首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of silica nanoparticles (SiO2NPs) with berberine hydrochloride (BRH) was studied in aqueous solution at pH 9.0 and room temperature by using fluorophotometry. Based on a significant enhancement of the fluorescence intensity of the SiO2NPs–BRH aggregates, a spectrofluorimetric method which was simple, sensitive and green was developed for the determination of BRH in aqueous solution. The linear range of the method was from 2.0–50.0 μg L−1 with a detection limit of 0.73 μg L−1. There was no interference from the compounds normally used to formulate pharmaceutical tablets. The proposed method was applied to the determination of BRH in tablets with satisfactory results and good consistency with the results obtained by standard methods.

A simple, green and sensitive spectrofluorimetric method was proposed for the determination of berberine hydrochloride (BRH) in aqueous solution.  相似文献   

2.
Chlorogenic, ferulic, vanillic, and caffeic acids are phenolic acids found in natural drugs. They possess the biological activities of scavenging free radicals and inhibiting thrombus formation. Phenolic acids can inhibit the oxidation of low-density lipoprotein, as well as have anti-inflammatory effects. This paper reports for the first time a capillary electrophoresis–chemiluminescence (CE–CL) method for the simultaneous determination of the four phenolic acids found in traditional and proprietary Chinese medicine, including Lycium chinense Miller, Shuanghuanglian oral liquid, and Taraxacum mongolicum granules. Capillary electrophoretic separation was performed on a self-assembled CE–CL device with an uncoated fused-silica capillary (66 cm effective length, 50 μm i.d.), and the background electrolyte was composed of 3.0 × 10−5 M Ag(iii) (pH = 12.01), 3.0 mM luminol (pH = 9.20), and 10 mM sodium tetraborate solution. The injection time was 12 s (under gravity) and the separation voltage was 22 kV. The combination of solid-phase extraction (SPE) and CE–CL improves the sensitivity. Under optimal conditions, calibration graphs displayed a linear range between 0.625 and 20.0, 1.000 and 30.0, 0.150 and 1.50, and 0.045 and 1.00 μg mL−1 for chlorogenic, ferulic, vanillic, and caffeic acid, respectively. The detection limit ranged from 0.014 to 0.300 μg mL−1. The practicality of using the proposed method to determine the four target analytes in traditional Chinese medicine was also validated, in which recoveries ranged from 90.9% to 119.8%. Taken together, these results indicate that the developed method is sensitive and reliable. Furthermore, the method was successfully applied to real traditional Chinese medicine samples.

Chlorogenic, ferulic, vanillic, and caffeic acids are phenolic acids found in natural drugs.  相似文献   

3.
An effective adsorbent of methylene blue was synthesized from coal fly ash (FA; waste material from a coal power plant) by a denaturing process with an alkaline solution at 90 °C. The denatured fly ash (D-FA) has a surface area and pore volume of 66.39 m2 g−1 and 15.33 cm3 g−1, respectively, whereas the values of the original FA are negligible, i.e., 3.55 m2 g−1 and 0.02 cm3 g−1. The removal of methylene blue (MB) in aqueous solution by D-FA was increased in the range of initial MB concentration (10–20 mg L−1); contact time (0–120 min); pH (2–8); D-FA dosage (1–4 g L−1). However, a larger value of those operational parameters would not improve the removal activity. Furthermore, the methylene blue adsorption on the denatured FA was fitted with the Langmuir model with R2 = 0.9991; the maximum adsorption capacity was determined as 28.65 mg g−1 from the model. Overall, the highest removal efficiency of MB using D-FA with the dosage of 4 g L−1 was 97.1% in 30 mg L−1 solution of methylene blue at pH = 7. The alkaline hydrothermal denaturation of waste FA is a promising approach to produce an adsorbent with beneficial environmental engineering applications.

High efficiency of methylene blue adsorbent from waste coal fly ash by treatment with alkaline thermal hydrolysis.  相似文献   

4.
Reactive oxygen species (ROS) play an important role in the photocatalytic degradation of pollutants and are closely related to the surface defects of a semiconductor. However, the characterization of surface defects is very complex and a deeper understanding of them remains a great challenge. In this work, a series of nano-TiO2 was synthesized and their optical properties due to surface defects were studied. The results showed that the surface oxygen vacancies on nano-TiO2 can induce chemiluminescence (CL) by luminol. The greater the number of surface oxygen vacancies, the stronger the luminescence signal, and the greater the production of reactive oxygen species. Further studies revealed that the CL intensity was positively correlated with the oxygen vacancy content on the surface of nano-TiO2. Moreover, there was also a clear correlation between the oxygen vacancies and photogenerated superoxide radicals (O2˙) on nano-TiO2 suspensions. Therefore, a simple and rapid CL method was developed for evaluating the oxygen vacancy content and their implied ability to photogenerate O2˙ on nano-TiO2 and has great potential in distinguishing surface oxygen vacancies and judging photocatalytic performance in oxides.

Reactive oxygen species (ROS) play an important role in the photocatalytic degradation of pollutants and are closely related to the surface defects of a semiconductor.  相似文献   

5.
Based on the gas–liquid phase chemiluminescence tester independently developed by our laboratory, a highly sensitive, fast and accurate on-line detection method of formaldehyde gas in ambient atmosphere is established. The chemiluminescence system and the trace formaldehyde gas in the air directly undergo an interface heterogeneous chemiluminescence reaction to obtain a strong chemiluminescence signal. Through the measurement of the chemiluminescence signal intensity, a highly sensitive, real-time and on-line method for the determination of formaldehyde in the air was established. Factors influencing the experimental results such as gallic acid, potassium dichromate, reaction medium concentration, surfactant type and concentration, pump speed, tube length, and interfering gas were discussed based on the single factor and orthogonal analysis results. Finally, the optimal detection conditions were collected, and the detection results were compared with the national standard phenol reagent method. The results show that when the concentration of the standard formaldehyde gas is in the range of 0–0.582 μg L−1, the linear equation of this method is y = 208x + 29.667, the linear coefficient is R2 = 0.997, and the minimum detection concentration of formaldehyde is 2.327 × 10−3 μg L−1. Under the same external conditions, the comparison and analysis using the national standard phenol reagent method proved that this method has the advantages of fast detection speed, low detection limit, good sensitivity, and accurate results, which can be used for real-time and online determination of trace formaldehyde in ambient air.

Based on the gas–liquid phase chemiluminescence tester independently developed by our laboratory, a highly sensitive, fast and accurate on-line detection method of formaldehyde gas in ambient atmosphere is established.  相似文献   

6.
This article describes the design, synthesis and characterization of a sensor suitable for practical measurement of ionized calcium in water samples and cancer cells. Calcium is an important ion in living organs and works as a messenger in several cellular functions. A lack of Ca ions interrupts the immune system and can lead to several diseases. A novel magnetic-polydopamine nanoparticle (PDNP)/rhodamine B (RhB)/folic acid (FA) nanoparticle was developed for the determination of calcium ions in MCF 7 cell lysates and water samples. Furthermore, the produced nanoparticle was employed for bioimaging of folate receptor (FR)-overexpressed cancer cells. This nanoprobe displayed a bright photoluminescence emission at 576 nm under an excitation wavelength of 420 nm. In the presence of calcium ions, the fluorescence emission of the MNPs-PDNPs/RhB/FA probe was proportionally decreased from 20 ng mL−1 to 100 ng mL−1 and 0.5 μg mL−1 to 20 μg mL−1 with a lower limit of quantification (LLOQ) of about 20 ng mL−1. The developed sensor showed a low-interference manner in the presence of possible coexistence interfering ions. In addition, this nanomaterial showed excellent biocompatibility with favorable differentiation ability to attach to the FR-positive cancer cells. The MNPs-PDNPs/RhB/FA nanoparticle has been utilized for bioimaging of the MCF 7 cell with favorable differentiation ability.

Synthesis of the MNPs-PDNPs/RhB/FA probe and application for bioimaging and Ca detection.  相似文献   

7.
Based on the establishment of a stable anaerobic ammonia oxidation treatment system in 100 days, the impact resistances of two different anammox fiber fillers (the curtain filler: R1 and the bundle filler: BR) were compared. Furthermore, the effect of HCO3 concentration on the bundle filler system was also investigated, the results have shown that the activity of the two anammox fiber fillers was not inhibited when the NO2–N concentration was lower than 750 mg L−1 (FNA = 0.085 mg L−1), while it was significantly suppressed at 900 mg L−1 (FNA = 0.118 mg L−1). However, the two fiber fillers could be recovered and exhibit a good impact resistance reduction of the substrate concentration. On day 95, the structure of the bundle filler was more conducive to the stable attachment, proliferation, and aggregation of anammox bacteria. Dominant anammox bacteria in both the curtain and bundle fillers were Candidatus Kuenenia, which accounted for 25.9% and 35.9% of the total population, respectively. When the influent HCO3 concentration was 900 mg L−1, the bundled fiber filler had the highest total nitrogen (TN) removal efficiency, which reached 89.0%. Even though it was inhibited under 2000 mg L−1 of HCO3 concentration, the reactor was able to recover within one week by reducing the substrate concentration. In addition, the HCO3 inhibition mechanism was independent of pH, which resulted in high FA content.

Based on the establishment of a stable anaerobic ammonia oxidation treatment system in 100 days, the impact resistances of two different anammox fiber fillers (the curtain filler: R1 and the bundle filler: BR) were compared.  相似文献   

8.
A facile and green method was adopted to synthesize highly selective gum acacia-mediated silver nanoparticles as dual sensor (fluorescence turn-on and colorimetric) for Hg(ii) and fluorescence turn-off sensor for S2− and malachite green. The mechanism proposed for a dual response towards Hg(ii) is the redox reaction between Ag(0) and Hg(ii), resulting in the formation of Ag(i) and Hg(0) and electron transfer from gum acacia to Ag(i), which further leads to the formation of an Ag@Hg nanoalloy. The enhanced fluorescence signal was quenched selectively by S2− owing to the formation of Ag2S and HgS. The reported nanosensor was found to be useful for sensing malachite green via the inner filter effect. The linear ranges were 3 nmol L−1 to 13 μmol L−1 for Hg(ii), 3–170 μmol L−1 for S2− and 7–80 μmol L−1 for malachite green, and the corresponding detection limits were 2.1 nmol L−1 for Hg(ii), 1.3 μmol L−1 for S2− and 1.6 μmol L−1 for malachite green.

Gum acacia-stabilized silver nanoparticles for the detection of Hg(ii), S2− and malachite green.  相似文献   

9.
A new, inexpensive and easy to use 3D printable device was developed for nephelometric and fluorimetric determination. Its applicability was tested for the quantification of quinine in tonic drinks and sulfate in natural water with good analytical accuracy. In this way, sulfate determination was carried out by nephelometry using a red LED, while quinine was determined using a blue LED by fluorimetry. A smartphone camera was used to take the pictures and afterwards transform them into the RGB color space using the software ImageJ by a personal computer. The linear range was 2.0–50.0 mg L−1 for sulfate with a LOD of 0.13 mg L−1, and the corresponding quantification limit (LOQ) was 0.43 mg L−1. The linear range for quinine was from 0.42 to 3.10 mg L−1. The LOD and LOQ were 0.11 mg L−1 and 0.38 mg L−1, respectively.

A new, inexpensive and easy to use 3D printable device was developed for nephelometric and fluorimetric determination.  相似文献   

10.
A series of trifluoromethyl pyridine derivatives containing 1,3,4-oxadiazole moiety was designed, synthesized and bio-assayed for their insecticidal activity. The result of bio-assays indicated the synthesized compounds exhibited good insecticidal activity against Mythimna separata and Plutella xylostella, most of the title compounds show 100% insecticidal activity at 500 mg L−1 and >80% activity at 250 mg L−1 against the two pests. Compounds E18 and E27 showed LC50 values of 38.5 and 30.8 mg L−1 against Mythimna separata, respectively, which were close to that of avermectin (29.6 mg L−1); compounds E5, E6, E9, E10, E15, E25, E26, and E27 showed 100% activity at 250 mg L−1, which were better than chlorpyrifos (87%). CoMFA and CoMSIA models with good predictability were proposed, which revealed the electron-withdrawing groups with an appropriate bulk at 2- and 4-positions of benzene ring could enhance insecticidal activity.

Novel trifluoromethyl pyridine derivatives bearing 1,3,4-oxadiazole whereas synthesized, their which showed good insecticidal activity; a 3D-QSAR model with good predictability was is proposed.  相似文献   

11.
Vitexin is an active component of many traditional chinese medicines, and is found in various plants. The low solubility of vitexin limits its pharmaceutical usage. In this study, solvent-stable β-fructosidase was used to glycosylate vitexin in organic solvents. The β-fructosidase showed high activity and stability in 30–80% (v/v) ethyl acetate with 90–99% yields of vitexin glycosides. Highly efficient synthesis of β-d-fructofuranosyl-(2→6)-vitexin (1.04 g L−1) and β-d-difructofuranosyl-(2→6)-vitexin (0.45 g L−1) was attained in 50% (v/v) ethyl acetate solvent system from 1.5 g L−1 vitexin. Two novel vitexin glycosides showed higher anti-tumor activities compared to that of vitexin by employing a human breast cancer cytotoxicity assay.

Efficient enzymatic glycosylation of vitexin in hydrophobic organic and the novel vitexin glycosides showed higher anti-tumor activities.  相似文献   

12.
Amitrole is a non-selective triazole herbicide that is widespread used to control a variety of weeds in agriculture, but it may pollute the environment and do harm to organisms. Thus, it is of critical significance to enlist a low-cost, sensitive, stable and renewable method to detect amitrole. In this paper, electrochemical experiments were carried out using carbon fibers/reduced graphene oxide/cellulose paper electrodes, which demonstrated good electrocatalytic performance for amitrole detection. The electrochemical process of amitrole on the surface of the reduced paper electrode was a quasi-reversible reaction controlled by diffusion. Cyclic voltammetry and the amperometric it curve method were used for amitrole determination at a micro molar level and higher-concentration range with the following characteristics: linear range 5 × 10−6 mol L−1 to 3 × 10−5 mol L−1, detection limit 2.44 × 10−7 mol L−1. In addition, the relative standard deviation of repeatability is 3.74% and of stability is 4.68%. The reduced paper electrode with high sensitivity, low detection limit, good stability and repeatability provides novel ideas for on-site amitrole detection in food and agriculture.

A cellulose/reduced graphene oxide/carbon fibers paper electrode exhibits high electrocatalytic performance for the oxidation of amitrole, showing high sensitivity, wide linear range and low detection limit.  相似文献   

13.
The production cost of microbial oil was reduced by improving the exopolysaccharide (EPS) production to share the production cost using Sporidiobolus pararoseus JD-2. Batch fermentation demonstrated that S. pararoseus JD-2 has the potential to co-produce oil and EPS with 120 g L−1 glucose, 20 g L−1 corn steep liquor and 10 g L−1 yeast extract as carbon and nitrogen sources. Using fed-batch fermentation for 72 h resulted in oil and EPS production of 41.6 ± 2.5 g L−1 and 13.1 ± 0.6 g L−1 with the productivity of 0.58 g L−1 h−1 and 0.182 g L−1 h−1, respectively. The fat soluble nutrients in the oil were studied, indicating that it was constituted of 79.19% unsaturated fatty acids and contained 505 mg per kg-oil of carotenoids. Moreover, the EPS contained only one type of polysaccharide; the main monosaccharide compositions were galactose, glucose and mannose in a proportion of 16 : 8 : 1. These results implied that EPS produced by S. pararoseus JD-2 was a new type of EPS.

The production cost of microbial oil was reduced by improving the exopolysaccharide (EPS) production to share the production cost using Sporidiobolus pararoseus JD-2.  相似文献   

14.
The use of electrochemical sensors offers a simple, affordable solution with great reliability. Magnesium is a mineral that the body requires to function properly. It encourages preserving a stable pulse, strong bones, and healthy blood pressure. Herein, a novel ion-selective electrode using esomeprazole magnesium trihydrate as an ion-association complex was developed for magnesium(ii) ion determination in mineral water, drug substances, and pharmaceutical formulations. The electrode response was optimized in terms of plasticizer type, ion exchanger concentration, and membrane composition. To find the best sensor combination, the initial optimization research was performed using eight different sensors. A membrane containing 20% esomeprazole magnesium trihydrate, 36% carbon, and 44% o-Nitrophenyl Octyl Ether (NPOE) as a plasticizer yielded the best potentiometric response. The developed sensor demonstrated a Nernstian response with a slope of 29.93 ± 0.1 mV per decade in the concentration range of 1.41 × 10−5 mol L−1 to 1 × 10−2 mol L−1. Within a pH range of 5–8, it had a low detection limit of 4.13 × 10−6 mol L−1. When compared to the official method, there are no statistically significant differences.

The use of electrochemical sensors offers a simple, affordable solution with great reliability.  相似文献   

15.
As one of the inorganic pollutants with the highest concentration in the waste water of gold tailings using biohydrometallurgy, thiocyanate (SCN) was effectively degraded in this research adopting a two-stage activated sludge biological treatment, and the corresponding degradation pathway and microbial community characteristics in this process were also studied. The results showed that SCN at 1818.00 mg L−1 in the influent decreased to 0.68 mg L−1 after flowing through the two-stage activated sludge units. Raman spectroscopy was used to study the changes of relevant functional groups, finding that SCN was degraded in the COS pathway. Based on 16S rRNA high-throughput sequencing technology, the microbial diversity in this system was analyzed, and the results indicated that Thiobacillus played a major role in degrading SCN, of which the abundance in these two activated sludge units was 32.05% and 20.37%, respectively. The results further revealed the biological removal mechanism of SCN in gold mine tailings wastewater.

Thiocyanate (SCN) was degraded in COS pathway, and the removal rate was 99.94%. The Thiobacillus played an important role.  相似文献   

16.
A pilot-scale continuous tubular reactor (PCTR) was employed for the isothermal pretreatment of agave bagasse (AG), corn stover (CS), sugarcane bagasse (SC), and wheat straw (WS) with three residence times. The objective was to evaluate the impact of this technology on enzymatic saccharification at low solid loadings (4% w/v) and on sequential saccharification and glucose fermentation (SSF) at high solid loading (20% w/v) for bioethanol production. Deformation in cellulose and hemicellulose linkages and xylan removal of up to 60% were achieved after pretreatment. The shortest residence time tested (20 min) resulted in the highest glucan to glucose conversion in the low solid loading (4% w/v) enzymatic saccharification step for AG (83.3%), WS (82.8%), CS (76.1%) and SC (51.8%). Final ethanol concentrations after SSF from PCTR-pretreated biomass were in the range of 38 to 42 g L−1 (11.0–11.3 kg of ethanol per 100 kg of untreated biomass). Additionally, PCTR performance in terms of xylan removal and sugar release were compared with those from a batch lab-scale autohydrolysis reactor (BLR) under the same process conditions. BLR removed higher xylan amounts than those achieved in the PCTR. However, higher sugar concentrations were obtained with PCTR for SC (13.2 g L−1vs. 10.5 g L−1) and WS (21.7 g L−1vs. 18.8 g L−1), whilst differences were not significant (p < 0.05) with BLR for AG (16.0 g L−1vs. 16.3 g L−1) and CS (18.7 g L−1vs. 18.4 g L−1).

A pilot-scale continuous tubular reactor increases enzymatic digestibility of four different feedstocks by removing xylan and effectively achieving economically viable ethanol concentrations.  相似文献   

17.
In the present study, a novel resource utilization method using wet magnesia flue gas desulfurization (FGD) residue for the simultaneous removal of ammonium nitrogen (NH4–N) and heavy metal pollutants from vanadium (V) industrial wastewater was proven to be viable and effective. In this process, the wet magnesia FGD residue could not only act as a reductant of hexavalent chromium [Cr(vi)] and pentavalent vanadium [V(v)], but also offered plenty of low cost magnesium ions to remove NH4–N using struvite crystallization. The optimum experimental conditions for Cr(vi) and V(v) reduction are as follows: the reduction pH = 2.5, the wet magnesia FGD residue dose is 42.5 g L−1, t = 15.0 min. The optimum experimental conditions for NH4–N and heavy metal pollutants removal are as follows: the precipitate pH = 9.5, the n(Mg2+) : n(NH4+) : n(PO43−) = 0.3 : 1.0 : 1.0, t = 20.0 min. Finally the NH4–N, V and Cr were separated from the vanadium containing industrial wastewater by forming the difficult to obtain, soluble coprecipitate containing struvite and heavy metal hydroxides. The residual pollutant concentrations in the wastewater were as follows: Cr(vi) was 0.047 mg L−1, total Cr was 0.1 mg L−1, V was 0.14 mg L−1, NH4–N was 176.2 mg L−1 (removal efficiency was about 94.5%) and phosphorus was 14.7 mg L−1.

A novel resource utilization method using wet magnesia flue gas desulfurization residue for the simultaneous removal of ammonium nitrogen and heavy metal pollutants from vanadium industrial wastewater was proven to be viable and effective.  相似文献   

18.
A new electrochemical sensor for hydroquinone (HQ) was prepared. The electrochemical sensor was modified by electrodeposition and electrochemical polymerization to modify nanometer cobalt (nano-Co) and poly-l-glutamic acid (poly-l-glu) on the surface of a glassy carbon electrode (GCE). Then, the electrochemical behavior of hydroquinone on the electrochemical sensor was investigated by cyclic voltammetry (CV). The experimental conditions were optimized from the aspects of electrolyte type, concentration, acidity, enrichment time and scanning speed. The experimental results showed that under optimized conditions the oxidation peak current has a good linear relationship with the concentration of hydroquinone in the range of 3.85 × 10−6 to 1.30 × 10−3 mol L−1 (R2 = 0.9998). Moreover, there was a low detection limit of 4.97 × 10−7 mol L−1. When the sensor was used for the analysis of hydroquinone in water samples, the recoveries with satisfactory results were in the range of 97.2–102.6%.

A new electrochemical sensor for hydroquinone (HQ) was prepared.  相似文献   

19.
Partial nitritation under mainstream conditions is one of the major bottlenecks for the application of deammonification processes to municipal wastewater treatment plants. This study aimed at evaluating the combination effect of a side-stream free ammonia (FA) treatment and low dissolved oxygen (0.2 ± 0.1 mg L−1) on inhibiting nitrite oxidizing bacteria (NOB) from enhancing nitrite accumulation in long-term lab-scale experiments. Two continuous floccular sludge reactors treating low-strength synthetic wastewater (60 mg N–NH4+ L−1 without COD) with a fixed nitrogen loading rate of 0.22 ± 0.03 g N per L per day were operated in a varied temperature range of 7–31 °C, with one acting as the experimental reactor and the other as the control. Side-stream sludge treatment with a stepwise elevation of FA concentration (65.2–261.1 mg NH3 L−1) was carried out every day in the experimental reactor; the nitrite accumulation ratio (NAR, (NO2–N/(NO2–N + NO3–N) × 100%)) in the experimental reactor was always about twice that in the control one. Quantitative PCR (q-PCR) and high-throughput sequencing analyses showed the dominant NOB was mostly Nitrobacter, while there was an alternating trend between Nitrobacter and Nitrospira. Even though the whole microbial communities of each experimental stage between the two reactors were relatively clustered due to an incomplete NOB washout, three abundant metabolisms (amino acid metabolism, pyruvate metabolism and nitrogen metabolism) and key functional genes of nitrification predicted by PICRUSt in the experimental reactor were enriched, providing a better understanding of nitrite accumulation. These results have demonstrated that the positive hybrid effects of FA side-stream sludge treatment and a low DO could enhance nitrite accumulation. It is expected that a complete washout of NOB would be achieved after further process optimization.

An introduction of the combination of side-stream sludge treatment using FA and low DO could more effectively enhance nitrite accumulation than single low DO.  相似文献   

20.
Adsorption onto ferric hydroxide is a known method to reach very low residual phosphate concentrations. Silicate is omnipresent in surface and industrial waters and reduces the adsorption capacity of ferric hydroxides. The present article focusses on the influences of silicate concentration and contact time on the adsorption of phosphate to a micro-sized iron hydroxide adsorbent (μGFH) and fits adsorption data to multi-component adsorption isotherms. In Berlin drinking water (DOC of approx. 4 mg L−1) at pH 7.0, loadings of 24 mg g−1 P (with 3 mg L−1 initial PO43−–P) and 17 mg L−1 Si (with 9 mg L−1 initial Si) were reached. In deionized water, phosphate shows a high percentage of reversible bonds to μGFH while silicate adsorption is not reversible probably due to polymerization. Depending on the initial silicate concentration, phosphate loadings are reduced by 27, 33 and 47% (for equilibrium concentrations of 1.5 mg L−1) for 9, 14 and 22 mg L−1 Si respectively. Out of eight tested multi-component adsorption models, the Extended Freundlich Model Isotherm (EFMI) describes the simultaneous adsorption of phosphate and silicate best. Thus, providing the means to predict and control phosphate removal. Longer contact times of the adsorbent with silicate prior to addition of phosphate reduce phosphate adsorption significantly. Compared to 7 days of contact with silicate (c0 = 10 mg L−1) prior to phosphate (c0 = 3 mg L−1) addition, 28 and 56 days reduce the μGFH capacity for phosphate by 21 and 43%, respectively.

Adsorption of phosphate onto ferric hydroxide in complex waters is influenced by effects of competition, displacement and surface blockage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号