首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, waterborne epoxy resin and graphene/ZnO (Gr/ZnO) were employed as the matrix and nanofiller to construct composite coatings with enhanced anticorrosive performance. The corrosion protection properties of the coatings were significantly improved by the dispersed Gr sheets, as well as the parallelly assembled ZnO nanoparticles. The most remarkable improvement was achieved by adding 0.04 wt% of Gr and 0.4 wt% of ZnO in the Waterborne Epoxy (WEP) coatings, where the highest impedance was 200 530 Ω cm2 on Gr0.04–ZnO0.4, far more than pure epoxy with 6186 Ω cm2 after 7 days of immersion in electrolytes. Furthermore, the Gr0.04–ZnO0.4 coatings and corresponding corrosion products immersed in a 3.5% NaCl solution for 30 days were also characterized, which could further reveal anticorrosion mechanisms of the graphene modified WEP coatings and the passivated effect of ZnO. Through the mechanism analysis, we also found that ZnO could be employed as the barrier reinforcement to improve the dispersibility of graphene in WEP coatings, and the parallel assembly of graphene occurs spontaneously, leading to remarkable improvement of anticorrosion properties.

This is the first example of synergistically assembled Gr/ZnO sheets to improve the corrosion protection properties of WEP coatings, and Gr0.04–ZnO0.4 exhibited the highest impedance of 200 530 Ω cm2 compared to pure WEP of 6186 Ω cm2.  相似文献   

2.
Herein, a cigarette filter-templated graphene/epoxy composite was prepared with enhanced thermal conductive properties. The through-plane thermal conductivity of the epoxy composite was up to 1.2 W mK−1, which was 4 times that of it in the in-plane (0.298 W mK−1) after only 5 filtration cycles. The thermal conductive anisotropy and improvement in the through-plane thermal conductivity of the epoxy composite were attributed to the particular structure of cigarette filter-templated graphene in the epoxy matrix. The unique structure formed effective conductive pathways in the composite to improve the thermal transportation properties. The excellent thermal transportation properties allow the epoxy composite to be used as an efficient heat dissipation material for thermal management applications.

We report a facile method to prepare cigarette filter-templated graphene/epoxy composites with excellent thermal transport performance.  相似文献   

3.
We investigate the influence of Stone–Wales (S–W) defects on the thermal properties of bilayer graphene nanoribbons (BGNRs) with armchair edges by nonequilibrium molecular dynamics simulations (NEMD). It is shown that an increasing number of S–W defects leads to a significant decrease of the thermal conductivity of BGNRs at room temperature. Moreover, the AA-stacked BGNRs have significantly higher thermal conductivity than that of the AB-stacked BGNRs for all S–W defect numbers. In the temperature range of 300–700 K, the S–W defects always have a weaker effect on heat transfer of AB-stacked BGNRs than AA-stacked BGNRs, which is closely related to their weaker anharmonic effects induced by structure defects. In addition, the simulation results are further explained by performing an analysis of phonon spectrum properties and phonon vibrational modes.

We investigate the influence of Stone–Wales (S–W) defects on the thermal properties of bilayer graphene nanoribbons (BGNRs) with armchair edges by nonequilibrium molecular dynamics simulations (NEMD).  相似文献   

4.
The oxidation kinetics of Cu through graphene were evaluated from the surface coverage of Cu oxide (Fox) by varying the oxidation time (tox = 10–360 min) and temperature (Tox = 180–240 °C) under an air environment. Fox, as a function of time, well followed the Johnson–Mehl–Avrami–Kolmogorov equation; thus, the activation energy of Cu oxidation was estimated as 1.5 eV. Transmission electron microscopy studies revealed that Cu2O formed on the top of the graphene at grain boundaries (G-GBs), indicating that Cu2O growth was governed by the out-diffusion of Cu through G-GBs. Further, the effect of Cu oxidation on graphene quality was investigated by measuring the electrical properties of graphene after transferring. The variation of the sheet resistance (Rs) as a function of tox at all Tox was converted into one curve as a function of Fox. Rs of 250 Ω sq−1 was constant, similar to that of as-grown graphene up to Fox = 15%, and then increased with Fox. The Hall measurement revealed that the carrier concentration remained constant in the entire range of Fox, and Rs was solely related to the decrease in the Hall mobility. The variation in Hall mobility was examined according to the graphene percolation probability model, simulating electrical conduction on G-GBs during Cu2O evolution. This model well explains the constant Hall mobility within Fox = 15% and drastic Fox degradation of 15–50% by the concept that the electrical conduction of graphene is disconnected by Cu2O formation along with the G-GBs. Therefore, we systematically developed the oxidation kinetics of Cu through graphene and simultaneously examined the changes in the electrical properties of graphene.

The oxidation kinetics of Cu through graphene were evaluated from the surface coverage of Cu oxide (Fox) by varying the oxidation time (tox = 10–360 min) and temperature (Tox = 180–240 °C) under an air environment.  相似文献   

5.
Human serum albumin (HSA) was encapsulated as a model protein in microspheres of biodegradable and biocompatible polymers by the water-in-oil-in-water (w/o/w) emulsion solvent extraction/evaporation (double emulsion) technique for purpose of controlled release. To improve the properties and control the rate of drug release of the delivery vehicle, materials with different hydrophobicity from that of their conventional counterparts, such as poly(lactide-co-ethylene glycol) (PELA) in place of poly(lactide-co-glycolide) (PLGA) as the polymer matrix, ethyl acetate/acetone in place of dichloride methane (DCM) as the (co)solvent and d-alpha tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) as the additive, were used to prepare the microspheres. It has been found that PELA microspheres, compared with PLGA ones, were slightly smaller in size if prepared at identical emulsification strength. They had more porous surface and internal structure, higher encapsulation efficiency (EE) and more rapid in vitro release rate. Furthermore, the physical properties of the microspheres were also affected by the presence of solvents and additives and their properties. Our results suggest that these materials could have interesting potential applications in preparation of polymeric microspheres for controlled protein release.  相似文献   

6.
Graphene paper has attracted great attention as a heat dissipation material due to its excellent thermal conductivity and mechanical properties. However, the thermal conductivity of graphene paper in the normal direction is relatively poor. In this work, the cross-plane thermal conductivities (K) and mechanical properties of the reduced graphene oxide/carbon nanotube papers with different CNT loadings were studied systematically. It was found that the K decreased from 0.0393 W m−1 K−1 for 0 wt% paper to 0.0250 W m−1 K−1 for 3 wt% paper, and then increased to 0.1199 W m−1 K−1 for 20 wt% paper. The papers demonstrated a maximum elastic modulus of 6.1 GPa with 10 wt% CNT loading. The CNTs acted as scaffolds to restrain the graphene sheets from corrugating and to reinforce the mechanical properties of the hybrid papers. The more CNTs that filled the gaps between graphene sheets, the greater the number of channels of the transmission of phonons and the looser the structure in the cross-plane direction. Further mechanism analysis revealed the synergistic effects of CNT loadings and graphene sheets on enhancing the thermal and mechanical performance of the papers.

The top-view SEM images for (a) rGO, (b) rGO/CNT-3%, (c) rGO/CNTs-20% and the corresponding schematic diagram of photon transmission with different spacer CNTs loadings (a-i, b-ii, c-iii).  相似文献   

7.
Polylactic acid (PLA) is a linear aliphatic polyester thermoplastic made from renewable sources such as sugar beet and cornstarch. Methods of preparation of polylactic acid are biological and chemical. The advantages of polylactic acid are biocompatibility, easily processing, low energy loss, transparency, high strength, resistance to water and fat penetration and low consumption of carbon dioxide during production. However, polylactic acid has disadvantages such as hydrophobicity, fragility at room temperature, low thermal resistance, slow degradation rate, permeability to gases, lack of active groups and chemical neutrality. To overcome the limitations of PLA, such as low thermal stability and inability to absorb gases, nanoparticles such as graphene are added to improve its properties. Extensive research has been done on the introduction of graphene nanoparticles in PLA, and all of these studies have been studied. In this study, we intend to study a comprehensive study of the effect of graphene nanoparticles on the mechanical, thermal, structural and rheological properties of PLA/Gr nanocomposites and also the effect of UV rays on the mechanical properties of PLA/Gr nanocomposites.

Polylactic acid (PLA) is a linear aliphatic polyester thermoplastic made from renewable sources such as sugar beet and cornstarch.  相似文献   

8.
Octadecane is an alkane that is used to store thermal energy at ambient temperature as a phase change material. A molecular dynamics study was conducted to investigate the effects of adding graphene and a boron nitride nanosheet on the thermal and structural properties of octadecane paraffin. The PCFF force field for paraffin, AIREBO potential for graphene, Tersoff potential for the boron nitride nanosheet, and Lennard-Jones potential for the van der Waals interaction between the nanoparticles and n-alkanes were used. Equilibrium and nonequilibrium molecular dynamics simulations were used to study the nano-enhanced phase change material properties. Results showed that the nanocomposite had a lower density change, more heat capacity (except at 300 K), more thermal conductivity, and a lower diffusion coefficient in comparison with pure paraffin. Additionally, the nanocomposite had a higher melting point, higher phonon density of state and radial distribution function peaks.

Octadecane is an alkane that is used to store thermal energy at ambient temperature as a phase change material.  相似文献   

9.
The aim of this study was to improve the gelation property of rapeseed protein isolates (RPI) by means of acylation and glycation. The results showed that acylation and glycation within RPI occurred at Lys, and Lys, Met, Ile, Leu and Pro, respectively. Acylation and glycation both increased the surface hydrophobicity (So) and molecular weight of RPI, and decreased the free sulfhydryl (SH) content of RPI, while acylation resulted in a lower change of So and SH. The conformational structure of modified RPIs was changed, and acylated RPI (acylation degree, 38 ± 0.2%) possessed the highest ordered structure content among the modified RPIs. The thermal stability of the protein was improved after either acylation or glycation treatments. Furthermore, native RPI with moderate modification (low degree of acylation, 38 ± 0.2%) showed an overall improvement in the gelation and gel properties as evidenced by the reduced least gelation concentration and surface roughness, increased water-holding capacity, and better textural properties.

Acylated and glycated RPI gels were prepared, but the moderate acylation was more favorable to improve the gelation property of RPI.  相似文献   

10.
In this paper, graphene oxide (GO) was successfully prepared by the modified Hummers’ method and then uniformly dispersed in an aqueous solution containing a small amount of polyvinyl alcohol (PVA) as an adhesive. The solution was uniformly coated on the surface of polyacrylonitrile (PAN) fibers and then the fibers were pre-oxidized at 240 °C for 20 min in the air. The pre-oxidation degree of PAN fibers and fibers coated with different contents of GO was analyzed by the Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). In addition, the surface and cross-section of PAN fibers before and after pre-oxidation were observed by scanning electron microscopy (SEM). The experimental results showed that the presence of GO coatings significantly improved the pre-oxidation degree of PAN fibers, at the same time, the pre-oxidation degree of PAN fibers increased with the increase of GO contents from 0.2 to 1.0 mg ml−1. The cross-section morphology of the pre-oxidized PAN fibers revealed that the degree of pre-oxidation inside fibers was uniform. This was because the GO coatings acted as a medium to transfer heat, removing the heat released during the pre-oxidation process and increasing the pre-oxidation degree.

In this paper, GO is mainly applied in the pre-oxidation experiment process of PAN fibers, and the exothermic heat in the PAN fiber pre-oxidation process is taken away by the GO with super-high thermal conductivity to accelerate the pre-oxidation progress.  相似文献   

11.
Wool fibre is a popular fibre for the manufacture of apparel and floor coverings, but it does not have adequate thermal stability, antistatic, UV resistance, and antibacterial properties that are required for some applications, such as outerwear and hospital gowns. In this work, a wool fabric was treated with para-aminobenzenesulphonic acid (ABSA) by the oxidative polymerisation method and its effect on the thermal stability, UV radiation resistance, electrical conductivity and antibacterial properties of the treated fabric was systematically evaluated. It was found that the ABSA treatment had synergistic effects on the various functional properties of the treated fabric. The ABSA treatment not only made the fabric antibacterial but also enhanced its UV radiation absorption capability, surface hydrophobicity, electro-conductivity, tensile strength, and thermal stability. The maximum degradation temperature of the wool fibre increased from 339.5 °C to 349.6 °C and the UV-B transmission through the fabric at 290 nm reduced to 1.5%. The surface hydrophobicity of the treated fabric samples also improved as the surface contact angle of the fabric increased from 119.5° for the untreated to 131.7° for the fabric treated with 4% ABSA. The surface electrical resistance decreased from 1200 × 109 to 484 × 109 Ohm cm−1, and the treated fabric also showed excellent antibacterial activity against Staphylococcus aureus and Klebsiella pneumoniae. The developed treatment could be used in the textile industry as an energy-efficient process for the multi-functionalisation of wool and other polyamide fibres.

The treatment with para-aminobenzenesulphonic acid produced a multifunctional wool fabric with enhanced hydrophobicity, thermal stability, UV resistance, and antibacterial properties.  相似文献   

12.
A thermosetting resin system based on bismaleimide (BMI) has been developed via copolymerization with 4,4′-diaminodiphenylsulfone in the presence of a newly synthesized graphene oxide, modified using allylated siloxane (AS-GO). The curing behavior of the AS-GO-containing resin system was evaluated using curing kinetics. The dispersibility of AS-GO in the resin was observed through polarizing optical microscopy (POM), which indicates that AS-GO has good dispersibility in the resin due to GO modified with allylated siloxane which has a good phase compatibility with BMI. The effect of AS-GO on the thermomechanical and mechanical properties of the cured modified resin was also studied. Results of thermogravimetric analysis indicated that the cured sample systems display a high char yield at lower concentrations of AS-GO (≤0.5 wt%) with an improved thermal stability. Using dynamic mechanical analysis, a marked increase in glass transition temperature (Tg) with increasing AS-GO content was observed. Mechanical property analyses revealed a possible effect of AS-GO as a toughener, and the results showed that an addition of 0.3% AS-GO maximized the toughness of the modified resin systems, which was confirmed by analysis of fracture surfaces.

A thermosetting resin system based on bismaleimide has been developed via copolymerization of a new allylated siloxane graphene oxide.  相似文献   

13.
Polyamide 6 nanocomposites (PA6)/kaolinite were prepared by melt compounding. First, kaolinite was bleached via a solvothermal reaction using oxalic acid as a bleaching agent; then, the bleached product was modified using dimethylsulfoxide (DMSO) and subsequently methanol (MeOH) via a displacement method. Thus, cetyltrimethyl ammonium bromide (CTAB) and triethoxy(octyl)silane (TEOS) molecules were intercalated into kaolinite nano-platelets. Seven types of nanocomposites were prepared using pristine, bleached or intercalated kaolinite. The kaolinite powder and the nanocomposite specimens were characterized by X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR), thermal analysis, scanning electronic microscopy (SEM), whiteness index and tensile tests. The influence of the bleaching process of kaolinite and the intercalation methods on the whiteness index of the nanocomposites was also observed, in which the whiteness index of the functionalized kaolinite nanocomposites was enhanced by up to 10.65% when compared to neat PA6. The thermal results revealed that the intercalation and functionalization greatly affect the thermal stability of the virgin polymer. On the other hand, the intercalation of kaolinite enhances the dispersion/distribution, improves the interfacial adhesion, and increases the aspect ratio of the kaolinite nanoparticles; this affords remarkable nanocomposite property enhancements, represented by a high Young''s modulus value of 4.68 GPa and a maximum percentage growth of 80.6% for silane-grafted kaolinite nanoparticles at just 8 wt%.

This study presents the effects of bleaching and functionalization of kaolinite on the mechanical and thermal properties and whiteness index of polyamide 6 nanocomposites prepared by melting compounding.  相似文献   

14.
A new metal–organic framework (MOF) compound [Mn2(2,2′-bca)2(H2O)2]n (Mn-MOFs) was successfully synthesized by solvothermal method, and Mn-MOFs@Zn material was prepared by loading zinc phosphate onto Mn-MOFs by ball milling, then Mn-MOFs@Zn was added to the water-based acrylic paint to prepare Mn-MOFs@Zn@acrylic coating. The AC impedance test results showed Mn-MOFs@Zn@acrylic coating has higher corrosion inhibition performance and stability to mild steel when compared with blank coating. The impedance modulus of the blank coating in the low frequency region decreased by 90%, and the Rct showed a trend of first increasing and then decreasing over time, the maximum Rct was only 303.8 Ω, which was only Mn-MOFs@Zn@acrylic coating one-seventh of the Rct value. The artificial scratch experiment showed that the Mn-MOFs@Zn@acrylic coating only slightly corrodes at the scratches, because Mn-MOFs@Zn material made the coating a self-repairing function and improved the durable anticorrosion performance of the acrylic coating.

The above scheme shows the preparation route of Mn-MOFs@Zn@acrylic coating. Mn-MOFs@Zn and water-based acrylic varnish were evenly dispersed in water; then the coating was applied to the surface of mild steel and then scratched with a knife.  相似文献   

15.
Textile textures formed through woven, knitted or nonwoven weaving technology have critical effects on the electrical and electrochemical properties of flexible electrodes. Therefore, the effects of textile structures, including porosity and pore configuration, on the loading amount of reduction graphene (RGO), the electrical and electrochemical properties were systematically studied. The results show that knitted fabric had the highest mass loading of RGO sheets and lowest sheet resistance among these three fabrics. However, the specific capacitance of woven fabric was optimum 40.5 F g−1 at a scan rate of 5 mV s−1 within the voltage window of 0–0.8 V, which was ascribed to its suitable porosity and pore size firmly anchoring the RGO sheets. Also, the RGO/woven cotton electrodes exhibited good cycling stability and excellent electrochemical stability without an obvious loss in the capacitive performance. The above results provide a theoretical basis for the selection of textile substrates for high-performance flexible electrodes.

Textile textures formed through woven, knitted or nonwoven weaving technology have critical effects on the electrical and electrochemical properties of flexible electrodes.  相似文献   

16.
17.
Abstract Increased biliary bile salt and phospholipid hydrophobicity may promote nucleation of cholesterol crystals and gallstone formation. We therefore compared bile salt composition (determined by gas-liquid chromatography) in patients with cholesterol ( n = 35) and pigment ( n = 16) gallstones (group A). Bile salt composition and cumulative bile salt hydrophobicity index were not different between both stone types. Hydrophobicity index or % of individual bile salts did not correlate with cholesterol saturation index or nucleation time. In an additional 21 cholesterol stone patients (group B) biliary bile salt and phospholipid hydrophobicity as determined by high-pressure liquid chromatography did not correlate with cholesterol saturation index or nucleation time. In both group A and group B, cholesterol stone patients with cholesterol crystals in their fresh biles had a higher % deoxycholic acid, a lower % cholic acid and a higher bile salt hydrophobicity index than crystal-negative patients. This study indicates the need for further research on the role of bile salt hydrophobicity in the pathogenesis of gallstones.  相似文献   

18.
In this article, polyurethane (PU)/epoxy (EP) interpenetrating polymer networks (IPNs) filled graphene aerogel (PEGA) was facilely fabricated by a one-step vacuum-assisted filling process. Effects of PU content on damping performance, thermal stability and mechanical properties of the PEGA composites were studied systematically. Results reveal that addition of graphene aerogel improves damping properties of PU/EP IPNs and increases the thermal decomposition temperature. Mechanical tests show that flexural strength, flexural modulus and Shore D hardness of the PEGA composites also improved by incorporation of graphene aerogel. The enhanced damping, thermal and mechanical properties of PEGA composites can be attributed to the uniform distribution of graphene sheets in the IPN matrix, which benefits from the three-dimensional interconnected porous network structure of the graphene aerogel used and good interfacial adhesion at the nanofiller-matrix interface. It is expected that the PEGA composites can be used as good structural damping materials in future.

PEGA composites were facilely fabricated by a one-step vacuum-assisted filling method, and exhibited improved damping, thermal and mechanical properties.  相似文献   

19.
Precipitation of cholesterol crystals is an essential step in gallstone formation. In the present study we found much faster and more extensive precipitation of various cholesterol crystal shapes in whole model biles containing the hydrophobic bile salt taurodeoxycholate than in biles containing the relatively hydrophilic taurocholate. Addition of taurodeoxycholate to isolated cholesterol–phospholipid vesicles also induced more crystallization than taurocholate. Crystallization behaviour in whole model biles and in vesicles after addition of corresponding bile salts was very similar. The very hydrophilic bile salts tauroursodeoxycholate and taurohyodeoxycholate never induced crystallization from vesicles, and crystallization in corresponding whole model biles did not occur. These bile salts also reduced crystallization dose dependently after addition of taurodeoxycholate to vesicles. Ultracentrifugation experiments suggested a higher vesicular cholesterol–phospholipid ratio for whole model biles containing more hydrophobic bile salts. These findings indicate that bile salt hydrophobicity influences shape of cholesterol crystals and extent of crystallization, possibly by modulating the vesicular cholesterol–phospholipid ratio.  相似文献   

20.
We report on the time-dependent influence of atmospheric species on the electrical properties of functionalized graphene sheets (FGSs). When exposed to laboratory air, FGSs exhibit a significant, irreversible decrease in electrical conductance with time, strongly depending on the oxygen content of the FGSs. To separate the roles of charge carrier density and mobility in this aging process, we performed electron transport measurements using a back-gate field-effect transistor architecture. Investigating the position of the Dirac point under different atmospheres, we found that adsorbed atmospheric species result in pronounced p-doping, which – on a short time scale – can be reversed under nitrogen atmosphere. However, on a time scale of several days, the resistance increases irreversibly, while the Dirac point voltage remains constant. From these experiments, we conclude that the aging of FGSs is related to the chemisorption of atmospheric species leading to enhanced carrier scattering due to an increasing amount of sp3- regions and thus to a reduced charge carrier mobility.

We report on the time-dependent influence of atmospheric species on the electrical properties of functionalized graphene sheets (FGSs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号