首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Background We previously demonstrated that neuronal nitric oxide synthase (nNOS) in epidermal keratinocytes is associated with epidermal permeability barrier homeostasis. Objectives In the present study, we examined the contributions of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) to epidermal permeability barrier homeostasis. Methods We measured the barrier recovery rate after tape stripping of the epidermis of iNOS and eNOS knockout mice, and carried out electron‐microscopic observation of the epidermis after acetone treatment. Results The barrier recovery rate of eNOS knockout mice was significantly faster than that of the wild‐type control, while no significant difference was observed between iNOS knockout mice and wild‐type mice. Electron‐microscopic observation at 1 h after acetone treatment indicated that barrier recovery of both nNOS and eNOS mice was faster than that of wild‐type mice, and lamellar body secretion was accelerated in both types of knockout mice. Conclusions These results suggested that both nNOS and eNOS play roles in epidermal barrier homeostasis and lamellar body secretion.  相似文献   

2.
Keratinocytes express high levels of 25OHD 1alpha-hydroxylase (1OHase). The product of this enzyme, 1,25-dihydroxyvitamin D (1,25(OH)(2)D), promotes the differentiation of keratinocytes in vitro suggesting an important role for this enzyme in epidermal differentiation. To test whether 1OHase activity is essential for keratinocyte differentiation in vivo we examined the differentiation process in mice null for the expression of the 1alphaOHase gene (1alphaOHase(-/-)). Heterozygotes for the null allele were bred, and the progeny genotyped by PCR. The epidermis of the 1alphaOHase(-/-) animals and their wild-type littermates (1alphaOHase(+/+)) were examined by histology at the light and electron microscopic level, by immunocytochemistry for markers of differentiation, and by function examining the permeability barrier using transepidermal water loss (TEWL). No gross epidermal phenotype was observed; however, immunocytochemical assessment of the epidermis revealed a reduction in involucrin, filaggrin, and loricrin-markers of differentiation in the keratinocyte and critical for the formation of the cornified envelope. These observations were confirmed at the electron microscopic level, which showed a reduction in the F (containing filaggrin) and L (containing loricrin) granules and a reduced calcium gradient. The functional significance of these observations was tested using TEWL to evaluate the permeability barrier function of the epidermis. Although TEWL was normal in the basal state, following disruption of the barrier using tape stripping, the 1alphaOHase(-/-) animals displayed a markedly delayed recovery of normal barrier function. This delay was associated with a reduction in lamellar body secretion and a failure to reform the epidermal calcium gradient. Thus, the 25OHD 1OHase is essential for normal epidermal differentiation, most likely by producing the vitamin D metabolite, 1,25(OH)(2)D, responsible for inducing the proteins regulating calcium levels in the epidermis that are critical for the generation and maintenance of the barrier.  相似文献   

3.
4.
Although there are no known gender-related differences in permeability barrier function in adults, estrogens accelerate whereas testosterone retards barrier development in fetal skin, and male fetuses demonstrate slower barrier development than female littermates. Moreover, prenatal administration of the androgen receptor antagonist, flutamide, equalizes developmental rates in male and female fetuses. Therefore, we evaluated the effects of changes in testosterone on barrier homeostasis in adult murine and human skin. Hypogonadal mice (whether by castration or by treatment with systemic flutamide) displayed significantly faster barrier recovery at 3, 6, and 12 h than did controls, and testosterone replacement slowed barrier recovery in castrated mice. Moreover, testosterone directly effects the skin, as topical flutamide also accelerated barrier recovery in normal male mice. These findings appear to be of physiologic significance, since prepubertal male mice (age 5 wk) displayed accelerated barrier recovery in comparison with adult postpubertal (11 wk) males. These studies also appear to be relevant for humans, as a hypopituitary human subject demonstrated repeated changes in barrier recovery in parallel with peaks and nadirs in serum testosterone levels during intermittent testosterone replacement. Mechanistic studies showed that differences in epidermal lipid synthesis do not account for the testosterone-induced functional alterations. Instead, epidermal lamellar body (LB) formation and secretion both decrease, resulting in decreased extracellular lamellar bilayers in testosterone-replete animals. These studies demonstrate that fluctuations in testosterone modulate barrier function, and that testosterone repletion can have negative consequences for permeability barrier homeostasis.  相似文献   

5.
Background:  Pityriasis lichenoides (PL) is an inflammatory skin disease of unknown etiology. Nitric oxide (NO) has emerged as an important mediator of many physiological functions. The importance of NO-mediated signaling in skin diseases has been reported by several studies.
Methods:  A review of clinical records and histopathological slides of 34 patients diagnosed with PL was performed. Three different groups of skin biopsies including PL chronica (24 patients), PL et varioliformis acuta (10 patients) and 15 normal skin samples were subjected to the immunohistochemistry technique for inducible nitric oxide synthase (iNOS) detection.
Results:  Normal skin group exhibited a few number of iNOS-positive cells in the dermis and rare positive cells in the upper epidermis, unlike abundant epidermal and dermal iNOS expression observed in both PL groups.
Conclusion:  According to our results, we hypothesize that NO produced by iNOS could participate in PL pathogenesis. Abnormal and persistent responses to unknown antigens, probably a pathogen, associated with NO immunoregulatory functions could contribute to the relapsing course observed in PL. NO anti-apoptotic effect on T-cell lymphocytes could play a role on maintenance of reactive T cells, leading to a T-cell lymphoid dyscrasia.  相似文献   

6.
Evidence is growing that protease-activated receptor-2 (PAR-2) plays a key role in epithelial inflammation. We hypothesized here that PAR-2 plays a central role in epidermal permeability barrier homeostasis by mediating signaling from serine proteases (SP) in the stratum corneum (SC). Since the SC contains tryptic- and chymotryptic-like activity, we assessed the influence of SP activation/inhibition on barrier function. Acute barrier disruption increases SP activity and blockade by topical SP inhibitors (SPI) accelerates barrier recovery after acute abrogation. This improvement in barrier function is due to accelerated lamellar body (LB) secretion. Since tryptic SP signal certain downstream responses through PAR-2, we assessed its potential role in mediating the negative effects of SP on permeability barrier. Firstly, PAR-2 is expressed in the outer nucleated layers of the epidermis and most specifically under basal condition to the lipid raft (LR) domains. Secondly, tape stripping-induced barrier abrogation provokes PAR-2 activation, as shown by receptor internalization (i.e. receptor movement from LR to cytolpasmic domains). Thirdly, topical applications of PAR-2 agonist peptide, SLIGRL, delay permeability barrier recovery and inhibit LB secretion, while, conversely, PAR-2 knockout mice display accelerated barrier recovery kinetics and enhanced LB secretion, paralleled by increased LR formation and caveolin-1 expression. These results demonstrate first, the importance of SP/SPI balance for normal permeability barrier homeostasis, and second, they identify PAR-2 as a novel signaling mechanism of permeability barrier, that is, of response linked to LB secretion.  相似文献   

7.
Because of the importance of epidermal functions, including stratum corneum hydration and maintenance of permeability barrier homeostasis, in the pathogenesis of a variety of cutaneous and systemic disorders, a wide range of products has been developed to improve epidermal functions. However, the underlying mechanisms whereby certain products, including heparinoid‐containing product, are far little understood. In the present study, we assessed the impact of a heparinoid‐containing product, Hirudoid® cream, on epidermal permeability barrier function and expression levels of a panel of epidermal mRNA related to the formation/maintenance of the permeability barrier in mouse skin. Our results showed that while the baseline levels of transepidermal water rates remained unchanged, treatment with Hirudoid® cream twice daily for 7 days significantly accelerated permeability barrier recovery and increased stratum corneum hydration. In parallel, expression levels of epidermal mRNA for certain differentiation marker‐related proteins, lipid synthetic enzymes, keratinocyte proliferation and antimicrobial peptides also increased significantly. Together, these results provide the underlying mechanisms by which topical Hirudoid® cream improves epidermal permeability barrier and antimicrobial function. Because of its benefits for epidermal functions, heparinoid‐containing product could be more useful in the management of skin conditions, characterized by abnormal permeability barrier and antimicrobial function.  相似文献   

8.
BACKGROUND: Previous studies have demonstrated that sex hormones modulate epidermal permeability barrier homeostasis, and when the balance of these hormones is altered at menopause or during the menstrual cycle, skin sensitivity or barrier function is changed. OBJECTIVES: To observe the direct effects of sex hormones on epidermal homeostasis. METHODS: We examined the effects of topical application of sex hormones on permeability barrier recovery after tape stripping in the hairless mouse. To avoid the influence of systemic hormonal alteration, we employed male animals. RESULTS: Application of androgen (testosterone or androsterone) delayed the barrier recovery, and the delay was overcome by co-application of beta-estradiol. Progesterone also delayed the barrier recovery, but in this case the delay was enhanced by beta-estradiol. CONCLUSIONS: These results suggest that changes in sex hormone balance might be associated with the skin dysfunction that often occurs during menopause, and at certain points during the menstrual cycle.  相似文献   

9.
10.
Members of the transient receptor potential (TRP) family are temperature sensors, and TRPV1, V3, and V4 are expressed in epidermal keratinocytes. To evaluate the influence of these receptors on epidermal permeability barrier homeostasis, we kept both hairless mouse skin and human skin at various temperatures immediately after tape stripping. At temperatures from 36 to 40 degrees C, barrier recovery was accelerated in both cases compared with the area at 34 degrees C. At 34 or 42 degrees C, barrier recovery was delayed compared with the un-occluded area. 4Alpha-phorbol 12,13-didecanone, an activator of TRPV4, accelerated barrier recovery, whereas ruthenium red, a blocker of TRPV4, delayed barrier recovery. Capsaicin, an activator of TRPV1, delayed barrier recovery, whereas capsazepin, an antagonist of TRPV1, blocked this delay. 2-Aminoethoxydiphenyl borate and camphor, TRPV3 activators, did not affect the barrier recovery rate. As TRPV4 is activated at about 35 degrees C and above, whereas TRPV1 is activated at about 42 degrees C and above, these results suggest that both TRPV1 and TRPV4 play important roles in skin permeability barrier homeostasis. Previous reports suggest the existence of a water flux sensor in the epidermis, and as TRPV4 is known to be activated by osmotic pressure, our results indicate that it might be this sensor.  相似文献   

11.
Extracellular lipids of the stratum corneum, which are composed of cholesterol, fatty acid, and ceramides, are essential for the epidermal permeability barrier function. With damage to the barrier, a decreased capacity for epidermal lipid biosynthesis in aged epidermis results in an impaired repair response. Mevalonic acid is an intermediate after the rate-limiting step in cholesterol biosynthesis, which is catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase. In the present study, we investigated the effect of topical mevalonic acid on the murine epidermal permeability barrier function, comparing it with that of cholesterol. Topical treatment with acetone caused linear increases in transepidermal water loss, in proportion to the number of treatments more rapidly in aged mice than in young mice. Administration of mevalonic acid on aged murine epidermis enhanced its resistance against damage and the recovery rate of barrier function from acute barrier disruption. In contrast, although cholesterol also had the same effect, it required a much higher amount than mevalonic acid. In young mice, neither mevalonic acid nor cholesterol had any effect on resistance against acetone damage nor the recovery rate from acetone damage. In the skin of mice topically administered with mevalonic acid, stimulation of cholesterol synthesis and 3-hydroxy-3-methylglutaryl coenzyme A reductase activity were both observed, whereas none was seen with stimulation by equimolar cholesterol. These data indicate that a topical application of mevalonic acid enhances barrier recovery in aged mice, which is accompanied by not only acceleration of cholesterol synthesis from mevalonic acid but also stimulation of the whole cholesterol biosynthesis.  相似文献   

12.
目的:探讨一氧化氮(NO)对屏障功能破坏的小鼠表皮增生的影响。方法:将15只SKH1无毛小鼠按随机数字表法分为正常对照组(3只)、S-亚硝基-N-乙酰青霉胺(SNAP)处理组(4只)、屏障破坏组(4只)、屏障破坏+SNAP处理组(4只);将15只C57BL/6J小鼠随机分为正常对照组、屏障破坏组、屏障破坏+硝普钠(SN...  相似文献   

13.
The effect of nitric oxide (NO) on skin barrier recovery rate was evaluated in hairless mouse. Topical application of an NO synthase (NOS) inhibitor and a neuronal nitric oxide synthase (nNOS) inhibitor accelerated the barrier recovery after tape stripping, whereas application of an inducible NOS (iNOS) inhibitor had no effect. After tape stripping, the barrier recovery in nNOS-/- mice was significantly faster than in wild type. Topical application of the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) delayed the barrier recovery in hairless mice. Immediately after barrier disruption on skin organ culture, NO release from the skin was significantly increased. The increase was blocked by nNOS inhibitor, but not by iNOS inhibitor. Topical application of the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) accelerated the barrier recovery, whereas SIN-1 chloride, a guanylyl cyclase activator, delayed the barrier recovery. In cultured human keratinocytes, SNAP increased the intracellular calcium concentration. The increase was blocked by ODQ, but not by the calcium channel-blocker nifedipine. In calcium-free medium, SNAP increased the intracellular calcium concentration. Topical application of both nNOS inhibitor and ODQ also reduced the epidermal hyperplasia induced by barrier disruption under low environmental humidity. These results suggest that NO plays an important signaling role in cutaneous barrier homeostasis and in epidermal hyperplasia induced by barrier disruption.  相似文献   

14.
A major function of the skin is to provide a barrier to the movement of water and electrolytes, which is required for life in a terrestrial environment. This permeability barrier is localized to the stratum corneum and is mediated by extracellular lipid-enriched lamellar membranes, which are delivered to the extracellular spaces by the secretion of lamellar bodies by stratum granulosum cells. A large number of factors have been shown to regulate the formation of this permeability barrier. Specifically, lamellar body secretion and permeability barrier formation are accelerated by decreases in the calcium content in the stratum granulosum layer of the epidermis. In addition, increased expression of cytokines and growth factors and the activation of nuclear hormone receptors (peroxisome proliferator-activated receptors, liver X receptors, vitamin D receptor) accelerate permeability barrier formation. In contrast, nitric oxide, protease-activated receptor 2 activation, glucocorticoids, and testosterone inhibit permeability barrier formation. The ability of a variety of factors to regulate permeability barrier formation allows for a more precise and nuanced regulation.  相似文献   

15.
16.
17.
18.
Disruption of the permeability barrier stimulates a repair response that leads to the restoration of barrier function. Previous studies demonstrated that changes in ions, particularly calcium, and cytokines are positive signals, whereas serine protease activation of proteinase-activated receptor 2 is a negative signal regulating barrier recovery. Ikeyama and colleagues provide data that the nitric oxide signaling pathway also regulates barrier homeostasis.  相似文献   

19.
BACKGROUND: A large number of skin diseases, including atopic dermatitis and psoriasis, appear to be precipitated or exacerbated by psychological stress. Nevertheless, the specific pathogenic role of psychological stress remains unknown. In 3 different murine models of psychological stress, it was recently shown that psychological stress negatively impacts cutaneous permeability barrier function and that coadministration of tranquilizers blocks this stress-induced deterioration in barrier function. OBJECTIVES AND METHODS: The relationship between psychological stress and epidermal permeability barrier function was investigated in 27 medical, dental, and pharmacy students without coexistent skin disease. Their psychological state was assessed with 2 well-validated measures: the Perceived Stress Scale and the Profile of Mood States. Barrier function was assessed simultaneously with the stress measures at periods of presumed higher stress (during final examinations) and at 2 assumed, lower stress occasions (after return from winter vacation [approximately 4 weeks before final examinations] and during spring vacation [approximately 4 weeks after final examinations]). RESULTS: The subjects as a group demonstrated a decline in permeability barrier recovery kinetics after barrier disruption by cellophane tape stripping, in parallel with an increase in perceived psychological stress during the higher vs the initial lower stress occasions. During the follow-up, presumed lower stress period, the subjects again displayed lower perceived psychological stress scores and improved permeability barrier recovery kinetics, comparable to those during the initial lower stress period. Moreover, the greatest deterioration in barrier function occurred in those subjects who demonstrated the largest increases in perceived psychological stress. CONCLUSION: These studies provide the first link between psychological status and cutaneous function in humans and suggest a new pathophysiological paradigm, ie, stress-induced derangements in epidermal function as precipitators of inflammatory dermatoses.  相似文献   

20.
Both exposure of stratum corneum to neutral pH buffers and blockade of acidification mechanisms disturb cutaneous permeability barrier homeostasis and stratum corneum integrity/cohesion, but these approaches all introduce potentially confounding variables. To study the consequences of stratum corneum neutralization, independent of hydration, we applied two chemically unrelated superbases, 1,1,3,3-tetramethylguanidine or 1,8-diazabicyclo [5,4,0] undec-7-ene, in propylene glycol:ethanol (7:3) to hairless mouse skin and assessed whether discrete pH changes alone regulate cutaneous permeability barrier function and stratum corneum integrity/cohesion, as well as the responsible mechanisms. Both 1,1,3,3-tetramethylguanidine and 1,8-diazabicyclo [5,4,0] undec-7-ene applications increased skin surface pH in parallel with abnormalities in both barrier homeostasis and stratum corneum integrity/cohesion. The latter was attributable to rapid activation (<20 min) of serine proteases, assessed by in situ zymography, followed by serine-protease-mediated degradation of corneodesmosomes. Western blotting revealed degradation of desmoglein 1, a key corneodesmosome structural protein, in parallel with loss of corneodesmosomes. Coapplication of serine protease inhibitors with the superbase normalized stratum corneum integrity/cohesion. The superbases also delayed permeability barrier recovery, attributable to decreased beta-glucocerebrosidase activity, assessed zymographically, resulting in a lipid-processing defect on electron microscopy. These studies demonstrate unequivocally that stratum corneum neutralization alone provokes stratum corneum functional abnormalities, including aberrant permeability barrier homeostasis and decreased stratum corneum integrity/cohesion, as well as the mechanisms responsible for these abnormalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号