首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The first comparative study of C, S, Se and P donor ligands-supported copper(i) complexes for C–N and C–Si bond formation reactions are described. The syntheses and characterization of eight mononuclear copper(i) chalcogenone complexes, two polynuclear copper(i) chalcogenone complexes and one tetranuclear copper(i) phosphine complex are reported. All these new complexes were characterized by CHN analysis, FT-IR, UV-vis, multinuclear NMR and single crystal X-ray diffraction techniques. The single crystal X-ray structures of these complexes depict the existence of a wide range of coordination environments for the copper(i) center. This is the first comparative study of metal–phosphine, metal–NHC and metal–imidazolin-2-chalcogenones in C–N and C–Si bond formation reactions. Among all the catalysts, mononuclear copper(i) thione, mononuclear copper(i) N-heterocyclic carbene and tetranuclear copper(i) phosphine are exceedingly active towards the synthesis of 1,2,3-triazoles as well as for the cross-dehydrogenative coupling of alkynes with silanes. The cross-dehydrogenative coupling of terminal alkynes with silanes represents the first report of a catalytic process mediated by metal–imidazolin-2-chalcogenones.

The first comparative study of C, S, Se and P donor ligands-supported copper(i) complexes for C–N and C–Si bond formation reactions.  相似文献   

2.
A novel 3D Cd(ii) coordination polymer {[Cd(ddpa)(2,2′-bpy)]·H2O}n (1) (H2ddpa = 5,10-dioxo-5,10-dihydro-4,9-dioxapyrene-2,7-dicarboxylic acid, 2,2′-bpy = 2,2′-bipyridine) is hydrothermally synthesized in situ, and the influencing factors and mechanism for the in situ reaction are briefly discussed. The synthesis of 1 requires the formation of a new C–O ester bond. This current study confirms that metal ions and N-donor ligands play important roles in the domination of the in situ ligand from 6,6′-dinitro-2,2′,4,4′-biphenyltetracarboxylic acid (H4dbta). Furthermore, the structure, thermal stability and photoluminescent property of 1 are also investigated.

A 3D Cd(ii) coordination polymer comprising ligand molecules not included in the original reaction mixtures but instead formed via in situ ligand synthesis involving a C–O ester bond.  相似文献   

3.
Earth-abundant and water-tolerant manganese(i) catalyzed alkenylation of 2-arylindazole with alkyl and aryl alkynes through C–H bond activation is described with a unique level of E-selectivity. The reaction proceeds through the control of C3 nucleophilicity of 2-aryl indazoles. This method is applied to the late-stage functionalization of complex molecules including ethinylestradiol, norethisterone, and N-protected amino acid derivatives. The kinetic isotope studies suggest that the C–H bond activation step may not be the rate-determining step.

Earth-abundant and water-tolerant manganese(i) catalyzed alkenylation of 2-arylindazole with alkyl and aryl alkynes through C–H bond activation is described with a unique level of E-selectivity.  相似文献   

4.
Computational studies on Ir(iii)-catalyzed intermolecular branch-selective allylic C–H amination of terminal olefins with methyl dioxazolone have been carried out to investigate the mechanism, including the origins of regioselectivity and catalytic activity difference. The result suggests that the reaction proceeds through generation of active species, alkene coordination, allylic C–H activation, decarboxylation, migratory insertion, and protodemetalation. The presence of AgNTf2 could thermodynamically promote the formation of catalytically active species [Cp*Ir(OAc)]+. Both the weaker Ir–C(internal) bond and the closer interatomic distance of N⋯C(internal) in the key allyl-Ir(v)-nitrenoid intermediate make the migratory insertion into Ir–C(internal) bond easier than into the Ir–C(terminal) bond, leading to branch-selective allylic C–H amidation. The high energy barrier for allylic C–H activation in the Co system could account for the observed sluggishness, which is mainly ascribed to the weaker coordination capacity of alkenes to the triplet Cp*Co(OAc)+ and the deficient metal⋯H interaction to assist hydrogen transfer.

DFT studies on Ir(iii)-catalyzed branch-selective allylic C–H amination of terminal olefins with methyl dioxazolone have been carried out to investigate the mechanism, including the origins of regioselectivity and catalytic activity difference.  相似文献   

5.
The reduction behavior of Fe3+ during the preparation of a zero-valent iron cocoanut biochar (ZBC8-3) by the carbothermic reduction method was analyzed. Fe3+ was first converted into Fe3O4, which was subsequently decomposed into FeO, and finally reduced to Fe0. A minor amount of γ-Fe2O3 was produced in the process. The isothermal thermodynamic data for the removal of Cu(ii) over ZBC8-3 followed a Langmuir model. The Langmuir equation revealed a maximum removal capacity of 169.49 mg g−1 at pH = 5 for ZBC8-3. The removal of Cu(ii) over ZBC8-3 fitted well to a pseudo-first-order equation, which suggested that the rate limiting step of the process was diffusion. The Cu(ii) removal mechanism on ZBC8-3 involved the reduction of Cu(ii) by Fe0 to produce Cu0 and Cu2O, while C Created by potrace 1.16, written by Peter Selinger 2001-2019 C, C–O–, and –O–H formed a complex with Cu(ii).

The Cu(ii) removal mechanism on ZBC8-3 involved the reduction of Cu(ii) by Fe0 to produce Cu0 and Cu2O, while C Created by potrace 1.16, written by Peter Selinger 2001-2019 C, C–O–, –O–H formed a complex with Cu(ii).  相似文献   

6.
Herein, the geometry, electronic structure, Fe–ligand bonding nature and simulated IR spectrum of α-Keggin, lacunary Keggin, iron(ii/iii)-substituted and the important oxidized high-valent iron derivatives of Keggin type polyoxometalates have been studied using the density functional theory (DFT/OPTX-PBE) method and natural bond orbital (NBO) analysis. The effects of different Fe oxidation states (iivi) and H2O/OH/O2− ligand interactions have been addressed concerning their geometry and electronic structures. It has been revealed that the d-atomic orbitals of Fe and 2p orbitals of polyoxometalate''s oxygen-atoms contribute in ligand binding. Compared with other high valent species, the considered polyoxometalate system of [PW11O39(FeVO)]4−, possesses a high reactivity for oxygen transfer.

Herein, the geometry, electronic structure, Fe–ligand bonding nature and simulated IR spectrum of α-Keggin, lacunary Keggin and iron(iivi)-substituted Keggin type polyoxometalates have been studied using the DFT/OPTX-PBE method and NBO analysis.  相似文献   

7.
Cd(ii) adsorption onto Fe(ii) modified Layered double hydroxide–graphene oxide (LDH–GO@Fe(ii)) was investigated using batch experiments. With the modification of Fe(ii), LDH–GO maintained its structure, while Fe(ii) species formed non-crystalline iron oxide clusters on the surface of the LDH/GO. A kinetics study indicated that adsorption obeyed a pseudo-second-order rate law. The equilibrium data were fitted well with the Langmuir isotherm model. The maximum adsorption capacity of LDH–GO@Fe(ii)10 was 28.98 mg g−1, higher those that of pure LDH–GO and LDH–GO@Fe(ii)50. The increased sorption capacities could be explained by the increased specific surface area. Modification with Fe(ii) would lead to the generation of amorphous Fe oxides and Fe could occupy the binding sites for Cd(ii), thus excess Fe in the structure will restrain the adsorption of Cd(ii). The XRD and XPS patterns revealed the formation of Cd(OH)2 after adsorption. Batch experiments indicated that precipitation and surface complexation were the main pathways for Cd(ii) removal.

Fe(ii)-decorated LDH–GO composites had a high capacity for Cd(ii) removal. The mechanisms were controlled by surface-induced precipitation and complex formation.  相似文献   

8.
9.
An efficient method for the synthesis of multi-substituted pyridines from β-aryl-substituted α,β-unsaturated oxime ethers and alkenes via Pd-catalyzed C–H activation has been developed. The method, using Pd(OAc)2 and a sterically hindered pyridine ligand, provides access to various multi-substituted pyridines with complete regioselectivity. Mechanistic studies suggest that the pyridine products are formed by Pd-catalyzed electrophilic C–H alkenylation of α,β-unsaturated oxime followed by aza-6π-electrocyclization. The utility of this method is showcased by the synthesis of 4-aryl-substituted pyridine derivatives, which are difficult to synthesize efficiently using previously reported Rh-catalyzed strategies with alkenes.

An efficient method for the synthesis of multi-substituted pyridines from α,β-unsaturated oxime ethers via cationic Pd(ii)-catalyzed C–H activation has been developed.  相似文献   

10.
The oxidation of a series of N-acetyl amino acid methyl esters with H2O2 catalyzed by a very simple iminopyridine iron(ii) complex 1 easily obtainable in situ by self-assembly of 2-picolylaldehyde, 2-picolylamine, and Fe(OTf)2 was investigated. Oxidation of protected aliphatic amino acids occurs at the α-C–H bond exclusively (N-AcAlaOMe) or in competition with the side-chain functionalization (N-AcValOMe and N-AcLeuOMe). N-AcProOMe is smoothly and cleanly oxidized with high regioselectivity affording exclusively C-5 oxidation products. Remarkably, complex 1 is also able to catalyze the oxidation of the aromatic N-AcPheOMe. A marked preference for the aromatic ring hydroxylation over Cα–H and benzylic C–H oxidation was observed, leading to the clean formation of tyrosine and its phenolic isomers.

Amino acid derivatives are oxidized by the 1/H2O2 system. A marked preference for the aromatic over Cα–H and benzylic C–H oxidation is observed with phenylalanine.  相似文献   

11.
Several cyclometalated ruthenium complexes 1–5 with 2-alkenylpyridines as C,N-chelating ligands were synthesized and then characterized by NMR, MS, IR and UV-Vis spectra. According to the single crystal of complex 2, it is evident that carbon from vinyl group is successfully bonded to Ru(ii) center. Moreover, the Ru–N bond trans to the Ru–C bond is elongated (2.127(5) Å), which is consistent with the strong trans effect of the carbon atom compared to that of the nitrogen atom. With different electron-donating groups linked to vinyl, these complexes exhibited regular changes in MLCT absorption bands, which were identified by UV-Vis and CV spectra in combination with DFT and TD-DFT. Interestingly, protonated intermediate species of these complexes in acidic solutions were tracked by the absorption changes and MS spectra, which displayed a possible protonation process of these complexes with the cleavage of Ru–C σ bonds.

Five cycloruthenated 2-(alkenyl)pyridine derivatives and their protonated species without the release of cyclometalating ligands were first captured.  相似文献   

12.
In this study, a jacobsite–biochar nanocomposite (MnFe2O4–BC) was fabricated and used to simultaneously remove Sb(iii) and Cd(ii) from water via adsorption. The MnFe2O4–BC nanocomposite was prepared via a co-precipitation method and analyzed using various techniques. The results confirm the successful decoration of the biochar surface with MnFe2O4 nanoparticles. The maximum Sb(iii) removal efficiency was found to be higher from bi-solute solutions containing Cd(ii) than from single-solute systems, suggesting that the presence of Cd(ii) enhances the removal of Sb(iii). The Langmuir isotherm model describes well Sb(iii) and Cd(ii) removal via adsorption onto the MnFe2O4–BC nanocomposite. The maximum adsorption capacities are 237.53 and 181.49 mg g−1 for Sb(iii) and Cd(ii), respectively, in a bi-solute system. Thus, the prepared MnFe2O4–BC nanocomposite is demonstrated to be a potential adsorbent for simultaneously removing Sb(iii) and Cd(ii) ions from aqueous solutions.

In this study, a jacobsite–biochar nanocomposite (MnFe2O4–BC) was fabricated and used to simultaneously remove Sb(iii) and Cd(ii) from water via adsorption.  相似文献   

13.
In this study, a novel magnetic biochar-MnFe2O4 nanocomposite (BC/FM) was prepared using low-cost corn straw and MnFe2O4 by sol–gel/pyrolyzing route using egg white, which has abundant functional groups (–NH2 and –COOH). Following that, its composition, morphology and structure was characterized by various techniques including SEM-EDX, BET, XRD, and VSM. Batch experiment of the adsorption for Pb(ii) and Cd(ii) including influence of pH, kinetics, isotherm and thermodynamics was also studied. The results demonstrated that biochar could effectively support MnFe2O4, which displayed high dispersion on the surface of the biochar and possessed abundant functional groups and high surface area contributing to superior performance on Pb(ii) and Cd(ii) removal. Therein, MnFe2O4 with high magnetism is convenient for separating the magnetic BC/FM from an aqueous medium. Adsorption experiment results indicate that Pb(ii) and Cd(ii) removal by BC/FM was closely related to pH with the best value of pH 5.0, and the process reached equilibrium in 2 h. The adsorption process is well-described by the pseudo-second-order kinetic model and Sips (Freundlich–Langmuir) model. Thermodynamic studies suggest that the adsorption process is spontaneous and exothermic. The maximum experimental adsorption capacity of BC/FM is 154.94 and 127.83 mg g−1 for Pb(ii) and Cd(ii), respectively, in single-solute system, which is higher than that of some of the other adsorbents of biochar or biochar-based composites. In bi-solute system, the preferential adsorption order of BC/FM for the two metals is Pb(ii) prior to Cd(ii). Finally, FTIR and XPS analysis verified that the main mechanism of Pb(ii) and Cd(ii) removal by BC/FM is by forming Pb/Cd–O or complexation of carboxyl and hydroxyl and ion exchange. Therefore, the prepared magnetic BC/FM composite, as an excellent adsorbent, exhibited potential applications for the removal of Pb(ii) and Cd(ii) from wastewater.

In this study, a novel magnetic biochar-MnFe2O4 nanocomposite (BC/FM) was prepared using low-cost corn straw and MnFe2O4 by sol–gel/pyrolyzing route using egg white, which has abundant functional groups (–NH2 and –COOH).  相似文献   

14.
The nickel(ii)-catalyzed ortho-arylation of unactivated C–H bonds utilizing amino acids as directing groups with aryl iodides or bromides as coupling electrophiles is described. This protocol features excellent mono-selectivity, good regioselectivity, and wide functional group tolerance. Additionally, the obtained products bearing a biaryl motif and an amino acid represent bioactive molecules with wide bioactivities.

The nickel(ii)-catalyzed ortho-arylation of unactivated C–H bonds utilizing amino acids as directing groups with aryl iodides or bromides as coupling electrophiles is described.  相似文献   

15.
A method for the synthesis of indazoles was developed which involves a copper(ii) acetate catalysed reaction of 2-formylboronic acids with diazadicaboxylates followed by acid or base induced ring closure. Hydrazine dicarboxylates were also shown as competent reaction partners for the synthesis of indazoles, however, they required a stoichiometric amount of copper(ii) acetate for the C–N bond formation step. The transformation can be efficiently performed as a two step-one pot procedure to give a range of 1N-alkoxycarbonyl indazoles.

A method for the synthesis of indazoles was developed which involves a copper(ii) acetate catalysed reaction of 2-formylboronic acids with diazadicaboxylates followed by acid or base induced ring closure.  相似文献   

16.
Only several compounds bearing the Ag(ii) cation and other paramagnetic transition metal cations are known experimentally. Herein, we predict in silico stability and crystal structures of hypothetical ternary silver(ii) fluorides with copper, nickel and cobalt in 1 : 1 stoichiometry at a pressure range from 0 GPa up to 20 GPa employing the evolutionary algorithm in combination with DFT calculations. The calculations show that AgCoF4 could be synthesized already at ambient conditions but this compound would host diamagnetic Ag(i) and high-spin Co(iii). Although none of the compounds bearing Ag(ii) could be preferred over binary substrates at ambient conditions, at increased pressure ternary fluorides of Ag(ii) featuring Cu(ii) and Ni(ii) could be synthesized, in the pressure windows of 7–14 and 8–15 GPa, respectively. All title compounds would be semiconducting and demonstrate magnetic ordering. Compounds featuring Ni(ii) and particularly Co(ii) should exhibit fundamental band gaps much reduced with respect to pristine AgF2. The presence of Cu(ii) and Ni(ii) does not lead to electronic doping to AgF2 layers, while Co(ii) tends to reduce Ag(ii) entirely to Ag(i).

Only several compounds bearing the Ag(ii) cation and other paramagnetic transition metal cations are known experimentally. Here, we predict as yet unknown AgMF4 phases and their stability in function of pressure.  相似文献   

17.
Dual-function and multi-function sensors can use the same material or detection system to achieve the purpose of detection of two or more substances. Due to their high sensitivity and specificity, dual-function and multi-function sensors have potential applications in many fields. In this article, we designed a dual-function sensor to detect Sn(ii) and ascorbic acid (AA) based on the inner filter effect (IFE) between NaYF4:Yb,Er@NaYF4@PAA (UCNPs@PAA) and Fe(ii)–1,10-phenanthroline complex. Fe(ii)–1,10-phenanthroline complex has strong absorption in most of the ultraviolet-visible light range (350 nm–600 nm), and this absorption band overlaps with the green emission peak of UCNPs@PAA at 540 nm; Fe(ii)–1,10-phenanthroline complex can significantly quench the green light emission of UCNPs@PAA. When Sn(ii) or AA is added to the UCNPs@PAA/Fe(iii)/1,10-phenanthroline, they can reduce Fe(iii) to Fe(ii). Fe(ii) can react with 1,10-phenanthroline to form an orange complex, thereby quenching the green light emission of UCNPs@PAA. And the quenching efficiency is related to the concentration of Sn(ii) and AA; there is a linear relationship between quenching efficiency and the concentration of Sn(ii) and AA, within a certain concentration range the detection limits of this dual-function sensor for Sn(ii) and AA are 1.08 μM and 0.97 μM, respectively. In addition, the dual-function sensor can also detect Sn(ii) and AA in tap and spring water.

Based on the inner filter effect (IFE), we use UCNPs to develop a dual-function sensors, which can realize sensitive and selective detection for the Sn(ii) and ascorbic acid (AA).  相似文献   

18.
Three novel metal-tiron (4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt) and other pillared ligand bpy (4,4′-bipyridyl)-centered coordination polymers of the formulae [Cd(tiron)(bpy)2(H2O)2]·0.5(H2O), 1, [Co3(tiron-bpy)2(bpy)(H2O)8]·(H2O)2, 2, and [Ba2(tiron-bpy)2(H2O)4][solvent], 3, were successfully synthesized under hydrothermal conditions. The as-synthesized materials were well characterized by complimentary techniques such as single-crystal X-ray diffraction, powder X-ray diffraction, Fourier-transform infrared spectroscopy and thermogravimetric analysis techniques. The as-synthesized coordination polymers of 1 and 2 featured 1D chains, while 3 shows a layered structure. Co-based 2 shows linear trinuclear Co(ii) ions and these Co(ii) ions have antiferromagnetic interactions among themselves. The structure of 1 features a zig-zag chain formed by the linkage between monodentate tiron ligands and octahedral Cd(ii) ions, interconnected by a twisted bpy ligand, 2 shows a linear chain constructed from corner-sharing trinuclear octahedral Co(ii) ions and coordinated with a tridentate tiron-bpy adduct ligand, whereas 3 shows nona-coordinated Ba(ii) ions sharing edges with other Ba(ii) ions and connected by hexadentate tiron-bridged structures resulting in a layered structure. In 2 and 3, the bpy nitrogen attacks at the ortho position of the tiron ligand and forms an in situ ligand adduct. The central metal ions show an octahedral geometry in 1 (Cd(ii) ions) and 2 (Co(ii) ions), but nona-coordination of Ba(ii) ions in 3. The short interatomic interactions in the crystal structures were evaluated by mapping the Hirshfeld surface process using pseudo-mirrored 2D fingerprint plots. The major short interatomic interactions H⋯H, O⋯H and C⋯H cover the Hirshfeld surfaces.

Three novel metal-tiron (4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt) and other pillared ligand bpy (4,4-bipyridyl) centered coordination polymers were successfully synthesized and characterized.  相似文献   

19.
Oxidative coupling of oxime and β-dicarbonyl compounds dominates in a β-dicarbonyl compound/oxime/Cu(ii)/t-BuOOH system; in the absence of oxime, oxidative coupling of t-BuOOH and a β-dicarbonyl compound (Kharasch peroxidation) takes place. The proposed conditions for oxidative coupling of oximes with dicarbonyl compounds require only catalytic amounts of copper salt and t-BuOOH serves as a terminal oxidant. The C–O coupling reaction proceeds via the formation of tert-butoxyl, tert-butylperoxyl and iminoxyl radicals. Apparently, tert-butylperoxyl radicals oxidize oxime into iminoxyl radical faster than they react with β-dicarbonyl compounds forming the Kharasch peroxidation product. Iminoxyl radicals are responsible for the formation of the target C–O coupling products; the yields are up to 77%.

The Kharasch peroxidation system Cu(ii)cat./t-BuOOH, the source of t-BuOO˙ radicals, can be switched to generate iminoxyl radicals by adding various oximes.  相似文献   

20.
A novel adsorbent was designed for selective recovery of cobalt(ii) from synthetic binary cobalt(ii)–nickel(ii) and cobalt(ii)–manganese(ii) solutions, a synthetic multi-element solution and a real aqueous waste stream from the petrochemical sector. The adsorbent consisted of shaped activated carbon–alginate spheres impregnated with Cyanex 272. The synthesis was followed by characterisation using SEM, infrared spectroscopy, BET analysis and elemental analysis. Good selectivity for cobalt(ii) over nickel(ii) could be achieved during adsorption, while this was not the case for cobalt(ii) over manganese(ii). Cobalt(ii) and manganese(ii) were therefore fully adsorbed and stripped using a dilute sulphuric acid solution. The adsorbent was shown to be reusable in a column setup. Finally, the adsorbent material was used for the purification of a real aqueous waste stream from the petrochemical sector.

Waste water was purified from cobalt(ii) and manganese(ii) by adsorption and desorption on shaped and impregnated activated carbon spheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号