首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Mtmr13/Sbf2-deficient mice: an animal model for CMT4B2   总被引:1,自引:0,他引:1  
Charcot-Marie-Tooth (CMT) disease denotes a large group of genetically heterogeneous hereditary motor and sensory neuropathies and ranks among the most common inherited neurological disorders. Mutations in the Myotubularin-Related Protein-2 (MTMR2) or MTMR13/Set-Binding Factor-2 (SBF2) genes are associated with the autosomal recessive disease subtypes CMT4B1 or CMT4B2. Both forms of CMT share similar features including a demyelinating neuropathy associated with reduced nerve conduction velocity (NCV) and focally folded myelin. Consistent with a common disease mechanism, the homodimeric MTMR2 acts as a phosphoinositide D3-phosphatase with phosphatidylinositol (PtdIns) 3-phosphate and PtdIns 3,5-bisphosphate as substrates while MTMR13/SBF2 is catalytically inactive but can form a tetrameric complex with MTMR2, resulting in a strong increase of the enzymatic activity of complexed MTMR2. To prove that MTMR13/SBF2 is the disease-causing gene in CMT4B2 and to provide a suitable animal model, we have generated Mtmr13/Sbf2-deficient mice. These animals reproduced myelin outfoldings and infoldings in motor and sensory peripheral nerves as the pathological hallmarks of CMT4B2, concomitant with decreased motor performance. The number and complexity of myelin misfoldings increased with age, associated with axonal degeneration, and decreased compound motor action potential amplitude. Prolonged F-wave latency indicated a mild NCV impairment. Loss of Mtmr13/Sbf2 did not affect the levels of its binding partner Mtmr2 and the Mtmr2-binding Dlg1/Sap97 in peripheral nerves. Mice deficient in Mtmr13/Sbf2 together with known Mtmr2-deficient animals will be of major value to unravel the disease mechanism in CMT4B and to elucidate the critical functions of protein complexes that are involved in phosphoinositide-controlled processes in peripheral nerves.  相似文献   

2.
Charcot-Marie-Tooth disease (CMT) comprises a family of clinically and genetically very heterogeneous hereditary peripheral neuropathies and is one of the most common inherited neurological disorders. We have generated a mouse model for CMT type 4B1 using embryonic stem cell technology. To this end, we introduced a stop codon into the Mtmr2 locus within exon 9, at the position encoding amino acid 276 of the MTMR2 protein (E276X). Concomitantly, we have deleted the chromosomal region immediately downstream of the stop codon up to within exon 13. The resulting allele closely mimics the mutation found in a Saudi Arabian CMT4B1 patient. Animals homozygous for the mutation showed various degrees of complex myelin infoldings and outfoldings exclusively in peripheral nerves, in agreement with CMT4B1 genetics and pathology. Mainly, paranodal regions of the myelin sheath were affected, with a high degree of quantitative and qualitative variability between individuals. This pathology was progressive with age, and axonal damage was occasionally observed. Distal nerve regions were more affected than proximal parts, in line with the distribution in CMT. However, we found no significant electrophysiological changes, even in aged (16-month-old) mice, suggesting that myelin infoldings and outfoldings per se are not invariably associated with detectable electrophysiological abnormalities. Our animal model provides a basis for future detailed molecular and cellular studies on the underlying disease mechanisms in CMT4B1. Such an analysis will reveal how the disease develops, in particular, the enigmatic myelin infoldings and outfoldings as well as axonal damage, and provide mechanistic insights that may aid in the development of potential therapeutic approaches.  相似文献   

3.
Mutations in myotubularin-related protein-2 (MTMR2) or MTMR13/set-binding factor-2 (SBF2) genes are responsible for the severe autosomal recessive hereditary neuropathies, Charcot-Marie-Tooth disease (CMT) types 4B1 and 4B2, both characterized by reduced nerve conduction velocities, focally folded myelin sheaths and demyelination. MTMRs form a large family of conserved dual-specific phosphatases with enzymatically active and inactive members. We show that homodimeric active Mtmr2 interacts with homodimeric inactive Sbf2 in a tetrameric complex. This association dramatically increases the enzymatic activity of the complexed Mtmr2 towards phosphatidylinositol 3-phosphate and phosphatidylinositol 3,5-bisphosphate. Mtmr2 and Sbf2 are considerably, but not completely, co-localized in the cellular cytoplasm. On membranes of large vesicles formed under hypo-osmotic conditions, Sbf2 favorably competes with Mtmr2 for binding sites. Our data are consistent with a model suggesting that, at a given cellular location, Mtmr2 phosphatase activity is highly regulated, being high in the Mtmr2/Sbf2 complex, moderate if Mtmr2 is not associated with Sbf2 or functionally blocked by competition through Sbf2 for membrane-binding sites.  相似文献   

4.
Mutations in the gene encoding myotubularin-related protein 2 (MTMR2) are responsible for autosomal recessive Charcot-Marie-Tooth disease type 4B1 (CMT4B1), a severe hereditary motor and sensory neuropathy characterized by focally folded myelin sheaths and demyelination. MTMR2 belongs to the myotubularin family, which is characterized by the presence of a phosphatase domain. Myotubularin (MTM), the archetype member of this family, is mutated in X-linked myotubular myopathy. Although MTMR2 and MTM are closely related, they are likely to have different functions. Recent studies revealed that MTM dephosphorylates specifically phosphatidylinositol 3-phosphate. Here we analyze the biochemical properties of the mouse Mtmr2 protein, which shares 97% amino acid identity with human MTMR2. We show that phosphatidylinositol-3-phosphate is also a substrate for Mtmr2, but, unlike myotubularin, Mtmr2 dephosphorylates phosphatidylinositol 3,5-bisphosphate with high efficiency and peak activity at neutral pH. We demonstrate that the known disease-associated MTMR2 mutations lead to dramatically reduced phosphatase activity, suggesting that the MTMR2 phosphatase activity is crucial for the proper function of peripheral nerves in CMT4B1. Expression analysis of Mtmr2 suggests particularly high levels in neurons. Thus, the demyelinating neuropathy CMT4B1 might be triggered by the malfunction of neural membrane recycling, membrane trafficking, and/or endocytic or exocytotic processes, combined with altered axon-Schwann cell interactions. Furthermore, the different biochemical properties of MTM and MTMR2 offer a potential explanation for the different human diseases caused by mutations in their respective genes.  相似文献   

5.
Charcot-Marie-Tooth disease type 4B1, CMT4B1, is a severe, autosomal-recessive, demyelinating peripheral neuropathy, due to mutations in the Myotubularin-related 2 gene, MTMR2. MTMR2 is widely expressed and encodes a phosphatase whose substrates include phosphoinositides. However, this does not explain how MTMR2 mutants specifically produce demyelination in the peripheral nerve. Therefore, we analysed the cellular and subcellular distribution of Mtmr2 in nerve. Mtmr2 was detected in all cytoplasmic compartments of myelin-forming Schwann cells, as well as in the cytoplasm of non-myelin-forming Schwann cells and both sensory and motorneurons. In contrast, Mtmr2 was detected in the nucleus of Schwann cells and motorneurons, but not in the nucleus of sensory neurons. As Mtmr2 is diffusely present also within the nerve, a specific function could derive instead from nerve-specific interacting proteins. Therefore, we performed two yeast two-hybrid screenings, using either fetal brain or peripheral nerve cDNA libraries. The neurofilament light chain protein, NF-L, was identified repeatedly in both screenings, and found to interact with MTMR2 in both Schwann cells and neurons. Interestingly, NF-L, encoding NF-L, is mutated in CMT2E. These data may provide a basis for the nerve-specific pathogenesis of CMT4B1, and further support for the notion that hereditary demyelinating and axonal neuropathies may represent different clinical manifestations of a common pathological mechanism.  相似文献   

6.
Charcot-Marie-Tooth (CMT) disease is a heterogeneous group of inherited peripheral motor and sensory neuropathies characterized by chronic distal weakness with progressive muscular atrophy and sensory loss in the distal extremities. Inheritance can be autosomal dominant, X-linked or autosomal recessive (ARCMT). Recently, a locus responsible for a demyelinating form of ARCMT disease, named CMT4F, has been mapped on 19q13 in a large consanguineous Lebanese family. L- and S-periaxin are proteins of myelinating Schwann cells and homozygous periaxin-null mice display extensive demyelination of myelinated fibers in the peripheral nervous system, which suggests that the periaxin gene is a good candidate gene for an ARCMT disease. The human gene encoding the periaxins (PRX) was mapped to 19q13, in the CMT4F candidate interval. After characterizing the human PRX gene, we identified a nonsense R196X mutation in the Lebanese family which cosegregated with CMT. Histopathological and immunohistochemical analysis of a sural nerve biopsy of one patient revealed common features with the mouse mutant and the absence of L-periaxin from the myelin sheath. These data confirm the importance of the periaxin proteins to normal Schwann cell function and substantiate the utility of the periaxin-null mouse as a model of ARCMT disease.  相似文献   

7.
Hereditary motor and sensory neuropathy (HMSN) with focally folded myelin sheaths, or Charcot-Marie-Tooth type 4B (CMT4B), is a distinct clinical entity belonging to the heterogeneous group of autosomal recessive demyelinating neuropathies. We first described a large pedigree with CMT4B, which showed a high consanguinity level and an autosomal recessive pattern of inheritance. Through conventional linkage analysis, we excluded linkage of the locus segregating in this pedigree to any of the known genes responsible for other HMSNs. Using homozygosity mapping and haplotype sharing analysis, we were able to localize the disease gene in a 4 cM interval on chromosome 11q23, between the D11S1332 and D11S917 loci. On the basis of the clinical characteristics of the disease, we propose that this locus corresponds to the CMT4B gene.   相似文献   

8.
Mutations in the gene for the major protein component of peripheral nerve myelin, myelin protein zero (MPZ, P0), cause hereditary disorders of Schwann cell myelin such as Charcot-Marie-Tooth neuropathy type 1B (CMT1B), Dejerine-Sottas syndrome (DSS), and congenital hypomyelinating neuropathy (CHN). More recently, P0 mutations were identified in the axonal type of CMT neuropathy, CMT2, which is different from the demyelinating variants with respect to electroneurography and nerve pathology. We screened 49 patients with a clinical and histopathological diagnosis of CMT2 for mutations in the P0 gene. Three heterozygous single nucleotide changes were detected: two novel missense mutations, Asp61Gly and Tyr119Cys, and the known Thr124Met substitution, that has already been reported in several CMT patients from different European countries. Haplotype analysis for the P0 locus proved that our patients with the 124Met allele were not related to a cohort of patients with the same mutation, all of Belgian descent and all found to share a common ancestor. Our data suggest that P0 mutations account for a detectable proportion of CMT2 cases with virtually every patient harbouring a different mutation but recurrence of the Thr124Met amino acid substitution. The high frequency of this peculiar genotype in the European CMT population is presumably not only due to a founder effect but Thr124Met might constitute a mutation hotspot in the P0 gene as well.  相似文献   

9.
Hereditary neuropathies are classified into several subtypes according to clinical, electrophysiologic and pathologic findings. Recent genetic studies have revealed their phenotypic and genetic diversities. In the primary peripheral demyelinating neuropathies(CMT1), at least 9 genes have been associated with the disorders; altered dosage of peripheral myelin protein 22(PMP22) or point mutation of PMP22, the gap junction protein 1(GJB1), the myelin protein zero gene(MPZ), the early growth response gene 2(EGR2), the myotubularin-related protein 2 gene(MTMR2), the N-myc downstream-regulated gene 1 (NDRG1), the L-periaxin gene(PRX), SRY-related HMG-BOX gene 10(SOX10) and the ganglioside-induced differentiation-associated protein 1 gene(GDAP1). In the primary peripheral axonal neuropathies(CMT2), at least 8 genes have been associated with these disorders; the neurofilament light chain gene(NEFL), the kinesin 1B gene(KIF1B), the gigaxonin gene(GAN1), Lamin A/C(LMNA) and tyrosyl-DNA phosphodiesterase 1(TDP1). In addition, some mutations in GJB1, MPZ and GDAP1 also present with clinical and electrophysiologic findings of CMT2. Mutation of NEFL or KIF1B cause dominantly inherited axonal neuropathies, whereas mutation of GJB1 or MPZ can present as genocopies of dominant axonal neuropathies. In addition to the above diseases, we have reported a new type of NMSNP(MIM # *604484) characterized by proximal dominant neurogenic atrophy, obvious sensory nerve involvement and the gene locus on 3q13. Here, we summarize the genetic bases of hereditary neuropathies and attempt to highlight significant genotype-phenotype correlations.  相似文献   

10.
Charcot-Marie-Tooth disease is an heterogeneous group of inherited peripheral motor and sensory neuropathies with several modes of inheritance: autosomal dominant, X-linked and autosomal recessive. By homozygosity mapping, we have identified, in the 5q23-q33 region, a third locus responsible for an autosomal recessive form of demyelinating CMT. Haplotype reconstruction and determination of the minimal region of homozygosity restricted the candidate region to a 4 cM interval. A physical map of the candidate region was established by screening YACs for microsatellites used for genetic analysis. Combined genetic, cytogenetic and physical mapping restricted the locus to a less than 2 Mb interval on chromosome 5q32. Seventeen consanguineous families with demyelinating ARCMT of various origins were screened for linkage to 5q31-q33. Three of these seventeen families are probably linked to this locus, indicating that the 5q locus accounts for about 20% of demyelinating ARCMT. Several candidate genes in the region were excluded by their position on the contig and/or by sequence analysis. The most obvious candidate gene, EGR1, expressed specifically in Schwann cells, mapped outside of the candidate region and no base changes were detected in two families by sequencing of the entire coding sequence.  相似文献   

11.
Charcot-Marie-Tooth (CMT) disease is the most frequent inherited peripheral motor and sensory neuropathy characterised by chronic distal weakness with progressive muscular atrophy and sensory loss of the distal extremities. The dominant form of the disease is genetically heterogeneous but only one locus has been identified on chromosome 8q13- q21.1 for autosomal recessive CMT. By homozygosity mapping in a large Algerian kindred, we have assigned a second locus for autosomal recessive CMT to chromosome 5q23-33. Linkage analysis demonstrated that the same locus is involved in a second Algerian family with a demyelinating CMT. Haplotype reconstruction and determination of the minimal region of homozygosity restricts the candidate region to a 4 cM interval.   相似文献   

12.
13.
Charcot-Marie-Tooth (CMT) syndrome describes a genetically and clinically heterogeneous group of polyneuropathies. Electrophysiologically, at least two types of CMT can be distinguished; CMT1 which has decreased nerve conduction velocities (NCV) and CMT2 which has normal or near normal NCV with decreased amplitudes. For CMT1, three gene loci (on chromosomes 1, 17 and the X chromosome) have been mapped. The locus on chromosome 17, CMT type 1A (CMT1A), is responsible for the most common form of CMT which has recently been shown to be associated with a large DNA duplication. Recent data demonstrates that the CMT1A phenotype results from an inherited DNA rearrangement and a gene dosage effect. The trembler (Tr) and allelic tremblerJ (TrJ) mice have been proposed as animal models for CMT. Tr has similar electrophysiological and neuropathological features to CMT1 patients and maps to mouse chromosome 11 in a region of conserved synteny with human chromosome 17p. Tr and TrJ have recently been shown to have different point mutations in regions encoding putative transmembrane domains of the myelin specific protein PMP-22. The human peripheral nerve-specific PMP-22 gene maps within the CMT1A duplication. PMP-22 is thus a candidate gene for CMT1A. This paper describes the molecular genetics of CMT1A and sural nerve pathology in CMT1A patients with the CMT1A duplication.  相似文献   

14.
非综合征性耳聋一家系的基因定位   总被引:1,自引:0,他引:1  
目的:定位1个一级表亲婚配非综合征性耳聋家系的致病基因,为分离该基因奠定基础。方法:先进行X染色体扫查,排除致病基因位于X染色体的可能;随后采用纯合子定位法,进行候选基因分析和常染色体基因组扫查;再对提示与致病基因紧密连锁的位点所在区域进一步分析,确定致病基因所在区域。结果:确认该家系的非综合征性耳聋为常染色体隐性遗传方式,候选基因分析排除25个已知基因是该家系致病基因的可能,而常染色体扫查提示致病基因位于D17S1293附近,进一步分析将其定位于D17S1850和D17S1818之间5.07cM区域。结论:该家系的致病基因定位于17q11.2-12的D17S1850和D17S1818之间5.07cM区域,是新的常染色体隐性遗传非综合征性耳聋致病基因位点。  相似文献   

15.
Charcot-Marie-Tooth disease type 4C (CMT4C) is an autosomal recessive peripheral neuropathy reported in several Algerian families. The gene locus of this disease has been narrowed to 5q31-33. Recently, a missense mutation in the gene for the kinesin superfamily KIF1B was reported as the cause of Charcot Marie Tooth disease type 2A (CMT2A). We suspected that Rab6KIFL, one of the kinesin superfamily proteins, might be involved in the pathophysiology of CMT4C, because Rab6KIFL gene is located in 5q31. The coding regions of the Rab6KIFL gene of genomic DNA derived from one Algerian family with CMT4C were analyzed by direct sequencing. No mutation in Rab6KIFL gene was found in this family. Further investigation is necessary to identify the causative gene for CMT4C.  相似文献   

16.
Charcot–Marie–Tooth disease (CMT) constitutes a large group of genetically heterogeneous disorders of the peripheral nervous system. Autosomal recessive forms of CMT are less common in the general population but account for the vast majority of CMT phenotypes in communities with a high prevalence of consanguinity. At least 10 genetic loci cause autosomal recessive forms of CMT. Mutations in the ganglioside-induced differentiation-associated protein 1 ( GDAP1 ) gene are among the most frequent genetic causes of autosomal recessive forms of CMT. To date, 28 mutations in GDAP1 gene have been linked with the disease. Here, we report a novel GDAP1 mutation in an Old Order Amish family with CMT. To ascertain the Amish CMT locus, we performed a genome-wide single nucleotide polymorphism (SNP) analysis on one of three patients from a consanguineous pedigree. Assuming mutation homogeneity, the analysis sought large homozygous SNP blocks that also contained known CMT loci. The largest homozygous SNP block in the patient was localized to chromosome 8q13.1-21.3 and contained the GDAP1 gene. Sequence analysis revealed a novel homozygous mutation, c.692C>T, at codon 231 (p.P231L) in exon 5 of GDAP1 in all patients. Neither the unaffected individuals in the family nor the healthy control samples were homozygous for this mutation. Our findings suggested that this novel mutation in GDAP1 gene is associated with an autosomal recessive form of CMT in Ohio Old Order Amish community.  相似文献   

17.
Genetic heterogeneity within the most common genetic neuropathy, Charcot-Marie-Tooth disease (CMT) result in about 70% slow nerve conduction CMT1 and 30% normal nerve conduction CMT2. Autosomal dominant CMT1A on chromosome 17p11.2 represents about 70% of CMT1 cases and about 50% of all CMT cases. Three different size CMT1A duplications with variable flanking breakpoints were characterized by multicolor in situ hybridization and confirmed by pulsed field gel electrophoresis and quantitative polymerase chain reaction (PCR) amplification. These different size duplications result in the same CMT1A phenotype confirming that trisomy of a normal gene region results in CMT1A. the smallest duplication does not include the 409 locus used previously to screen for CMT1A duplications. Direct analysis of interphase nuclei from fetuses and at-risk patients by multicolor in situ hybridization to a commonly duplicated CMT1A probe is informative more often than polymorphic PCR analysis, faster than pulsed field gel electrophoresis (PFGE), and faster, more informative, and more reliable than restriction enzyme analysis. CMT1B restriction enzyme analysis of CMT pedigrees without CMT1A is expected to diagnose another 8% of at-risk CMT1 patients (total: 78%). © 1993 Wiley-Liss, Inc.  相似文献   

18.
Autosomal recessive ulcero-mutilating neuropathy with spastic paraplegia is a very rare disease since only few cases were described up to date. We report in this study a consanguineous Moroccan family with four affected males with this syndrome. The disease onset was in early infancy, with spastic paraplegia and sensory loss leading to mutilating acropathy. Electrophysiological studies revealed a severe axonal sensory neuropathy, magnetic resonance imaging ruled out compression of spinal cord and biological investigations showed decreased levels of Apo B, total cholesterol and triglycerides. A genomewide search was conducted in this family and linkage was found to chromosome 5p. Analysis of recombination events and LOD score calculation map the responsible gene in a 25 cM genetic interval between markers D5S2054 and D5S648. A maximum LOD score value of 3.92 was obtained for all markers located in this candidate interval. This study establishes the presence of a locus for autosomal recessive mutilating sensory neuropathy with spastic paraplegia on chromosome 5p15.31-14.1.  相似文献   

19.
Autosomal recessive Charcot-Marie-Tooth (CMT) disease (CMT4)is a complex group of severe childhood motor and sensory neuropathies,characterized by an early age of onset with rapidly progressivedistal limb weakness and atrophy. One subgroup designated CMT4type A (CMT4A) was selected from a series of Tunisian CMT4 familiesaccording to the following electrophysiological and pathologicalcriteria: slow motor nerve conduction velocity (MCV), severehypomyelination upon nerve biopsy with basal lamina onion bulbsand no myeiin outfolding. In an attempt to localize the CMT4Alocus, we studied four inbred families with 13 affected patients.Significant evidence for linkage was found for several markersfrom chromosome 8q13–21.1 (D8S279, D8S164, D8S286, D8S84,D8S275 and D8S167). An overall two point peak lod score of z(  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号