediated phagocytosis of damaged synapses. A possible mediator of this process is TREM2, a microglial surface receptor activated by ligands including PS. Based on TREM2 role in the scavenging function of microglia, we hypothesize that an efficient microglial phagocytosis of damaged synapses underlies synaptic resilience in NDAN, thus protecting from memory deficits. Using immunofluorescence microscopy, we performed a comparative study of human post-mortem frontal cortices of aged-matched, AD and NDAN individuals. We studied the distribution of activated microglia (IBA1, IBA1+/CD68+ cells) and phagocytic microglia-related proteins (TREM2, DAP12), demonstrating higher microglial activation and TREM2 expression in NDAN versus AD. A study of the preservation of synapses around plaques, assessed using MAP2 and βIII tubulin as dendritic and axonal markers, respectively, and PSD95 as a postsynaptic marker, revealed preserved axonal/dendritic structure around plaques in NDAN versus AD. Moreover, high levels of PSD95 around NDAN plaques and the colocalization of PSD95 with CD68 indicated a prompt removal of damaged synapses by phagocytic microglia. Furthermore, Annexin V assay on aged-matched, AD and NDAN individuals synaptosomes revealed increased levels of ePS in NDAN, confirming damaged synapses engulfment. Our results suggest a higher efficiency of TREM2-induced phagocytic microglia in removing damaged synapses, underlying synaptic resilience in NDAN individuals.  相似文献   

2.
Recent evidence suggests that rare genetic variants within the TREM2 gene are associated with increased risk of Alzheimer's disease. TREM2 mutations are the genetic basis for a condition characterized by polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL) and an early-onset dementia syndrome. TREM2 is important in the phagocytosis of apoptotic neuronal cells by microglia in the brain. Loss of function might lead to an impaired clearance and to accumulation of necrotic debris and subsequent neurodegeneration. In this study, we investigated a consanguineous family segregating autosomal recessive behavioral variant FTLD from Antioquia, Colombia. Exome sequencing identified a nonsense mutation in TREM2 (p.Trp198X) segregating with disease. Next, using a cohort of clinically characterized and neuropathologically verified sporadic AD cases and controls, we report replication of the AD risk association at rs75932628 within TREM2 and demonstrate that TREM2 is significantly overexpressed in the brain tissue from AD cases. These data suggest that a mutational burden in TREM2 may serve as a risk factor for neurodegenerative disease in general, and that potentially this class of TREM2 variant carriers with dementia should be considered as having a molecularly distinct form of neurodegenerative disease.  相似文献   

3.
Recent studies have reported that a rare mutation of triggering receptor expressed on myeloid cells 2 gene (TREM2 [rs75932628-T]) has significantly increased the risk of late-onset Alzhemier's disease (LOAD) in European-descendent population. To date, no study has investigated the association between rare mutations of TREM2 and LOAD risk in non-European population. Here, we sequenced exon2 of TREM2 in the northern Han Chinese population consisting of 1133 patients with LOAD and 1159 control subjects. Although, 4 novel mutations (c.102G>A: Val34Val, c.330C>T: Cys110Cys, c.342T>C: His114His, and c.343G>A: Gly115Ser) were identified in patients with LOAD, none of them exhibited significant association with LOAD risk after Bonferroni correction. Most importantly, the previously reported rare variants in European-descendent population including rs75932628-T (predicted to cause an R47H substitution) were absent in our cohort. These findings suggest that mutations in exon2 of TREM2 were unlikely to play a key role in the susceptibility of LOAD in the northern Han Chinese population.  相似文献   

4.
5.
Alzheimer's disease (AD) is a chronic, progressive and irreversible neurodegenerative disease with clinical characteristics of memory loss, dementia and cognitive impairment. Although the pathophysiologic mechanism is not fully understood, inflammation has been shown to play a critical role in the pathogenesis of AD. Inflammation in the central nervous system (CNS) is characterized by the activation of glial cells and release of proinflammatory cytokines and chemokines. Accumulating evidence demonstrates that inflammasomes, which cleave precursors of interleukin-1β (IL-1β) and IL-18 to generate their active forms, play an important role in the inflammatory response in the CNS and in AD pathogenesis. Therefore, modulating inflammasome complex assembly and activation could be a potential strategy for suppressing inflammation in the CNS. This review aims to provide insight into the role of inflammasomes in the CNS, with respect to the pathogenesis of AD, and may provide possible clues for devising novel therapeutic strategies.  相似文献   

6.
Recent studies have identified the rs75932628 (R47H) variant in TREM2 as an Alzheimer's disease risk factor with estimated odds ratio ranging from 2.9 to 5.1. The Cache County Memory Study is a large, population-based sample designed for the study of memory and aging. We genotyped R47H in 2974 samples (427 cases and 2540 control subjects) from the Cache County study using a custom TaqMan assay. We observed 7 heterozygous cases and 12 heterozygous control subjects with an odds ratio of 3.5 (95% confidence interval, 1.3–8.8; p = 0.0076). The minor allele frequency and population attributable fraction for R47H were 0.0029 and 0.004, respectively. This study replicates the association between R47H and Alzheimer's disease risk in a large, population-based sample, and estimates the population frequency and attributable risk of this rare variant.  相似文献   

7.
In response to brain insults, astrocytes become reactive, promoting protection and tissue repair. However, astroglial reactivity is typical of brain pathologies, including Alzheimer's disease (AD). Considering the heterogeneity of the reactive response, the role of astrocytes in the course of different forms of AD has been underestimated. Colombia has the largest human group known to have familial AD (FAD). This group carries the autosomal dominant and fully penetrant mutation E280A in PSEN1, which causes early-onset AD. Recently, our group identified an E280A carrier who did not develop FAD. The individual was homozygous for the Christchurch mutation R136S in APOE3 (APOEch). Remarkably, APOE is the main genetic risk factor for developing sporadic AD (SAD) and most of cerebral ApoE is produced by astroglia. Here, we characterized astrocyte properties related to reactivity, glutamate homeostasis, and structural integrity of the gliovascular unit (GVU), as factors that could underlie the pathogenesis or protection of AD. Specifically, through histological and 3D microscopy analyses of postmortem samples, we briefly describe the histopathology and cytoarchitecture of the frontal cortex of SAD, FAD, and APOEch, and demonstrate that, while astrodegeneration and vascular deterioration are prominent in SAD, FAD is characterized by hyperreactive-like glia, and APOEch displays the mildest astrocytic and vascular alterations despite having the highest burden of Aβ. Notably, astroglial, gliovascular, and vascular disturbances, as well as brain cell death, correlate with the specific astrocytic phenotypes identified in each condition. This study provides new insights into the potential relevance of the gliovasculature in the development and protection of AD. To our knowledge, this is the first study assessing the components of the GVU in human samples of SAD, FAD, and APOEch.  相似文献   

8.
The amyloid cascade hypothesis, which implicates the amyloid Aβ peptide as the pathological initiator of both familial and sporadic, late onset Alzheimer's disease (AD), continues to guide the majority of research. We believe that current evidence does not support the amyloid cascade hypothesis for late onset AD. Instead, we propose that Aβ is a key regulator of brain homeostasis. During AD, while Aβ accumulation may occur in the long term in parallel with disease progression, it does not contribute to primary pathogenesis. This view predicts that amyloid-centric therapies will continue to fail, and that progress in developing successful alternative therapies for AD will be slow until closer attention is paid to understanding the physiological function of Aβ and its precursor protein.  相似文献   

9.
Accumulating evidence suggests that infections by herpesviruses might be closely linked to Alzheimer's disease (AD). Pathological hallmarks of AD brains include senile plaques induced by amyloid β peptide (Aβ) in the extracellular space and intracellular neurofibrillary tangles (NFTs) consisting of phosphorylated tau protein. The prevailing hypothesis for the mechanism of AD is amyloid cascade reaction. Recent studies revealed that infections by herpesviruses induce the similar pathological hallmarks of AD, including Aβ production, phosphorylation of tau (P-tau), oxidative stress, neuroinflammation, etc. Aβ peptide is regarded as one of the antimicrobial peptides, which inhibits HSV-1 replication. In the elderly, reactivation of herpesviruses might act as an initiator for amyloid cascade reaction in vulnerable individuals, triggering the neurofibrillary formation of phosphorylated tau and inducing oxidative stress and neuroinflammation, which can further contribute to the accumulation of Aβ and P-tau by impairing mitochondria and autophagosome. Epidemiological studies have shown AD susceptibility genes, such as APOE-ε4 allele, are highly linked to infections by herpesviruses. Interestingly, anti-herpesviral therapy significantly reduced the risk of AD in a large population study. Given that herpesviruses are arguably the most prevalent opportunistic pathogens and often reactivate in the elderly, it is reasonable to argue reactivation of herpesviruses might be major culprits for initiating AD in individuals carrying AD susceptibility genes. In this review, we summarize epidemiological and molecular evidence that support for a hypothesis of herpesviral infections and antimicrobial protection in the development of AD, and discuss the implications for future prevention and treatment of the disease.  相似文献   

10.
The formation of 5-hydroxymethylcytosine (5hmC), a key intermediate of DNA demethylation, is driven by the ten eleven translocation (TET) family of proteins that oxidize 5-methylcytosine (5mC) to 5hmC. To determine whether methylation/demethylation status is altered during the progression of Alzheimer's disease (AD), levels of TET1, 5mC and subsequent intermediates, including 5hmC, 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) were quantified in nuclear DNA from the hippocampus/parahippocampal gyrus (HPG) and the cerebellum of 5 age-matched normal controls, 5 subjects with preclinical AD (PCAD) and 7 late-stage AD (LAD) subjects by immunochemistry. The results showed significantly (p < 0.05) increased levels of TET1, 5mC, and 5hmC in the HPG of PCAD and LAD subjects. In contrast, levels of 5fC and 5caC were significantly (p < 0.05) decreased in the HPG of PCAD and LAD subjects. Overall, the data suggest altered methylation/demethylation patterns in vulnerable brain regions prior to the onset of clinical symptoms in AD suggesting a role in the pathogenesis of the disease.  相似文献   

11.
Dysregulation of neural iron is known to occur during the progression of Alzheimer's disease. The visualization of amyloid‐beta (Aβ) plaques with MRI has largely been credited to rapid proton relaxation in the vicinity of plaques as a result of focal iron deposition. The goal of this work was to determine the relationship between local relaxation and related focal iron content associated with Aβ plaques. Alzheimer's disease (n = 5) and control tissue (n = 3) sample slices from the entorhinal cortex were treated overnight with the iron chelator deferoxamine or saline, and microscopic gradient‐echo MRI datasets were taken. Subsequent to imaging, the same slices were stained for Aβ and iron, and then compared with regard to parametric R2* relaxation maps and gradient‐echo‐weighted MR images. Aβ plaques in both chelated and unchelated tissue generated MR hypo‐intensities and showed relaxation rates significantly greater than the surrounding tissue. The transverse relaxation rate associated with amyloid plaques was determined not to be solely a result of iron load, as much of the relaxation associated with Aβ plaques remained following iron chelation. The data indicate a dual relaxation mechanism associated with Aβ plaques, such that iron and plaque composition synergistically produce transverse relaxation.Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Alzheimer's disease (AD) is characterised by extracellular amyloid deposits, neurofibrillary tangles, synaptic loss, inflammation and extensive oxidative stress. Polyphenols, which include resveratrol, epigallocatechin gallate and curcumin, have gained considerable interest for their ability to reduce these hallmarks of disease and their potential to slow down cognitive decline. Although their antioxidant and free radical scavenging properties are well established, more recently polyphenols have been shown to produce other important effects including anti-amyloidogenic activity, cell signalling modulation, effects on telomere length and modulation of the sirtuin proteins. Brain accessible polyphenols with multiple effects on pathways involved in neurodegeneration and ageing may therefore prove efficacious in the treatment of age-related diseases such as AD, although the evidence for this so far is limited. This review aims to explore the known effects of polyphenols from various natural and synthetic sources on brain ageing and neurodegeneration, and to examine their multiple mechanisms of action, with an emphasis on the role that the sirtuin pathway may play and the implications this may have for the treatment of AD.  相似文献   

13.
Alzheimer's disease (AD) is the most common form of dementia, with prevalence progressively increasing with aging. Pathological hallmarks of the disease include accumulation of amyloid β‐protein (Aβ) peptides and neurofibrillary tangles in the brain associated with glial activation and synaptotoxicity. In addition, AD involves peripheral and brain endogenous inflammatory processes that appear to enhance disease progression. More than a decade ago a new therapeutic paradigm emerged for AD, namely the activation of the adaptive immune system directly against the self‐peptide Aβ, aimed at lowering its accumulation in the brain. This was the first time that a brain peptide was used to vaccinate human subjects in a manner similar to classic viral or bacterial vaccines. The vaccination approach has taken several forms, from initially active to passive and then back to modified active vaccines. As the first two approaches to date failed to show sufficient efficacy, the last is presently being evaluated in ongoing clinical trials. The present review summarizes the immunogenic characteristics of Aβ in humans and mice and discusses past, present and future Aβ‐based immunotherapeutic approaches for AD. We emphasize potential pathogenic and beneficial roles of CD4 T cells in light of the pathogenesis and the general decline in T‐cell responsiveness evident in the disease.  相似文献   

14.
The presenilins (PS-1 and PS-2) are 2 members of a novel family of genes encoding integral membrane proteins recently implicated in Alzheimer's disease (AD) pathology. To date, 43 mutations have been identified in PS-1 and 2 in PS-2 that lead to familial presenile AD (onset before age 65 years). The normal and pathological functions of the PS proteins (ps-1 and ps-2) are unknown, but their high degree of homology predicts similar biological activities. Homologies with ps from other species suggest that they may play a role in intracellular protein sorting and trafficking, in intercellular cell signaling, or in cell death. Since to date only missense mutations and in-frame deletions were identified, it is believed that mutated ps act through either a gain of (dys-)function or a dominant negative effect. In vivo and in vitro studies have linked PS mutations to amyloid deposition, an early pathological event in AD brains. Hum Mutat 11:183–190, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Synapse loss induced by amyloid beta (Aβ) is thought to be a primary contributor to cognitive decline in Alzheimer's disease. Aβ is generated by proteolysis of amyloid precursor protein (APP), a synaptic receptor whose physiological function remains unclear. In the present study, we investigated the role of APP in dendritic spine formation, which is known to be important for learning and memory. We found that overexpression of APP increased spine number, whereas knockdown of APP reduced spine density in cultured hippocampal neurons. This spine-promoting effect of APP required both the extracellular and intracellular domains of APP, and was accompanied by specific upregulation of the GluR2, but not the GluR1, subunit of AMPA receptors. In an in vivo experiment, we found that cortical layers II/III and hippocampal CA1 pyramidal neurons in 1 year-old APP-deficient mice had fewer and shorter dendritic spines than wild-type littermates. In contrast, transgenic mice overexpressing mutant APP exhibited increased spine density compared to control animals, though only at a young age prior to overaccumulation of soluble amyloid. Additionally, increased glutamate synthesis was observed in young APP transgenic brains, whereas glutamate levels were decreased and GABA levels were increased in APP-deficient mice. These results demonstrate that APP is important for promoting spine formation and is required for proper spine development.  相似文献   

16.
Activation of innate immunity and the assembly of microglial cells at sites of Alzheimer disease pathology has long been regarded as bystander phenomenon, which does not actively contribute to disease pathogenesis and progression. Recent data emerging from genetics, clinical imaging and animal experimentation point to an intimate and mutual interaction of innate immune mechanisms and neurodegenerative processes. NOD‐like receptor (NLR) family, pyrin domain containing 3 and 1 inflammasomes, present in myeloid cells and neurons, respectively, represent key components of the innate immune reaction observed in Alzheimer patient brains. Inhibition of inflammasome activation just begins to prove beneficial and protective from cognitive deficits and neuronal death in cell culture and animal models of Alzheimer's disease, thereby opening a new avenue for therapeutic intervention.  相似文献   

17.
Cerebral microbleeds (MBs) may relate to amyloid in dementia. We selected 26 probable Alzheimer's disease (AD) patients with MBs, 26 age- and sex-matched AD patients without MBs, 11 vascular dementia (VaD) patients, and 22 patients with subjective complaints. We measured amyloid beta 1-42 (Aβ42) and 1-40 (Aβ40) in cerebrospinal fluid (CSF) and plasma, and blood-brain barrier (BBB) function using albumin ratios. CSF Aβ42 was lowest in AD with MBs, whereas Aβ40 was selectively decreased in VaD. In plasma, amyloid-beta was nonsignificantly elevated in VaD compared with controls. Higher albumin ratios in VaD suggested blood-brain barrier dysfunction. A MB pattern suggestive of cerebral amyloid angiopathy (CAA) related to lower CSF Aβ42, while a non-cerebral amyloid angiopathy specific MB distribution related to higher plasma Aβ40. Amyloid-beta is differentially implicated in AD with MBs and VaD. MB distribution related to different amyloid profiles, supporting distinct etiologies. Our results suggest that Aβ42 is retained in cerebrovasculature of AD patients with MBs, while in contrast, VaD patients may possibly drain amyloid.  相似文献   

18.
Alzheimer's disease (AD) is the most common form of dementia. Accumulation of amyloid-beta (Aβ) peptides is regarded as the critical component associated with AD pathogenesis, which is derived from the amyloid precursor protein (APP) cleavage. Recent studies suggest that synaptic activity is one of the most important factors that regulate Aβ levels. It has been found that synaptic activity facilitates APP internalization and influences APP cleavage. Glutamatergic, cholinergic, serotonergic, leptin, adrenergic, orexin, and gamma-amino butyric acid receptors, as well as the activity-regulated cytoskeleton-associated protein (Arc) are all involved in these processes. The present review summarizes the evidence for synaptic activity-modulated Aβ levels and the mechanisms underlying this regulation. Interestingly, the immediate early gene product Arc may also be the downstream signaling molecule of several receptors in the synaptic activity-modulated Aβ levels. Elucidating how Aβ levels are regulated by synaptic activity may provide new insights in both the understanding of the pathogenesis of AD and in the development of therapies to slow down the progression of AD.  相似文献   

19.
Genome‐wide association studies have pointed to clusterin (apolipoprotein J) as being linked to the occurrence of Alzheimer's disease (AD); studies have identified the protein as a possible biomarker. The association between clusterin and senile plaques in AD brain is well known, and clusterin levels in AD brain are 40% higher than that in control subjects. The present study investigates, immunohistochemically, the association between clusterin and Aβ peptides in AD and control cortex. A unique and specific association between clusterin and Aβ40 was observed in plaques in the cerebral cortex from AD subjects in that only plaques that contained Aβ40 showed clusterin immunoreactivity, while the many plaques with Aβ42 alone lacked clusterin labeling. Cerebrovascular Aβ in AD brain generally lacked Aβ42 but was positively labeled by both the Aβ40 and the clusterin antibodies. In control subjects, however, Aβ40 was absent from plaques, although very occasional plaques were found to be labeled by both the Aβ42 and the clusterin antibodies. Overall, in AD, but not aged control brain, clusterin was associated specifically with the Aβ40 form of Aβ in the brain. The lack of clusterin in association with Aβ42 may be a significant feature in neuronal loss and neurodegeneration in the disease state.  相似文献   

20.
Since BACE1 was reported as the β-secretase in Alzheimer''s disease (AD) over ten years ago, encouraging progress has been made toward understanding the cellular functions of BACE1. Genetic studies have further confirmed that BACE1 is essential for processing amyloid precursor protein (APP) at the β-secretase site. Only after this cleavage can the membrane-bound APP C-terminal fragment be subsequently cleaved by γ-secretase to release so-called AD-causing Aβ peptides. Hence, in the past decade, a wide variety of BACE1 inhibitors have been developed for AD therapy. This review will summarize the major historical events during the evolution of BACE1 inhibitors designed through different strategies of drug discovery. Although BACE1 inhibitors are expected to be safe in general, careful titration of drug dosage to avoid undesirable side effects in BACE1-directed AD therapy is also emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号