首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Astrocytes respond to neuronal activity by propagating Ca(2+) waves elicited through the inositol 1,4,5-trisphosphate pathway. We have previously shown that wave propagation is supported by specialized Ca(2+) release sites, where a number of proteins, including inositol 1,4,5-trisphosphate receptors (IP(3)R), occur together in patches. The specific IP(3)R isoform expressed by astrocytes in situ in rat brain is unknown. In the present report, we use isoform-specific antibodies to localize immunohistochemically the IP(3)R subtype expressed in astrocytes in rat brain sections. Astrocytes were identified using antibodies against the astrocyte-specific markers, S-100 beta, or GFAP. Dual indirect immunohistochemistry showed that astrocytes in all regions of adult rat brain express only IP(3)R2. High-resolution analysis showed that hippocampal astrocytes are endowed with a highly branched network of processes that bear fine hair-like extensions containing punctate patches of IP(3)R2 staining in intimate contact with synapses. Such an organization is reminiscent of signaling microdomains found in cultured glial cells. Similarly, Bergmann glial cell processes in the cerebellum also contained fine hair-like processes containing IP(3)R2 staining. The IP(3)R2-containing fine terminal branches of astrocyte processes in both brain regions were found juxtaposed to presynaptic terminals containing synaptophysin as well as PSD 95-containing postsynaptic densities. Corpus callosum astrocytes had an elongated morphology with IP(3)R2 studded processes extending along fiber tracts. Our data suggest that PLC-mediated Ca(2+) signaling in astrocytes in rat brain occurs predominantly through IP(3)R2 ion channels. Furthermore, the anatomical arrangement of the terminal astrocytic branches containing IP(3)R2 ensheathing synapses is ideal for supporting glial monitoring of neuronal activity.  相似文献   

2.
Inositol 1,4,5-trisphosphate receptors (IP3R) are modulated by the second messenger IP3, which induces intracellular calcium release. Using immunohistochemical techniques, we show that the three isoforms are expressed in sciatic nerve. IP3R1 and IP3R2 are mainly present in the nucleus of Schwann cells. IP3R1 is also expressed in Schmidt-Lanterman incisures. IP3R3 is primarily localized at very high levels in nonmyelinating Schwann cells. Interestingly, the three isoforms are expressed at the nodes of Ranvier. IP3R1 is clustered at the node of Ranvier, in a distribution that is similar to the Nav1.6 sodium channels in the sciatic nerve. IP3R3 is present in the paranodal regions of the nodes. IP3R2 is concentrated in the vicinity of the node, and the outer Schwann cell cytoplasm similar to the Kv1.5 potassium channel.  相似文献   

3.
In the brain, the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) is a major subtype of receptors for inositol 1,4,5-trisphosphate, which mediates the release of calcium from intracellular stores. The motor function of knockout mice heterozygous for IP3R1 (IP3R1+/-) was assessed. An impairment of motor coordination was observed in IP3R1+/- mice in the rotating rod test. There was no observable difference between genotypes in spontaneous motor activity, grip strength, the hanging test, or walking pattern. These results suggest that IP3R1 plays a substantial role in motor coordination.  相似文献   

4.
Dynamic changes in intracellular free Ca(2+) concentration play a crucial role in various neural functions. The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and the ryanodine (Ry) receptor (RyR) are involved in Ca(2+)-induced Ca(2+)-release (CICR). Recent studies have shown that type 3 IP3R is highly expressed in rat hippocampal neurons after kainic acid (KA)-induced seizures and that dantrolene, a RyR antagonist, reduces KA-induced neuronal cell death. We investigated the RyR-associated effects of CICR agents on basal and K(+)-evoked releases of GABA and glutamate in rat hippocampus and the changes in expression of mRNA for RyRs in mouse brain after KA-induced seizures. The stimulatory effect of Ry on releases of GABA and glutamate was concentration-dependent in a biphasic manner. The inflection point in concentration-response curves for Ry on GABA release was lower than that for glutamate in both basal and K(+)-evoked conditions, suggesting that hyperactivation of RyR-associated CICR produces the imbalance between GABAergic and glutamatergic transmission. Following KA-induced seizures, transient up-regulation of brain-type RyR mRNA was observed in the hippocampal CA3 region and striatum, and signals for c-Fos mRNA increased transiently in the hippocampus, dentate gyrus and deeper layers of the neocortex. Thereafter, some dead neurons with single-stranded DNA (ssDNA) immunoreactive fragmented nuclei appeared in these areas. These findings suggest that intracellular Ca(2+) release via the RyR might be one of the mechanisms involved in KA-induced neuronal cell death.  相似文献   

5.
The distribution of the inositol 1,4,5-trisphosphate receptor protein, P400, was investigated in adult rat brain by immunocytochemistry with the monoclonal antibody 4C11 raised against mouse cerebellar inositol 1,4,5-trisphosphate receptor protein. Immunoreactive neuronal cell bodies were detected in the cerebral cortex, the claustrum, the endopiriform nucleus, the corpus callosum, the anterior olfactory nuclei, the olfactory tubercle, the nucleus accumbens, the lateral septum, the bed nucleus of the stria terminalis, the hippocampal formation, the dentate gyrus, the caudate-putamen, the fundus striatum, the amygdaloid complex, the thalamus, the caudolateral part of the hypothalamus, the supramammillary nuclei, the substantia nigra, the pedunculopontine tegmental nucleus, the ventrotegmental area, the Purkinje cells in the cerebellum, the dorsal cochlear nucleus, the subnucleus oralis and caudalis of trigeminal nerve, and the dorsal horn of the spinal cord. Immunoreactive fibres were found in the midial forebrain bundle, the globus pallidus, the stria terminalis, the pyramidal tract, the spinal tract of trigeminal nerve, and the ventral horn of spinal cord. Nerve fibres forming a dense plexus ending in terminal-like boutons were detected in relation to nonimmunoreactive neurons of the dentate, interpositus, and fastigial nuclei of the cerebellum and around neurons of the vestibular nuclei. This receptor protein binds a specific second messenger, inositol 1,4,5-trisphosphate, which produces a mobilization of intracellular Ca2+ and a modulation of transmitter release. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Inositol 1,4,5-trisphosphate is a second messenger generated by stimulation of the phosphoinositide cycle, thought to release calcium from intracellular stores. We have mapped the distribution of 3H-inositol 1,4,5-trisphosphate receptor binding sites in rat brain by autoradiographic techniques. The cerebellum contains the highest level of inositol 1,4,5-trisphosphate binding sites in brain, which appear to be selectively localized to Purkinje cells. Moderate levels of binding sites are present in the hippocampus, cerebral cortex, caudate, and substantia nigra. Lesion studies indicate that binding in the hippocampus is restricted to intrinsic neuronal elements and in the nigra is found on terminals of the striatonigral projection. Overall, the autoradiographic distribution of inositol 1,4,5-trisphosphate receptors resembles the distribution of phorbol ester binding sites associated with protein kinase C. However, the inositol 1,4,5-trisphosphate receptor has a more restricted distribution since it is not detectable in the spinal cord or olfactory bulb, regions with substantial levels of protein kinase C.  相似文献   

7.
Inositol 1,4,5-trisphosphate receptors (IP(3)R) are ligand-gated intracellular Ca(2+)channels that mediate release of Ca(2+) from intracellular stores into the cytosol on activation by second messenger IP(3.). Similarly, IP(3)R mediated changes in cytosolic Ca(2+) concentrations control neuronal functions ranging from synaptic transmission to differentiation and apoptosis. IP(3)R-generated cytosolic Ca(2+) transients also control intracellular Ca(2+) release and subsequent retinal ganglion cell (RGC) physiology and pathophysiology. The distribution of IP(3)R isotypes in primary adult mouse RGC cultures was determined to identify molecular substrates of IP(3)R mediated signaling in these neurons. Immunocytochemical labeling of IP(3)Rs in retinal sections and cultured RGCs was carried out using isoform specific antibodies and was detected with fluorescence microscopy. RGCs were identified by the use of morphologic criteria and RGC-specific immunocytochemical markers, neurofilament 68 kDa, Thy 1.1, and Thy 1.2. RGC morphology and immunoreactivity to neurofilament 68 kDa and Thy 1.1 or Thy 1.2 were identified in both RGC primary cultures and tissue cryosections. RGCs showed localization on intracellular membranes with a differential distribution of IP(3)R isoforms 1, 2, and 3. IP(3)R Types 1 and 3 were detected intracellularly throughout the cell whereas Type 2 was expressed predominantly in soma. Expression of all three IP(3)Rs by RGCs indicates that all IP(3)R types potentially play a role in Ca(2+) homeostasis and Ca(2+) signaling in these cells. Differential localization of IP(3) receptor subtypes in combination with biophysical properties of IP(3)R types may be an important molecular mechanism by which RGCs organize their cytosolic Ca(2+) signals.  相似文献   

8.
Upon activation of cell surface receptors coupled to the Gq subclass of G proteins, phospholipase C (PLC) beta hydrolyses membrane phospholipid to yield a pair of second messengers, inositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol. PLCbeta4 has been characterized as the isoform enriched in cerebellar Purkinje cells (PCs) and the retina and involved in motor and visual functions. Here we examined cellular and subcellular distributions of PLCbeta4 in adult mouse brains. Immunohistochemistry showed that high levels of PLCbeta4 were detected in the somatodendritic domain of neuronal populations expressing the metabotropic glutamate receptor (mGluR) type 1alpha, including olfactory periglomerular cells, neurons in the bed nucleus anterior commissure, thalamus, substantia nigra, inferior olive, and unipolar brush cells and PCs in the cerebellum. Low to moderate levels were detected in many other mGluR1alpha-positive neurons and in a few mGluR1alpha-negative neurons. In PCs, immunogold electron microscopy localized PLCbeta4 to the perisynapse, at which mGluR1alpha is concentrated, and to the smooth endoplasmic reticulum in dendrites and spines, an intracellular Ca2+ store gated by IP3 receptors. In the cerebellum, immunoblot demonstrated its concentrated distribution in the post-synaptic density and microsomal fractions, where mGluR1alpha and type 1 IP3 receptor were also greatly enriched. Furthermore, PLCbeta4 formed coimmunoprecipitable complexes with mGluR1alpha, type 1 IP3 receptor and Homer 1. These results suggest that PLCbeta4 is preferentially localized in the perisynapse and smooth endoplasmic reticulum as a component of the physically linked phosphoinositide signaling complex. This close molecular relationship might provide PLCbeta4 with a high-fidelity effector function to mediate various neuronal responses under physiological and pathophysiological conditions.  相似文献   

9.
Reduced IP3 sensitivity of IP3 receptor in Purkinje neurons   总被引:3,自引:0,他引:3  
Fujiwara A  Hirose K  Yamazawa T  Iino M 《Neuroreport》2001,12(12):2647-2651
The inositol 1,4,5-trisphosphate receptor (IP3R) is highly expressed in Purkinje neurons (PNs) and is thought to be essential for the induction of long-term depression at parallel-fiber-PN synapses. Here, by imaging the fluorescence intensity of the low-affinity Ca2+ indicator inside the Ca2+ stores in the permeabilized single PNs, we analyzed the kinetics of Ca2+ release via the IP3R in controlled cytoplasmic environments. The rate of Ca2+ release is dependent on the IP3 concentration with an EC50 of 25.8 microM, which is > 20-fold greater than that of the IP3R in the isolated preparations or in peripheral cells. This property would be advantageous in inducing the release of Ca2+ in a localized space adjacent to the site of synaptic inputs.  相似文献   

10.
Inositol 1,4,5-trisphosphate receptor types 1 (IP(3)-R1) and 3 (IP(3)-R3) were found in the rat suprachiasmatic nucleus (SCN) and the levels of both of IP(3)-R1 and IP(3)-R3 mRNA showed a reciprocal circadian rhythm. IP(3)-R1 immunoreactive cells were localized in neuronal cells in the SCN. In contrast, IP(3)-R3 immunoreactive cells were mainly localized in the astrocytes in the ventrolateral region of the SCN. These results suggest that IP(3)-R1 and IP(3)-R3 may have differential roles in the SCN in the mammalian circadian rhythm.  相似文献   

11.
Distribution of neuronal receptors for nerve growth factor in the rat   总被引:16,自引:0,他引:16  
To survey the distribution of neuronal receptors for NGF, sections of the rat brain, spinal cord, and peripheral ganglia were incubated in vitro with radioiodinated NGF and examined by autoradiography. NGF binds selectively with high affinity to most sympathetic neurons and many primary sensory neurons together with their intraspinal or intramedullary axons. In autoradiographs of the brain, labeled neuronal perikarya are seen in the basal forebrain, the caudate-putamen, the medulla oblongata, the ventral cochlear nucleus, and the dorsal nucleus of the lateral lemniscus. The distribution of neurons binding NGF resembles the distribution of cholinergic neurons in the forebrain, but these 2 systems overlap very little in the brain stem. In extracts of the brain or spinal cord enriched for plasma membranes, avid binding sites are regionally manifest with properties similar to those of fetal peripheral neurons. The localization of neurons expressing the high-affinity receptor for NGF defies simple correlation with neurotransmitter function or embryogenesis.  相似文献   

12.
Basal forebrain cholinergic neurons project to diverse cortical and hippocampal areas and receive reciprocal projections therefrom. Maintenance of a fine-tuned synaptic communication between pre- and postsynaptic cells in neuronal circuitries also requires feedback mechanisms to control the probability of neurotransmitter release from the presynaptic terminal. Release of endocannabinoids or glutamate from a postsynaptic neuron has been identified as a means of retrograde synaptic signalling. Presynaptic action of endocannabinoids is largely mediated by type 1 cannabinoid (CB1) receptors, while fatty-acid amide hydrolase (FAAH) is involved in inactivating some endocannabinoids postsynaptically. Alternatively, vesicular glutamate transporter 3 (VGLUT3) controls release of glutamate from postsynaptic cells. Here, we studied the distribution of CB1 receptors, FAAH and VGLUT3 in cholinergic basal forebrain nuclei of mouse and rat. Cholinergic neurons were devoid of CB1 receptor immunoreactivity. A fine CB1 receptor-immunoreactive (ir) fibre meshwork was present in medial septum, diagonal bands and nucleus basalis. In contrast, the ventral pallidum and substantia innominata received dense CB1 receptor-ir innervation and cholinergic neurons received CB1 receptor-ir presumed synaptic contacts. Consistent with CB1 receptor distribution, FAAH-ir somata were abundant in basal forebrain and appeared in contact with CB1 receptor-containing terminals. Virtually all cholinergic neurons were immunoreactive for FAAH. A significant proportion of cholinergic cells exhibited VGLUT3 immunoreactivity in medial septum, diagonal bands and nucleus basalis, and were in close apposition to VGLUT3-ir terminals. VGLUT3 immunoreactivity was largely absent in ventral pallidum and substantia innominata. We propose that specific subsets of cholinergic neurons may utilize endocannabinoids or glutamate for retrograde control of the efficacy of input synapses, and the mutually exclusive complementary distribution pattern of CB1 receptor-ir and VGLUT3-ir fibres in basal forebrain suggests segregated input-specific signalling mechanisms by cholinergic neurons.  相似文献   

13.
The type 1 inositol (1,4,5)-trisphosphate receptor (InsP(3)R1) is an intracellular calcium (Ca(2+)) release channel that plays an important role in neuronal function. In yeast two-hybrid screen of rat brain cDNA library with the InsP(3)R1 carboxy-terminal bait we isolated multiple clones of neuronal cytoskeletal protein 4.1N. We mapped the 4.1N-interaction site to a short fragment (50 amino acids) within the carboxy-terminal tail of the InsP(3)R1 and the InsP(3)R1-interaction site to the carboxy-terminal domain (CTD) of 4.1N. We established that InsP(3)R1 carboxy-terminal binds selectively to the CTDDelta alternatively spliced form of the 4.1N protein. In biochemical experiments we demonstrated that 4.1N and InsP(3)R1 specifically associate in vitro. We showed that both 4.1N and InsP(3)R1 were enriched in synaptic locations and immunoprecipitated the 4.1N-InsP(3)R1 complex from rat brain synaptosomes. In biochemical experiments we demonstrated a possibility of InsP(3)R1-4.1N-CASK-syndecan-2 quaternary complex formation. From our findings we hypothesize that InsP(3)R1-4.1N association may play a role in InsP(3)R1 localization or Ca(2+) signaling in neurons.  相似文献   

14.
The lateral hypothalamic area (LHA) is a highly conserved brain region critical for maintaining physiological homeostasis and goal-directed behavior. LHA neurons that express melanin-concentrating hormone (MCH) are key regulators of arousal, energy balance, and motivated behavior. However, cellular and functional diversity among LHAMCH neurons is not well understood. Previous anatomic and molecular data suggest that LHAMCH neurons may be parsed into at least two distinct subpopulations, one of which is enriched in neurokinin-3 receptor (NK3R), the receptor for neurokinin B (NKB), encoded by the Tac2 gene. This tachykininergic ligand-receptor system has been implicated in reproduction, fear memory, and stress in other brain regions, but NKB interactions with LHAMCH neurons are poorly understood. We first identified how LHAMCH subpopulations may be distinguished anatomically and electrophysiologically. To dissect functional connectivity between NKB-expressing neurons and LHAMCH neurons, we used Cre-dependent retrograde and anterograde viral tracing in male Tac2-Cre mice and identified Tac2/EYFP+ neurons in the bed nucleus of the stria terminalis and central nucleus of the amygdala, the central extended amygdala, as major sources of NKB input onto LHAMCH neurons. In addition to innervating the LHA, these limbic forebrain NKB neurons also project to midbrain and brainstem targets. Finally, using a dual-virus approach, we found that optogenetic activation of these inputs in slices evokes GABA release onto a subset of LHAMCH neurons but lacked specificity for the NK3R+ subpopulation. Overall, these data define parallel tachykininergic/GABAergic limbic forebrain projections that are positioned to modulate multiple nodes of homeostatic and behavioral control.SIGNIFICANCE STATEMENT The LHA orchestrates fundamental behavioral states in the mammalian hypothalamus, including arousal, energy balance, memory, stress, and motivated behavior. The neuropeptide MCH defines one prominent population of LHA neurons, with multiple roles in the regulation of homeostatic behavior. Outstanding questions remain concerning the upstream inputs that control MCH neurons. We sought to define neurochemically distinct pathways in the mouse brain that may communicate with specific MCH neuron subpopulations using viral-based retrograde and anterograde neural pathway tracing and optogenetics in brain slices. Here, we identify a specific neuropeptide-defined forebrain circuit that makes functional synaptic connections with MCH neuron subpopulations. This work lays the foundation for further manipulating molecularly distinct neural circuits that modulate innate behavioral states.  相似文献   

15.
Recent clinical and basic studies have demonstrated that hyperactivation of interleukin-1beta (IL-1beta) plays important roles in generation of febrile and epileptic seizures. To clarify this mechanism, the present study determined the effects of IL-1beta on Ca2+-associated releases of glutamate and GABA in mouse hippocampus. Both basal and K+-evoked GABA releases were regulated by Ca2+ influx and Ca2+-induced Ca2+ releasing system (CICR). The K+-evoked glutamate release was also regulated by Ca2+ influx and CICR, whereas basal glutamate release was not affected by them. IL-1beta increased basal releases of glutamate and GABA depending on the activation of Ca2+ influx and ryanodine receptor (RyR)-sensitive CICR, but reduced K+-evoked releases depending on Ca2+ influx, RyR-sensitive and inositol 1,4,5-trisphosphate receptor (IP3R)-sensitive CICRs. During neuronal hyperexcitability, the effect of IL-1beta on GABA release was more predominantly modulated by Ca2+ influx and RyR-sensitive CICR than that on glutamate. These results indicate that hyperactivation of IL-1beta leads to imbalance between glutamatergic and GABAergic transmission via toxic overload response of Ca2+ influx and CICR.  相似文献   

16.
Distribution of orexin neurons in the adult rat brain   总被引:32,自引:0,他引:32  
Orexin (ORX)-A and -B are recently identified neuropeptides, which are specifically localized in neurons within and around the lateral hypothalamic area (LHA) and dorsomedial hypothalamic nucleus (DMH), the regions classically implicated in feeding behavior. Here, we report a further study of the distribution of ORX-containing neurons in the adult rat brain to provide a general overview of the ORX neuronal system. Immunohistochemical study using anti-ORX antiserum showed ORX-immunoreactive (ir) neurons specifically localized within the hypothalamus, including the perifornical nucleus, LHA, DMH, and posterior hypothalamic area. ORX-ir axons and their varicose terminals showed a widespread distribution throughout the adult rat brain. ORX-ir nerve terminals were observed throughout the hypothalamus, including the arcuate nucleus and paraventricular hypothalamic nucleus, regions implicated in the regulation of feeding behavior. We also observed strong staining of ORX-ir varicose terminals in areas outside the hypothalamus, including the cerebral cortex, medial groups of the thalamus, circumventricular organs (subfornical organ and area postrema), limbic system (hippocampus, amygdala, and indusium griseum), and brain stem (locus coeruleus and raphe nuclei). These results indicate that the ORX system provides a link between the hypothalamus and other brain regions, and that ORX-containing LHA and DMH neurons play important roles in integrating the complex physiology underlying feeding behavior.  相似文献   

17.
Mints are multimodular adapter proteins in functioning membrane transport and organization. Mint1 and mint2 are neuron-specific. We localized these isoforms in mouse brain. By in situ hybridization, mRNA encoding mint1 or mint2 was expressed in neurons throughout the brain. Mint1 mRNA expression was greatest in the limbic system including cingulate cortex, hippocampus, anterior thalamic nuclei, medial habenular nucleus, and mammillary body. Mint2 mRNA was rich in cerebral cortex, entorhinal cortex, and hippocampus, but less prominent in other limbic structures. Mint1 mRNA and mint2 mRNA were distributed among hippocampal pyramidal neurons, while mint2 mRNA was especially abundant in CA3. Mint1, but not Mint2 mRNA was abundant in the substantia nigra pars compacta. Immunohistochemistry visualized mint proteins in axon terminals and neuronal somata, generally following mRNA distribution. In the hippocampus, mint1 was rich in the entorhinal projections and mossy fibers of the dentate gyrus, while mint2 was rich in commisural fibers from the contralateral hippocampus and in CA1. Mint1 intensely stained catecholamine-containing neurons such as the substantia nigra pars compacta, ventral tegmental area, and locus ceruleus. Mint2 protein was ubiquitous in these regions. Mint1 and mint2 distribution also differed elsewhere in the brainstem and in the cerebellum. Central nervous system neurons, then, predominantly express either mint1 or mint2. Mints may be involved in synaptic vesicle transport toward the active zone, also participating in transport of certain membrane proteins toward the postsynaptic density. Mint1 and mint2 may divide roles either regionally or depending on neuronal functional characteristics.  相似文献   

18.
The basal forebrain magnocellular complex of primates is defined by the presence of large, hyperchromic, usually cholinergic neurons in the nucleus basalis of Meynert and nucleus of the diagonal band of Broca. Because there is growing evidence for noncholinergic neuronal elements in the basal forebrain complex, five neuropeptides and the enzyme choline acetyltransferase were studied immunocytochemically in this region of rhesus monkeys. Galaninlike immunoreactivity coexists with choline-acetyl-transferase-like immunoreactivity in most large neurons and in some smaller neurons of the primate nucleus basalis and nucleus of the diagnonal band. Four other peptides show immunoreactivity in more limited regions of the basal forebrain complex, usually in separate smaller, noncholinergic neurons. Numerous small, somatostatinlike-immunoreactive neurons occupy primarily anterior and intermediate segments of the nucleus basalis, especially laterally and ventrally. Somewhat fewer, small neuropeptide Y-like-immunoreactive somata are found in the same regions. Neurons that show neurotensinlike immunoreactivity are slightly larger than cells that contain immunoreactivity for somatostatin or neuropeptide Y, but these neurons also occur mainly in anterior and intermediate parts of the nucleus basalis. Overall, the usually small, leucine-enkephalin-like-immunoreactive neurons are infrequent in the basal forebrain complex and are most abundant in the rostral intermediate nucleus basalis. Thus, neurons that appear to contain somatostatin, neuropeptide Y, neurotensin, or enkephalin mingle with cholinergic/galaninergic neurons only in some subdivisions of the nucleus basalis/nucleus of the diagonal band, and their distributions suggest that some of these small neurons could be associated with structures that overlap with cholinergic neurons of the labyrinthine basal forebrain magnocellular complex. We also have found light microscopic evidence for innervation of basal forebrain cholinergic neurons by boutons that contain galanin-, somatostatin-, neuropeptide Y-, neurotensin-, or enkephalinlike immunoreactivity. The origins and functions of these putative synapses remain to be determined.  相似文献   

19.
Autoradiographic localizations of major second messengers and a selective cyclic adenosine monophosphate (cyclic-AMP) phosphodiesterase in the brain were visualized in the gerbil and the rat using receptor autoradiography. [3H]Phorbol 12,13-dibutyrate (PDBu), [3H]inositol 1,4,5-trisphosphate (IP3), [3H]forskolin, [3H]cyclic-AMP, and [3H]rolipram were used to label protein kinase C, IP3 receptor, adenylate cyclase, cyclic-AMP-dependent protein kinase (cyclic-AMP-DPK), and Ca2+/calmodulin-independent cyclic-AMP phosphodiesterase (PDE), respectively. Most second messengers and rolipram binding activities were especially found in the limbic system, basal ganglia, and cerebellum. Marked differences were noted in the hippocampus, where cyclic-AMP and rolipram binding activities were very low in gerbils but high in rats. In contrast, regional localization in the binding sites of PDBu, IP3, and forskolin in gerbil brain was relatively similar to that in rat brain. Further, alteration of the cyclic-AMP and rolipram binding sites was studied in the gerbil hippocampus 7 days after 10-min cerebral ischemia. The results suggest that the gerbil differs from the rat with respect to the characteristic neurons or interneurons, especially in the hippocampal formation. This finding may help further elucidate the relationship or difference between gerbils and rats for brain function and behavioral pharmacology. Furthermore, our results suggest that cyclic-AMP and rolipram binding sites are predominantly distributed on the pyramidal cell layer of the hippocampal CA1 sector and that transient cerebral ischemia can cause marked reduction in these binding sites in the hippocampus.  相似文献   

20.
Calcium-mediated signaling is crucial for the synaptic plasticity and long-term memory storage, which requires de novo protein synthesis. Inositol 1,4,5-trisphosphate 3-kinase A (IP(3)K-A) is an enzyme, which is involved in the maintenance of intracellular calcium homeostasis by converting inositol 1,4,5-trisphosphate (IP(3)) to inositol 1,3,4,5-tetrakisphosphate (IP(4)). Because IP(3)K-A is enriched in the dendritic spines of hippocampal neurons, it has been speculated that this enzyme is involved in the memory formation. In the present study, we demonstrated that the expression of IP(3)K-A is increased in the hippocampal formation of the rats during the Morris water maze training. Immunohistochemical analysis indicated the specific induction of IP(3)K-A protein in the hippocampal formation following 5-day water maze training. Furthermore, in situ hybridization histochemistry showed that the induction of IP(3)K-A mRNA in the hippocampal formation was observed on the first day of training, and the induced level of IP(3)K-A mRNA was maintained until the fifth day of training. These results suggest that IP(3)K-A plays a role in the processing of spatial memory, most likely by regulating the calcium signaling in the dendritic spines of hippocampal formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号