首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 545 毫秒
1.
WC–Co based alloys are widely applied cemented carbide materials due to unique and outstanding properties. In this study, a series of WC–6Co cemented carbides are quickly prepared via SPS and the effects of Zr2O3-7 wt% Y2O3(YSZ) on the properties of the as-prepared samples are also investigated. The results show that with the increase of the YSZ amount, the density, flexural strength and fracture toughness of the samples were particularly improved to a certain extent, but the Vickers hardness was slightly reduced. Combined with the evolution of microstructure and analysis of property changes, it can be speculated that the mechanism of YSZ additive promoting sintering can be attributed to the formation of solid solution and subsequent activation sintering process. Consequently, YSZ was preliminarily proved to be a potential enhancer for the WC–Co based cemented carbides.

WC–Co based alloys are widely applied cemented carbide materials due to unique and outstanding properties.  相似文献   

2.
To study the aspect ratio distribution of carbide grains in WC–Co composites, two novel approaches, namely grain shape ellipse calculation and five parameter analysis (FPA) methods, are reported in this work. According to grain shape ellipse calculation, carbide grains that have a grain shape aspect ratio of 0.62 demarcate the more anisotropic grains with a larger size and the less anisotropic grains with a smaller size. Moreover, these grains remained predominantly populous under different cases of structural parameters and processing factors. According to five parameter analysis, the interface area aspect ratio can be derived from the relative area of prevalent (0001) basal planes and (10−10) prismatic planes, and can then be set relevance with the measured mechanical properties. The present work therefore offers new alternatives to establish the connection between the aspect ratio measurement and the property optimization of WC–Co composites.

To study the aspect ratio distribution of carbide grains in WC–Co composites, two novel approaches, namely grain shape ellipse calculation and five parameter analysis (FPA) methods, are reported in this work.  相似文献   

3.
Four additives (Na2WO4, nano-hydroxyapatite, K2TiF6 and NaF) were added into the Na5P3O10 + NaOH + C3H8O3 base electrolyte according to the orthogonal design of four factors three levels (L9 (34)). Nine different micro-arc oxidation (MAO) coatings were fabricated on Mg–2Zn–0.5Ca alloys through orthogonal experiments. The effects of four additives on the microstructure, mechanical properties, corrosion resistance and biocompatibility of MAO coatings were investigated through X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), electrochemical corrosion test and in vitro degradation test. The addition of nano-hydroxyapatite and K2TiF6 showed self-sealing effects and contributed to the corrosion resistance of the samples significantly. The addition of 0.5 g L−1 Na2WO4 markedly elevated the bonding strength of the coatings with the substrate. The optimal combination of factors and levels considering both mechanical properties and corrosion resistance was: 0.5 g L−1 Na2WO4, 0 g L−1 NaF, 5 g L−1 n-HAp, 5 g L−1 K2TiF6. The growth mechanism of MAO coatings combining with the visual phenomenon was discussed as well.

Large amount of micro-pores formed in MAO coatings were interconnected and sealed.  相似文献   

4.
Corrosion behavior of 304 stainless steel in molten NaNO3–NaCl–NaF salt and NaNO3–NaCl–NaF vapor has been studied at 450 °C. The results showed that the samples suffered weight loss, and surface oxides, i.e. Fe2O3 and FeCr2O4 characterized by XRD, were formed after corrosion. The surface oxide layer was about 1.1 μm in thickness after corrosion in molten NaNO3–NaCl–NaF salt, which was relatively homogeneous and dense. Whereas, the distribution of surface oxides was not even, and a shedding phenomenon was observed after corrosion molten NaNO3–NaCl–NaF vapor. This is mainly attributed to the existence of NO2 and NO in the molten NaNO3–NaCl–NaF vapor determined by thermogravimetric infrared spectroscopy, which affected the adherence between oxides and the matrix. Additionally, the corrosion rate of 304 stainless steel in molten NaNO3–NaCl–NaF salt is almost close to that in solar salt, which demonstrates that the synergy influence of Cl and F on the rate of 304 stainless steel is not significant. This work not only enriches the database of molten salt corrosion, but provides references for the selection of alloy and molten salt in the CSP.

Surface micro-morphology of 304 SS before corrosion (a), after corrosion in molten NaNO3–NaCl–NaF salt (b) and molten NaNO3–NaCl–NaF vapor (c). (Local enlarged region of A1 (b-1), A2 (c-1) and A3 (c-2)).  相似文献   

5.
Recycling coated hardmetal scraps is becoming increasingly important for tungsten resource recovery. However, the coatings in these materials are one of the biggest problems, especially Al-containing coatings. In this study, discarded TiAlN-coated WC–Co hardmetal tool tips were isothermally oxidized at 900 °C in air, during which the final oxide, phase transition and microstructure evolution were investigated. Milled powders below 0.15 mm were completely oxidized in 180 min, and pieces of coatings were found in the final oxides. White WO3 was mainly distributed on defect-rich areas of oxide scale surfaces. Furthermore, the final oxide scale was triple-layered, mainly consisting of the WO3-concentrated outmost layer, the Al2O3-concentrated middle layer, and the TiO2-concentrated inner layer. It is different from the bi-layered Al2O3/TiO2 oxide scale that appeared for a new TiAlN-coated hardmetal during an oxidation resistance test. This was attributed to the defects in hardmetal scraps, which provided a fast pathway for element diffusion and volatilization of WO3. Consequently, it was impossible to remove Al2O3 completely.

The final oxide scale was triple-layered, consisting of a WO3-rich outmost layer, Al2O3-concentrated middle layer and TiO2-concentrated inner layer.  相似文献   

6.
Ni–Co–Al2O3 composite coatings were prepared by pulsed electrodeposition and electrophoresis–electrodeposition on aluminum alloy. The content of Al2O3 particles of the Ni–Co–Al2O3 composite coating prepared by electrophoresis–electrodeposition was significantly higher than the composite coating prepared by pulsed electrodeposition. The composite coating prepared by electrophoresis–electrodeposition exhibited a better anti-wear performance than that prepared by pulsed electrodeposition. The morphology, composition and microstructure of the composite coatings were determined by means of X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The hardness and friction properties of the samples were tested on the microhardness tester and the friction and wear loss tester respectively.

Ni–Co–Al2O3 composite coatings were prepared by pulsed electrodeposition and electrophoresis–electrodeposition on aluminum alloy.  相似文献   

7.
In this study, a CaO–SiO2–Al2O3–MgO–FeO–CaF2(–Cr2O3) slag was chosen according to the compositions of the stainless steel slag for industrial production, and a CaO block was added to the molten slag after the synthetic slag was fully melted. The influences of unmelted lime on the distribution of elements and the structure of product layers at the lime/slag boundary, particularly the existing state of chromium oxide in the chromium-bearing stainless steel slag, were deeply discussed by scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and FactSage 7.1. The experiment results indicated that when the unmelted lime existed in the CaO–SiO2–Al2O3–MgO–FeO–CaF2 slag system, two product layers of periclase (MgO) and dicalcium silicate (Ca2SiO4) at the boundary of the CaO block were formed. However, when the CaO block was added in the CaO–SiO2–Al2O3–MgO–FeO–CaF2–Cr2O3 stainless steel slag, besides MgO and Ca2SiO4 product layers, needle-shaped calcium chromite (CaCr2O4) was also precipitated around the CaO block. Moreover, a small amount of Cr dissolved in the periclase phase. Eh–pH diagrams showed that the CaCr2O4 and MgO phase unstably existed in a weak acid aqueous solution. Therefore, the existence of unmelted lime in the stainless steel slag could enhance the leachability of chromium.

The effect of unmelted lime on the distribution of elements and structure of product layers in CaO–SiO2–MgO–Al2O3–FeO–CaF2(–Cr2O2) stainless steel slag and the action of unmelted lime phase mechanism in experimental slags was conducted.  相似文献   

8.
In order to improve the thermal oxidation resistance of carbon fiber-reinforced porous silicon oxycarbide (SiCO) ceramic composites, an Al2O3-containing TaSi2–MoSi2–borosilicate glass coating was formed on the surface of the composites via brushing and sintering. The anti-oxidation property of the coated composites at 1873 K was investigated. Microstructures and chemical compositions of the sample before and after anti-oxidation test were determined using XRD, SEM and EDS. After heating in air at 1873 K for 20 min, the Al2O3-containing TaSi2–MoSi2–borosilicate glass coating effectively protects the SiCO ceramic composites and the coated sample kept its appearance well without obvious defects on the surface. The cross-sectional SEM images show that the coating is covered by a film of oxidation products with a thickness of about 40 μm, which is dense and crack free. Inside the A-TMG coating, irregular-shaped silicides are surrounded by continuous borosilicate glass and no penetrating holes or visible cracks are found. Al2O3 increases the viscosity of the borosilicate glass, which improves oxidation resistance of the coated sample by enhancing gas-penetration resistance of the glass. In contrast, the sample without Al2O3 in the coating slurry is severely oxidized and exhibits lots of open pores on the surface after oxidation test.

Al2O3 improves the oxidation resistance of TaSi2–MoSi2–borosilicate glass coating through increasing the viscosity and inhibiting gas penetration into matrix at high temperature, thus prevents porous SiCO ceramic composites from being oxidized.  相似文献   

9.
Developing low-cost and high-efficiency electrocatalysts to electrolyze water is an effective method for large-scale hydrogen production. For large-scale commercial applications, it is crucial to call for more efficient electrocatalysts with high-current density (≥1000 mA cm−2). However, it is challenging to simultaneously promote the large-scale production and hydrogen evolution reaction (HER) activity of these hydrogen catalysts. Herein, we report the large area tungstic disulfide–carbide (W/WS2–WC) heterojunction electrode vertically grown on an industrial-grade tungsten substrate by the solid-state synthesis method. The W/WS2–WC heterojunction electrode achieves a low overpotential of 473 mV at 1000 mA cm−2 in alkaline electrolytes.

We report the large-area tungstic disulfide–carbide (WS2–WC) heterojunction with abundant interfaces grown on W substrates via a facile solid-state synthesis method.  相似文献   

10.
In understanding the catalytic efficacy of silver (Ag0) and gold (Au0) nanoparticles (NPs) on glass-ceramic (GC) crystallization, the microstructure–machinability correlation of a SiO2–MgO–Al2O3–B2O3–K2O–MgF2 system is studied. The thermal parameters viz., glass transition temperature (Tg) and crystallization temperature (Tc) were extensively changed by varying NPs (in situ or ex situ). Tc was found to be increased (Tc = 870–875 °C) by 90–110 °C when ex situ NPs were present in the glass system. Under controlled heat-treatment at 950 ± 10 °C, the glasses were converted into glass-ceramics with the predominant presence of crystalline phase (XRD) fluorophlogopite mica, [KMg3(AlSi3O10)F2]. Along with the secondary phase enstatite (MgSiO3), the presence of Ag and Au particles (FCC system) were identified by XRD. A microstructure containing spherical crystallite precipitates (∼50–400 nm) has been observed through FESEM in in situ doped GCs. An ex situ Ag doped GC matrix composed of rock-like and plate-like crystallites mostly of size 1–3 μm ensured its superior machinability. Vicker''s and Knoop microhardness of in situ doped GCs were estimated within the range 4.45–4.61 GPa which is reduced to 4.21–4.34 GPa in the ex situ Ag system. Machinability of GCs was found to be in the order, ex situ Ag > ex situ Au ∼ in situ Ag > in situ Au. Thus, the ex situ Ag/Au doped SiO2–MgO–Al2O3–B2O3–K2O–MgF2 GC has potential for use as a machinable glass-ceramic.

In understanding the catalytic efficacy of silver (Ag0) and gold (Au0) nanoparticles (NPs) on glass-ceramic (GC) crystallization, the microstructure–machinability correlation of a SiO2–MgO–Al2O3–B2O3–K2O–MgF2 system is studied.  相似文献   

11.
As deep space exploration moves farther and farther away, thermal control coating of the in-orbit spacecraft will suffer a serious vacuum-ultraviolet radiation environment, which seriously threatens the reliability of the spacecraft in orbit. Therefore, it is important to improve the vacuum-ultraviolet resistance performance of the thermal control coating. In this work, the inorganic Al2O3–ZnO–Y2O3 thermal control coating was in situ fabricated on a 6061 aluminum alloy surface by PEO technology, and its vacuum-ultraviolet resistance performance was investigated. The results show that the Al2O3–ZnO–Y2O3 thermal control coating has a good resistance performance to vacuum-ultraviolet radiation, which is mainly because the large extinction coefficients of the ZnO and Y2O3 materials in the ultraviolet band are conducive to improving the ultraviolet resistance performance. Furthermore, the life prediction model of the Al2O3–ZnO–Y2O3 thermal control coating shows that its Δαs value first slightly increases and then tends to be stable with the increase of ultraviolet irradiation time from 0 ESH to 25 000 ESH, and the maximum variation of Δαs is about 0.0536. This work provides a material basis and technical support for the thermal control system of spacecraft with long life and high reliability.

The Al2O3–ZnO–Y2O3 thermal control coating in situ fabricated by PEO technology, shows a good resistance performance to vacuum-ultraviolet radiation. Further, its life prediction model at vacuum-ultraviolet irradiation is preliminarily established.  相似文献   

12.
In this paper, a composite from polyaniline and graphene oxide-hydrotalcite hybrid (PAN–HG) was fabricated by direct polymerization of aniline using ammonium persulphate as an oxidant in the presence of a HG hybrid. The structure and morphological properties of synthesized PAN–HG composites were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectra, and scanning electron microscopy (SEM) techniques. The electrochemical properties of the composite particles were also analyzed by potentiodynamic polarization curves to evaluate the corrosion inhabitation. The results were calculated by Tafel fitting and showed that the effective corrosion protection values were 73.11%, 88.46%, and 95.49%, corresponding to HG, 1PAN–HG, and 2PAN–HG. The influence of PAN–HG on the corrosion protection of the polyurethane coating applied on the CT3 steel was investigated. As a result, the PU containing 0.5% of 2PAN–HG showed the most effective protection of the CT3 steel substrate. The RC of the coating was about 1.61 × 107 Ω cm2, and after immersion for 30 days, the RC value was 0.17 × 106 Ω cm2. From all the analyzed results, PAN–HG has enhanced the corrosion protection and a complicated protection mechanism was also concluded and explained.

Corrosion protection: PAN–HG performed effect of 95.49% protection of CT3-steel in NaCl 3.5%. PU(PAN–HG) coating provides good corrosion protection with complex mechanism of high barrier, ion-exchange and e trapping to HG structure.  相似文献   

13.
ZrO2–WO3 mixed oxide plays an essential role in the chemical and petroleum industries. So far, very little work has paid attention to the activation of the low activity of ZrO2–WO3 catalysts. In this work, poorly reactive ZrO2–WO3 was prepared as a model catalyst by a sol–gel method and it was accompanied by post-hydrothermal treatment with various solutions. The catalytic results in the Friedel–Crafts reaction of anisole and benzyl alcohol showed that the post-hydrothermal treatment with ethylenediamine or ammonium hydroxide solutions dramatically improved the activity of ZrO2–WO3, while the hydrothermal treatments with water or ammonia chloride solution resulted in poorer activity and selectivity. The former treatments were found to induce a huge transformation of the ZrO2 crystal from monoclinic to tetragonal as well as a significant increase in acidic WOx clusters that anchored onto ZrO2. The generation of the WOx clusters was responsible for the activation of ZrO2–WO3.

The high pH value of the post-hydrothermal treatment induces the generation of acidic WOx cluster active sites.  相似文献   

14.
The photocatalytic activity in the degradation of 4-chlorophenol (4-ClPh) in aqueous medium (80 ppm) using 2.0 wt% Ag/Al2O3–Gd2O3 (Ag/Al–Gd-x; where x = 2.0, 5.0, 15.0, 25.0 and 50.0 wt% of Gd2O3) photocatalysts prepared by the sol–gel method was studied under UV light irradiation. The photocatalysts were characterized by N2 physisorption, X-ray diffraction, SEM, HRTEM, UV-Vis, XPS, FTIR and fluorescence spectroscopy. About 67.0% of 4-ClPh was photoconverted after 4 h of UV light irradiation using Ag/γ-–Al2O3. When Ag/Al–Gd-x photocatalysts were tested, the 4-ClPh photoconversion was improved and more than 90.0% of 4-ClPh was photoconverted after 3 h of UV light irradiation in the materials containing 15.0 and 25.0 wt% of Gd2O3. Ag/Al–Gd-25 was the material with the highest efficacy to mineralize dissolved organic carbon, mineralizing more than 85.0% after 4 h of UV light irradiation. Silver nanoparticles and micro-particles of irregular pentagonal shape intersected by plane nanobelts of Al2O3–Gd2O3 composite oxide were detected in the Ag/Al–Gd-25 photocatalyst. This material is characterized by a lowest recombination rate of electron–hole pairs. The low recombination rate of photo-induced electron–hole pairs in the Ag/Al–Gd-x photocatalysts with high Gd2O3 contents (≥15.0 wt%) confirmes that the presence of silver nanoparticles and microparticles interacting with Al2O3–Gd2O3 composite oxide entities favors the separation of photo-induced charges (e and h+). These materials could be appropriate to be used as highly efficient photocatalysts to eliminate high concentrations of 4-ClPh in aqueous medium.

Ag/Al2O3–Gd2O3 showed high efficacy to photodegradate 4-chlorophenol, the strong interaction between silver nano-particles and micro-particles and Al2O3–Gd2O3 entities favors the decrease in the recombination rate.  相似文献   

15.
In the direct synthesis of 2-propylheptanol (2-PH) from n-valeraldehyde, a second-metal oxide component Co3O4 was introduced into NiO/Nb2O5–TiO2 catalyst to assist in the reduction of NiO. In order to optimize the catalytic performance of NiO–Co3O4/Nb2O5–TiO2 catalyst, the effects of the Ni/Co mass ratio and NiO–Co3O4 loading were investigated. A series of NiO–Co3O4/Nb2O5–TiO2 catalysts with different Ni/Co mass ratios were prepared by the co-precipitation method and their catalytic performances were evaluated. The result showed that NiO–Co3O4/Nb2O5–TiO2 with a Ni/Co mass ratio of 8/3 demonstrated the best catalytic performance because the number of d-band holes in this catalyst was nearly equal to the number of electrons transferred in hydrogenation reaction. Subsequently, the NiO–Co3O4/Nb2O5–TiO2 catalysts with different Ni/Co mass ratios were characterized by XRD and XPS and the results indicated that both an interaction of Ni with Co and formation of a Ni–Co alloy were the main reasons for the reduction of NiO–Co3O4/Nb2O5–TiO2 catalyst in the reaction process. A higher NiO–Co3O4 loading could increase the catalytic activity but too high a loading resulted in incomplete reduction of NiO–Co3O4 in the reaction process. Thus the NiO–Co3O4/Nb2O5–TiO2 catalyst with a Ni/Co mass ratio of 8/3 and a NiO–Co3O4 loading of 14 wt% showed the best catalytic performance; a 2-PH selectivity of 80.4% was achieved with complete conversion of n-valeraldehyde. Furthermore, the NiO–Co3O4/Nb2O5–TiO2 catalyst showed good stability. This was ascribed to the interaction of Ni with Co, the formation of the Ni–Co alloy and further reservation of both in the process of reuse.

NiO–Co3O4/Nb2O5–TiO2 catalyst with a Ni/Co mass ratio of 8/3 and NiO–Co3O4 loading of 14% shows the best catalytic performance.  相似文献   

16.
The corrosion of Co–28Cr–6Mo and Co–35Ni–20Cr–10Mo, as biomedical alloys, has been investigated for effects of typical species (albumin and H2O2) in physiological saline, with their coexistence explored for the first time. Electrochemical and long term immersion tests were carried out. It was found that Co alloys were not sensitive to the presence of albumin alone, which slightly promoted anodic dissolution of Co–35Ni–20Cr–10Mo without noticeably affecting Co–28Cr–6Mo and facilitated oxide film dissolution on both alloys. H2O2 led to a clear drop in corrosion resistance, favouring metal release and surface oxide formation and inducing much thicker but less compact oxide films for both alloys. The coexistence of both species resulted in the worst corrosion resistance and most metal release, while the amount and composition of surface oxide remained at a similar level as in the absence of both. The effect of H2O2 inducing low compactness of surface oxides should prevail on deciding the poor corrosion protection ability of passive film, while albumin simultaneously promoted dissolution or inhibited formation of oxides due to H2O2. Corrosion resistance was consistently lower for Co–35Ni–20Cr–10Mo under each condition, the only alloy where the synergistic effect of both species was clearly demonstrated. This work suggests that the complexity of the environment must be considered for corrosion resistance evaluation of biomedical alloys.

Corrosion of biomedical Co alloys were firstly studied in the presence of both albumin and H2O2.  相似文献   

17.
Hierarchical Cu–Al2O3/biomass-activated carbon composites were successfully prepared by entrapping a biomass-activated carbon powder derived from green algae in the Cu–Al2O3 frame (H–Cu–Al/BC) for the removal of ammonium nitrogen (NH4+-N) from aqueous solutions. The as-synthesized samples were characterized via XRD, SEM, BET and FTIR spectroscopy. The BET specific surface area of the synthesized H–Cu–Al/BC increased from 175.4 m2 g−1 to 302.3 m2 g−1 upon the incorporation of the Cu–Al oxide nanoparticles in the BC surface channels. The experimental data indicated that the adsorption isotherms were well described by the Langmuir equilibrium isotherm equation and the adsorption kinetics of NH4+-N obeyed the pseudo-second-order kinetic model. The static maximum adsorption capacity of NH4+-N on H–Cu–Al/BC was 81.54 mg g−1, which was significantly higher than those of raw BC and H–Al/BC. In addition, the presence of K+, Na+, Ca2+, and Mg2+ ions had no significant impact on the NH4+-N adsorption, but the presence of Al3+ and humic acid (NOM) obviously affected and inhibited the NH4+-N adsorption. The thermodynamic analyses indicated that the adsorption process was endothermic and spontaneous in nature. H–Cu–Al/BC exhibited removal efficiency of more than 80% even after five consecutive cycles according to the recycle studies. These findings suggest that H–Cu–Al/BC can serve as a promising adsorbent for the removal of NH4+-N from aqueous solutions.

Hierarchical Cu–Al2O3/biomass-activated carbon composites were successfully prepared by entrapping a biomass-activated carbon powder derived from green algae in the Cu–Al2O3 frame (H–Cu–Al/BC) for the removal of ammonium nitrogen (NH4+-N) from aqueous solutions.  相似文献   

18.
The massive accumulation of spent cemented carbide not only produces environmental pollution but also wastes resources such as tungsten and cobalt. To solve the problem, a low-temperature acid aqueous electrochemical method was used; cobalt was recycled on a stainless steel cathode, and at the same time, tungstic acid was enriched at a spent cemented carbide anode, achieving a high efficiency, low energy consumption, and low pollution separation and recovering spent cemented carbide. The transient electrochemical test results show the following: the reduction mechanism of cobalt is Co2+(aq) + 2e → Co(s). The nucleation mechanism is close to instantaneous nucleation. The electrodeposition is irreversible and controlled by the diffusion step. The average diffusion coefficient of Co(ii) is 2.16589 × 10−7 cm2 s−1. Electrodeposition experiments show that cobalt enters the electrolyte in the form of Co(ii) and is reduced to elemental cobalt on the stainless steel electrode, and tungsten carbide (WC) is oxidized to tungstic acid (H2WO4) under the oxidizing atmosphere of the anode and enriched in the anode area. The investigation provides favorable electrochemical conditions for the recovery and separation of other valuable metals from spent alloys.

Cobalt is recovered at the cathode, while tungstic acid is enriched at the anode, thereby successfully achieving efficient short-flow recovery of spent cemented carbide.  相似文献   

19.
Sulfur compounds in fuel oils are a major source of atmospheric pollution. This study is focused on the hydrodesulfurization (HDS) of dibenzothiophene (DBT) via the coupled application of 0.5 wt% Pd-loaded Co–Mo/Al2O3 and Ni–Mo/Al2O3 catalysts with ionic liquids (ILs) at ambient temperature (120 °C) and pressure (1 MPa H2). The enhanced HDS activity of the solid catalysts coupled with [BMIM]BF4, [(CH3)4N]Cl, [EMIM]AlCl4, and [(n-C8H17)(C4H9)3P]Br was credited to the synergism between hydrogenation by the former and extractive desulfurization and better H2 transport by the latter, which was confirmed by DFT simulation. The Pd-loaded catalysts ranked highest by activity i.e. Pd–Ni–Mo/Al2O3 > Pd–Co–Mo/Al2O3 > Ni–Mo/Al2O3 > Co–Mo/Al2O3. With mild experimental conditions of 1 MPa H2 pressure and 120 °C temperature and an oil : IL ratio of 10 : 3.3, DBT conversion was enhanced from 21% (by blank Ni–Mo/Al2O3) to 70% by Pd–Ni–Mo/Al2O3 coupled with [(n-C8H17)(C4H9)3P]Br. The interaction of polarizable delocalized bonds (in DBT) and van der Waals forces influenced the higher solubility in ILs and hence led to higher DBT conversion. The IL was recycled four times with minimal loss of activity. Fresh and spent catalysts were characterized by FESEM, ICP-MS, EDX, XRD, XPS and BET surface area techniques. GC-MS analysis revealed biphenyl as the major HDS product. This study presents a considerable advance to the classical HDS processes in terms of mild operating conditions, cost-effectiveness, and simplified mechanization, and hence can be envisaged as an alternative approach for fuel oil processing.

Synergistic application of ionic liquids with Pd loaded Co–Mo@Al2O3 and Ni–Mo@Al2O3 catalysts for efficient hydrodesulfurization of dibenzothiophene at ambient conditions.  相似文献   

20.
Hydrogen peroxide (H2O2) is widely employed as an environmentally friendly chemical oxidant and an energy source. In this study, a novel magnesium–carbon nanotube composite was prepared by a ball milling process in argon atmosphere using polyvinylidene fluoride (PVDF) as a binder. The resulting material was then tested for the in situ generation of H2O2. The preparation and operation conditions of the composite were systemically investigated and analyzed to improve the efficiency of the in situ generation of H2O2. Under the optimized conditions, while aerating with oxygen for 60 min, a maximum H2O2 concentration of 194.73 mg L−1 was achieved by the Mg–CNTs composite prepared using Mg : CNT : PVDF with a weight ratio of 5 : 1 : 2.4. In the Mg–CNTs/O2 system, dissolved oxygen molecules were reduced to H2O2, while magnesium was oxidized owing to the electrochemical corrosion. In addition, a part of dissolved magnesium ions converted into magnesium hydroxide and precipitated as nanoflakes on the surfaces of CNTs. A mechanism was proposed, suggesting that the formation of a magnesium/carbon nanotubes corrosion cell on the Mg–CNT composite promoted the in situ synthesis of H2O2. Overall, this study provides a promising and environmentally friendly strategy to fabricate magnesium/CNT composites for the in situ generation of H2O2, which could be applied in energy conversion and advanced oxidation processes for refractory wastewater treatment.

Mg–CNTs composite prepared by ball milling with PVDF promoted the in situ synthesis of H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号