首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Doxorubicin (DOX) is one of most common anti-cancer chemotherapeutic drugs, but its clinical use is associated with dose-limiting cardiotoxicity. We have recently developed a series of PEG-oligocholic acid based telodendrimers, which can efficiently encapsulate hydrophobic drugs and self-assemble to form stable micelles in aqueous condition. In the present study, two representative telodendrimers (PEG5k-CA8 and PEG2k-CA4) have been applied to prepare DOX micellar formulations for the targeted delivery of DOX to lymphoma. PEG2k-CA4 micelles, compared to PEG5k-CA8 micelles, were found to have higher DOX loading capacity (14.8% vs. 8.2%, w/w), superior stability in physiological condition, and more sustained release profile. Both of these DOX-loaded micelles can be efficiently internalized and release the drug in Raji lymphoma cells. DOX-loaded micelles were found to exhibit similar in vitro cytotoxic activities against both T- and B-lymphoma cells as the free DOX. The maximum tolerated dose (MTD) of DOX-loaded PEG2k-CA4 micelles in mice was approximately 15 mg/kg, which was 1.5-fold higher of the MTD of free DOX. Pharmacokinetics and biodistribution studies demonstrated that both DOX-loaded micelles were able to prolong the blood retention time, preferentially accumulate and penetrate in B-cell lymphomas via the enhanced permeability and retention (EPR) effect. Finally, DOX-PEG2k-CA4 micelles achieved enhanced anti-cancer efficacy and prolonged survival in Raji lymphoma bearing mice, compared to free DOX and PEGylated liposomal DOX (Doxil®) at the equivalent dose. In addition, the analysis of creatine kinase (CK) and lactate dehydrogenase (LDH) serum enzymes level indicated that DOX micellar formulations significantly reduced the cardiotoxicity associated with free DOX.  相似文献   

2.
A novel ultrasound-responsive doxorubicin (DOX)-loaded nanoparticulate system was prepared in this study. The DOX-loaded polymeric micelles were first prepared using poly(D,L-lactide-co-glycolide)-methoxy-poly(ethylene glycol) (PLGA-mPEG) with a high encapsulation efficiency of 89.2%. After filling with perfluoropentane (boiling point 29°C), the micelles were transformed into nanodroplets that were stable as a result of the PEG shell. The nanodroplets were transformed into nanobubbles at 37°C, and little drug was released if no ultrasound was exerted. Ultrasound-triggered drug release, with pH dependency, was shown. The DOX release percentage was 9.59% at pH 6.5 (also appeared in tumor) and only 2.22% at pH 7.4 after sonicating for 0.5 min at 37°C. The tumor inhibitory rate of Group III (DOX-loaded nanodroplets combined with ultrasound) was 84.3%, more than that of Group II (DOX-loaded nanodroplets), which was 60.4%. Moreover, the nanodroplets showed much lower toxicity than free drugs. The novel nanodroplets could be a promising anticancer drug delivery system.  相似文献   

3.
Diblock copolymers of poly(epsilon-caprolactone) (PCL) and monomethoxy poly(ethylene glycol) (MPEG) with various compositions were synthesized. The amphiphilic block copolymers self-assembled into nanoscopic micelles and their hydrophobic cores encapsulated doxorubicin (DOX) in aqueous solutions. The micelle diameter increased from 22.9 to 104.9 nm with the increasing PCL block length (2.5-24.7 kDa) in the copolymer composition. Hemolytic studies showed that free DOX caused 11% hemolysis at 200 microg ml(-1), while no hemolysis was detected with DOX-loaded micelles at the same drug concentration. An in vitro study at 37 degrees C demonstrated that DOX-release from micelles at pH 5.0 was much faster than that at pH 7.4. Confocal laser scanning microscopy (CLSM) demonstrated that DOX-loaded micelles accumulated mostly in cytoplasm instead of cell nuclei, in contrast to free DOX. Consistent with the in vitro release and CLSM results, a cytotoxicity study demonstrated that DOX-loaded micelles exhibited time-delayed cytotoxicity in human MCF-7 breast cancer cells.  相似文献   

4.
Polymer micelles with cross-linked ionic cores were prepared by using block ionomer complexes of poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMA) copolymer and divalent metal cations as templates. Doxorubicin (DOX), an anthracycline anticancer drug, was successfully incorporated into the ionic cores of such micelles via electrostatic interactions. A substantial drug loading level (up to 50 w/w%) was achieved and it was strongly dependent on the structure of the cross-linked micelles and pH. The drug-loaded micelles were stable in aqueous dispersions exhibiting no aggregation or precipitation for a prolonged period of time. The DOX-loaded polymer micelles exhibited noticeable pH-sensitive behavior with accelerated release of DOX in acidic environment due to the protonation of carboxylic groups in the cores of the micelles. The attempt to protect the DOX-loaded core with the polycationic substances resulted in the decrease of loading efficacy and had a slight effect on the release characteristics of the micelles. The DOX-loaded polymer micelles exhibited a potent cytotoxicity against human A2780 ovarian carcinoma cells. These results point to a potential of novel polymer micelles with cross-linked ionic cores to be attractive carriers for the delivery of DOX.  相似文献   

5.
To understand the influence of the construction of pH-responsive glycopolymer carriers on loading and release behaviors of the drug, three types of block glycopolymers with similar compositions but different constructions, PEG-b-P(DEA-co-GAMA), PEG-b-PDEA-b-PGAMA and PEG-b-PGAMA-b-PDEA, were successfully synthesized via atom transfer radical polymerization (ATRP) method. The compositions and structures of the three glycopolymers were characterized using 1H NMR (nuclear magnetic resonance) and GPC (gel permeation chromatography), while the morphology and size of aggregates from pH-sensitive block glycopolymers were measured using TEM (transmission electron microscopy) and DLS (dynamic light scattering). The results indicated that the micelles prepared from PEG-b-PGAMA-b-PDEA had a more compact shell structure. The drug-loaded micelles were prepared using the diafiltration method at pH 10, and the loading content and loading efficiency were analyzed using a UV-visible spectrophotometer. DOX-loaded micelles formed by PEG-b-PGAMA-b-PDEA with the more compact shell construction showed the highest loading content and loading efficiency (12.0 wt% and 58.0%) compared with the other two micelles. Moreover, the DOX release tests of these micelles were carried out under two PBS conditions (pH 7.4 and pH 5.5), and the DOX release amount in a certain time was analyzed using a UV-visible spectrophotometer. The results showed that the more compact shell construction of the three layered micelle obstructed the diffusion of a proton into the PDEA core at pH 5.5 and delayed the drug from releasing under both conditions. Moreover the two-layered micelle with a PDEA and PGAMA mixed core showed a relatively high release amount owing to the porous core permitting unimpeded releasing at pH 7.4 and promoted the protonation of PDEA at pH 5.5. Insights gained from this study show that the structure of block copolymers, leading to different constructions of micelles, could adjust the drug loading and release behavior to certain extent, thus it may contribute to improving the design of desirable drug delivery systems.

Synthesized a pH-responsive block glycopolymers micelles, for the DOX loading and release behavior enhancing the design of drug delivery systems.  相似文献   

6.
A series of disulfide-linked amphiphilic polymers polyoxaline-SS-poly(lactide) (PEtOx-SS-PLA) were prepared and self-assembled into nano-micelles in water. The anticancer drug curcumin (Cur) was selected as a model drug, the entrapment of Cur in PEtOx-SS-PLA micelles was investigated and the intracellular transport and release of Cur-loaded micelles was studied in C6 cells. The preparation of Cur-loaded polymer micelles showed that micelle size decreased after drug loading, favoring cell phagocytosis. MTT experiments showed that PEtOx-SS-PLA 52 micelles have a small IC50 (2.05 μg mL−1). The release behavior of PEtOx-SS-PLA 52 drug-loaded micelles in C6 cells showed that polymer micelle enhanced the intracellular release of Cur, and increased the inhibition effect of cancer cells. In a word, these reduction and pH-dual sensitive, biodegradable, hydrophilic shell-discarding PEtOx-SS-PLA micelles have great potential for future tumour administration.

A series of disulfide-linked amphiphilic polymers polyoxaline-SS-poly(lactide) (PEtOx-SS-PLA) were prepared and self-assembled into nano-micelles in water.  相似文献   

7.
Doxorubicin (DOX) is a widely-used effective antitumor agent. However, its clinical application is limited due to its side effects including anti-apoptotic defense of cancer cells caused by DOX-induced autophagy and deleterious effects in normal tissues. Therefore, in this study, a new folate (FA)-decorated amphiphilic bifunctional pullulan-based copolymer (named as FPDP) was developed as an efficient nano-carrier for the co-delivery of DOX and short hairpin RNA of Beclin1, a pivotal autophage-related gene, to enhance the anticancer effect of DOX by the blockade of the Beclin1 protein mediated autophagy process. In FPDP molecules, pullulan was modified with lipophilic desoxycholic acid for the formation of micelles, the introduced low molecular weight (1 kDa) branched polyethylenimine (PEI) was for shBeclin1 delivery, and folate (FA) was employed as the tumor-targeting group. FPDP micelles demonstrated an average diameter of 161.9 nm, good biocompatibility, applicable storage stability, excellent loading capacities for both DOX and shBeclin1 and a sustained drug release profile. In vitro cell culture experiments demonstrated that the uptake amount of FPDP/DOX micelles in folate receptor positive (FR+) HeLa cells was more than that in folate receptor negative (FR) HepG2 cells, leading to significantly higher cytotoxicity against FR+ HeLa cells. The simultaneous co-delivery of shBeclin1 and DOX to HeLa cells with FPDP micelles led to efficient reduction in the expression level of Beclin1 as well as synergistic cell apoptotic induction. Furthermore, in vivo studies revealed superior antitumor efficacy of tumor-targeted FPDP/DOX/shBeclin1 in comparison with non-FR-targeted PDP micelles and free DOX. These results highlighted that co-delivery of DOX and shRNA of Beclin1 with FPDP micelles has the potential to overcome the limitations of DOX in clinical cancer therapy.

New folate receptor targeted nano-micelles enhanced the anticancer effect of doxorubicin by shBeclin1 with the blockade of the autophagy process.  相似文献   

8.
The atom transfer radical polymerization (ATRP)-based synthesis of a pH-sensitive fluorescent polymer (PSDMA-b-POEGMA) was successfully prepared using 3,6-dibromo-isobutyramide acridine (DIA), an initiator with a fluorescent chromophore, to initiate a lipophilic monomer 2-styryl-1,3-dioxan-5-yl methacrylate (SDMA) and a hydrophilic monomer oligo(ethylene glycol) methyl ether (OEGMA), which contained a cinnamic aldehyde acetal structure. With the addition of hollow mesoporous silicon (HMS@C18), the pH-sensitive core–shell nanoparticles (HMS@C18@PSDMA-b-POEGMA) were developed via a self-assembly process as carriers for the anticancer drug doxorubicin (DOX) for drug loading and controlled release. The nanocomposites showed a higher drug loading capacity which was much higher than that observed using common micelles. At the same time, the polymer coated on the surface of the nanoparticles contains the fluorescent segment of an initiator, which can be used for fluorescence contrast of the cells. The nanocomposite carrier selectively inhibits human melanoma cell A375 relative to human normal fibroblasts GM. The in vitro results suggested that a smart pH sensitive nanoparticles drug delivery system was successfully prepared for potential applications in cancer diagnosis and therapy.

A pH-sensitive core–shell nanoparticle (HMS@C18@PSDMA-b-POEGMA) was developed via a self-assembly process as the carrier of anticancer drug doxorubicin (DOX) for drug loading and controlled release.  相似文献   

9.
Recently, theranostic candidates based on superparamagnetic iron oxide nanoparticles (SPIONs) providing the combination of therapy and diagnosis have become one of the most promising system in cancer research. However, poor stability, premature drug release, lack of specific tumor cell targeting, and complicated multi-step synthesis processes still hinder them for potential clinical applications. In this research, the multi-functional magnetic nanoparticles (MNPs-DOX) were prepared via a simple assembly process for targeted delivery of doxorubicin (DOX) and enhanced magnetic resonance (MR) imaging detection. Firstly, the multi-functional copolymer coating, polyamidoamine (PAMAM), was designed and synthesized by Michael addition reaction, where N,N-bis(acryloyl)cystamine served as backbone linker, and DOX, dopamine (DA), and polyethylene glycol (PEG) acted as comonomers. The PAMAM was then directly assembled to the surface of SPIONs by the ligand exchange reaction with SPIONs forming the MNPs-DOX. The hydrophilic PEG moieties provide the nanoparticles with colloidal stability and good-dispersity in aqueous solution. Comparing with the quick release of free DOX, the drug release behavior of MNPs-DOX exhibited a sustained drug release. Because the chemical cleavage of disulfide in the polymer backbone, a high cumulative drug release up to 60% in GSH within 48 h was observed, rather than only 26% in PBS (pH 7.4) without GSH. The MR imaging detection experiment showed that the MNPs-DOX had an enhanced T2 relaxivity of 126 mM−1 S−1 for MR imaging. The results of the cytotoxicity assays showed a remarkable killing effect of cancer cells by MNPs-DOX due to the FA tumor-targeting ligand, comparing with non-targeted drug molecules. All the results showed that the as prepared multi-functional magnetic nanoparticles may serve as a promising theranostic candidate for targeted anticancer drug delivery and efficient detection through MR imaging in medical application.

Multi-functional magnetic nanoparticles for targeted anticancer drug delivery and efficient MR imaging detection in theranostics.  相似文献   

10.
Polymeric micelles have great potential in drug delivery systems because of their multifunctional adjustability, excellent stability, and biocompatibility. To further increase the drug loading efficiency and controlled release ability, a pH-responsive hyperbranched copolymer methoxy poly(ethylene glycol)-b-polyethyleneimine-poly(Nε-Cbz-l-lysine) (MPEG-PEI-PBLL) was synthesized successfully. MPEG-PEI-NH2 was synthesized to initiate the ring-opening polymerization of benzyloxycarbonyl substituted lysine N-carboxyanhydride (Z-lys NCA). The introduction of Schiff bases in the polymer make it possible to respond to the variation of pH values, which cleaved at pH 5.0 while stable at pH 7.4. As the polymer was amphiphilic, MPEG-PEI-PBLL could self-assemble into micelles. Owing to the introduction of PEI, which make the copolymer hyperbranched, the pH-responsive micelles could efficiently encapsulate theranostic agents, such as doxorubicin (DOX) for chemotherapy and NIRF dye DiD for in vivo near-infrared (NIR) imaging. The drug delivery system prolonged the drug circulation time in blood and allowed the drug accumulate effectively at the tumor site. Following the guidance, the DOX was applied in chemotherapy to achieve cancer therapeutic efficiency. All the results demonstrate that the polymer micelles have great potential for cancer theranostics.

Polymeric micelles have great potential in drug delivery systems because of their multifunctional adjustability, excellent stability, and biocompatibility.  相似文献   

11.
Previously we synthesized redox sensitive polyurethane micelles, core crosslinked by diisocyanates (PU-CCL). To improve the intracellular drug release and tumor cellular toxicity of anticancer drugs loaded into polyurethane micelles, we now describe redox sensitive polyurethane micelles with tunable surface charge switchabilities, crosslinked with pH cleavable Schiff bonds, as anticancer drug carriers. Different amounts of 1,6-diaminohexane were connected onto the pendant carboxyl groups of amphiphilic multi-blocked polyurethane (PU-SS-COOH), resulting in polyurethanes with various ratios of pendant carboxyl and amine groups (denoted as PU-SS-COOH-NH2-1, PU-SS-COOH-NH2-2 and PU-SS-COOH-NH2-3). The surface charge switched as the pH was increased for PU-SS-COOH-NH2-1, PU-SS-COOH-NH2-2 and PU-SS-COOH-NH2-3. Then the PU-SS-COOH-NH2-3 micelles, dissolved in water, were crosslinked by glutaraldehyde resulting in surface charge switchable and reduction responsive polyurethane micelles with acid cleavable crosslinks (PU-ACCL). The crosslinked polyurethane micelles (PU-ACCL) demonstrated superior particle stability in phosphate buffered saline (PBS, pH = 7.4) solution without reducing agents, whereas the drug release rate was markedly accelerated by the addition of glutathione (GSH). Notably, the drug release from PU-ACCL was further accelerated in acidic fluid as the result of acid induced cleavage of the crosslinks. In vitro cytotoxicity studies demonstrated that doxorubicin (DOX)-loaded PU-ACCL micelles displayed increased cytotoxicity against tumor cells which was comparable to that obtained for DOX loaded into uncrosslinked polyurethane micelles. The reduction responsive and surface charge switchable polyurethane micelles with acid cleavable crosslinks, which have superior extracellular stability and provide rapid intracellular drug release, may hold great potential as a bio-triggered drug delivery system for cancer therapy.

Previously we synthesized redox sensitive polyurethane micelles, core crosslinked by diisocyanates (PU-CCL).  相似文献   

12.
The pH and reduction dual-responsive polypeptide nanogels with self-reinforced endocytoses were prepared through ring-opening polymerization of l-glutamate N-carboxyanhydrides, deprotection of benzyl group and subsequent quaternization reaction between γ-2-chloroethyl-l-glutamate unit in polypeptide block and 2,2′-dithiobis(N,N-dimethylethylamine). The nanogels were revealed to exhibit smart pH and reduction dual-responsiveness, and excellent biocompatibilities, which expressed great potential as antitumor drug nanocarriers. Doxorubicin (DOX) as a model antitumor drug was loaded into nanogels through dispersion. DOX-loaded nanogels displayed a stable core-cross-linked structure under normal physiological condition (pH 7.4), while rapidly releasing the payloads in the mimicking endosomal (pH 5.3), tumor tissular (pH 6.8) or intracellular reductive microenvironments (10.0 mM glutathione). Confocal fluorescence microscopy demonstrated that DOX-loaded nanogels could deliver DOX into HepG2 cells (a human hepatoma cell line) more efficiently than the parent DOX-loaded micelle and free DOX. The enhanced cellular internalizations of DOX-loaded nanogels were more significant under tumor tissular acidic condition (pH 6.8) ascribed to the quaternary ammonium groups in the cores. In addition, DOX-loaded nanogels exhibited improved in vitro and in vivo antitumor activities, and in vivo securities compared with DOX-loaded micelle and free DOX. These excellent features of the smart nanogels with quaternary ammonium groups were endowed with a bright prospect for intracellular targeting antitumor drug delivery.  相似文献   

13.
Polymeric micelles based on poly(L-lactide)-b-poly(2-ethyl-2-oxazoline)-b-poly(L-lactide) (PLLA-PEOz-PLLA) ABA triblock copolymers were designed as intracellular drug carriers. The PLLA-PEOz-PLLA micelles adopt a "flower-like" arrangement with A-blocks at the core and a B-block on the shell under neutral condition. The deformation of the core-shell structure is then promoted by the aggregation of PEOzs due to the formation of inter- and intra-hydrogen bonding between protonated nitrogen and carbonyl groups. The experiments on in vitro release have confirmed that the release of doxorubicin (DOX) from micelles was successfully inhibited at pH 7.4. In contrast, an accelerated release of DOX from micelles was observed at acidic conditions. The results of growth inhibition assay indicated that the cell-killing rate of DOX-loaded micelles gradually approached that of free DOX as increasing the concentration and the incubation time. The overlay of fluorescent images on CLSM observation clearly demonstrated the colocalization of DOX with acidic compartments, suggesting that the drug release was successfully triggered in the acidic organelles by means of micelle deformation.  相似文献   

14.
Doxorubicin (DOX) was physically loaded into micelles prepared from poly(ethylene glycol)-poly(beta-benzyl-L-aspartate) block copolymer (PEG-PBLA) by an o/w emulsion method with a substantial drug loading level (15 to 20 w/w%). DOX-loaded micelles were narrowly distributed in size with diameters of approximately 50-70 nm. Dimer derivatives of DOX as well as DOX itself were revealed to be entrapped in the micelle, the former seems to improve micelle stability due to its low water solubility and possible interaction with benzyl residues of PBLA segments through pi-pi stacking. Release of DOX compounds from the micelles proceeded in two stages: an initial rapid release was followed by a stage of slow and long-lasting release of DOX. Acceleration of DOX release can be obtained by lowering the surrounding pH from 7.4 to 5.0, suggesting a pH-sensitive release of DOX from the micelles. A remarkable improvement in blood circulation of DOX was achieved by use of PEG-PBLA micelle as a carrier presumably due to the reduced reticuloendothelial system uptake of the micelles through a steric stabilization mechanism. Finally, DOX loaded in the micelle showed a considerably higher antitumor activity compared to free DOX against mouse C26 tumor by i.v. injection, indicating a promising feature for PEG-PBLA micelle as a long-circulating carrier system useful in modulated drug delivery.  相似文献   

15.
A series of injectable and biocompatible delivery DOX-loaded supramolecular hydrogels were fabricated by using presynthesized DOX-2N-β-CD, Pluronic F-127 and α-CD through host–guest interactions and cooperative multivalent hydrogen bonding interactions. The compositions and morphologies of these hydrogels were confirmed by PXRD and SEM measurements. Moreover, the Rheological measurements of these hydrogels were studied and the studies found that they showed a unique thixotropic behavior, indicting a fast self-healing property after the continuous oscillatory shear stress. Using α-CD as a capping agent, slow and sustained DOX release was observed at different pH values after 72 h. The amount of DOX released at pH 7.4 was determined to be 49.0% for hydrogel 1, whereas the releasing amount of the DOX was increased to 66.3% for hydrogel 1 during the same period at pH 5.5 (P < 0.05), indicating a higher release rate of the drug under more acidic conditions. Taking hydrogel 1 as a representative material, the toxicities of DOX and hydrogel 1 on ovarian cancer cells (SKOV-3) at different exposure durations were examined. The results revealed that hydrogel 1 was less cytotoxic than free DOX to SKOV-3 cells (P < 0.05), suggesting sustained release by these hydrogels in the presence of ovarian cancer cells. It is anticipated that this exploration can provide a new strategy for preparing drug delivery systems.

A series of injectable and biocompatible delivery DOX-loaded supramolecular hydrogels were fabricated by using presynthesized DOX-2N-β-CD, Pluronic F-127 and α-CD through host–guest interactions and cooperative multivalent hydrogen bonding interactions.  相似文献   

16.
Mesoporous silica nanoparticles (MSN) have been widely applied for drug delivery systems. To investigate the effects of pore size on anticancer efficacies, MSN with different pore sizes but similar particle sizes and surface charges were synthesized via a microemulsion method. The pore structures of MSN were characterized by transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and N2 adsorption–desorption isotherms. Doxorubicin loaded MSN (DOX/MSN) were prepared and the minimum drug loading capacity was detected in DOX/MSN with a pore size of 2.3 nm (DOX/MSN2). DOX/MSN with a pore size of 8.2 nm (DOX/MSN8) showed a comparable drug loading amount in comparison with ones with a pore size of 5.4 nm (DOX/MSN5). In vitro drug release profiles showed that DOX/MSN5 could release DOX quickly and completely. Compared with DOX/MSN2 and DOX/MSN8, DOX/MSN5 showed the higher cellular uptake and nucleic concentration of DOX in QGY-7703 cells, which led to efficient cell-apoptosis induction and anti-proliferation effect, and thus the optimal in vivo anticancer activities. Taken together, these results highlighted the importance of pore size in anticancer efficacies, which would serve as a guideline in the rational design of MSN for cancer therapy.

MSN with suitable pore sizes achieved an outstanding performance for in vitro and in vivo antitumor efficacies.  相似文献   

17.
A novel triblock polymer is synthesized and self-assembled with doxorubicin to form DOX-loaded micelles. The synthetic process involves the ring-opening polymerization, carboxylation and amidation reactions, and the structures are characterized. The drug release test indicated that the micelles have the ability to control the release of drugs. The cell uptake results indicated that the DOX-loaded micelles could enter cancer cells easily, and the cytotoxicity and apoptosis test confirmed that DOX-loaded micelles have a strong killing effect on tumor cells, while the blank micelles do not have cytotoxicity. Therefore, the novel polymer micelles are a promising carrier for delivery of anticancer drugs to enhance cancer treatment.

A novel triblock polymer is synthesized and self-assembled with doxorubicin to form DOX-loaded micelles.  相似文献   

18.
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely prescribed for the treatment of various types of inflammatory conditions. Diclofenac is a very common NSAID that is utilized to relieve pain and reduce fever and, most importantly, inflammation. However, it suffers from low water solubility and a low dissolution profile. Therefore, we aim to develop a new drug delivery system based on the synthesis of amphiphilic structures that are capable of self assembling into nano-micelles which will be a water-soluble delivery system for the diclofenac. The amphiphilic structure consists of a hydrophilic moiety of triethylene glycol (TEG), polyethylene glycol PEG 400, or PEG 600 linked with the hydrophobic drug diclofenac through an ester linkage. The diclofenac derivatives were successfully synthesized as confirmed by nuclear magnetic resonance. Moreover, the formation of the micellar structure of the synthesized amphiphilic derivatives was confirmed by atomic force microscopy obtaining a spherical shape of the micelles with average diameters of 200 nm for Dic-PEG400-Dic, and 110 nm for Dic-PEG600-Dic. The critical micelle concentration has been determined as 2.7 × 10−3 mg mL−1 for Dic-PEG400-Dic, and 1 × 10−4 mg mL−1 for Dic-PEG600-Dic. The in vitro diclofenac release profile by esterase enzyme was conducted and showed almost complete conversion to free diclofenac within 35 h in the case of Dic-PEG400-Dic micelles and more than 85% of Dic-PEG600-Dic micelles. Then the anti-inflammatory activity was determined by testing the TNF-α production in LPS-stimulated Balb/c mice. Diclofenac micelles significantly suppressed TNF-α production after a 5 mg kg−1 dose was given. The developed micelles showed TNF-α inhibition up to 87.4% and 84% after 48 hours of treatment in the case of Dic-PEG400-Dic and Dic-PEG600-Dic micelles respectively in comparison to 42.3% in the case of diclofenac alone. Dic-PEG400-Dic micelles showed the most potent anti-inflammatory activity with improved TNF-α suppression through time progress. Therefore, the developed nano-micelles provide a facile synthetic approach to enhance diclofenac water solubility, improve the anti-inflammatory effect and achieve a sustained release profile to get better patient compliance.

Amphiphilic diclofenac prodrugs were successfully synthesized and self-assembled into the nano-micellar structures that have improved the anti-inflammatory activity in vivo.  相似文献   

19.
Drug delivery with microbubbles and ultrasound is gaining more and more attention in the drug delivery field due to its noninvasiveness, local applicability, and proven safety in ultrasonic imaging techniques. In this article, we tried to improve the cytotoxicity of doxorubicin (DOX)-containing liposomes by preparing DOX-liposome-containing microbubbles for drug delivery with therapeutic ultrasound. In this way, the DOX release and uptake can be restricted to ultrasound-treated areas. Compared to DOX-liposomes, DOX-loaded microbubbles killed at least two times more melanoma cells after exposure to ultrasound. After treatment of the melanoma cells with DOX-liposome-loaded microbubbles and ultrasound, DOX was mainly present in the nuclei of the cancer cells, whereas it was mainly detected in the cytoplasm of cells treated with DOX-liposomes. Exposure of cells to DOX-liposome-loaded microbubbles and ultrasound caused an almost instantaneous cellular entry of the DOX. At least two mechanisms were identified that explain the fast uptake of DOX and the superior cell killing of DOX-liposome-loaded microbubbles and ultrasound. First, exposure of DOX-liposome-loaded microbubbles to ultrasound results in the release of free DOX that is more cytotoxic than DOX-liposomes. Second, the cellular entry of the released DOX is facilitated due to sonoporation of the cell membranes. The in vitro results shown in this article indicate that DOX-liposome-loaded microbubbles could be a very interesting tool to obtain an efficient ultrasound-controlled DOX delivery in vivo.  相似文献   

20.
Micelles self-assembled from small amphiphilic molecules are unstable in biological fluids, and thus are poor drug carriers. In contrast, amphiphilic polymer micelles can encapsulate hydrophobic drugs in their core to greatly enhance their aqueous solubility and extend their retention time in blood circulation owing to their hydrophilic shell. However, the major disadvantages of conventional polymer micelles are the heterogeneity of the amphiphilic polymer structure and premature drug leakage. Thus, herein, to address these shortcomings, disulfide crosslinked micelles composed of a small amphiphilic molecule, di-lipoyl-glycerophosphorylcholine (di-LA-PC), were developed as redox-responsive drug carriers. Specifically, di-LA-PC was synthesized and self-assembled to form crosslinked micelles under catalysis by dithiothreitol. The disulfide crosslinked micelles maintained high stability in a simulated physiological environment, but rapidly disassembled under reductive conditions. Furthermore, paclitaxel (PTX), as a model drug, was encapsulated in the core of the crosslinked micelles with a high loading content of 8.13%. The in vitro release studies indicated that over 80% of PTX was released from the micelles in the reductive environment, whereas less than 20% PTX was released without reduction in the 68 h test. Benefiting from their nanoscale characteristics, the PTX-loaded micelles showed efficient cellular internalization and effectively induced the death of cancer cells, as revealed in the MTT, apoptosis and cell cycle tests. Moreover, pharmacokinetic studies demonstrated that the crosslinked micelles prolonged the circulation of the incorporated PTX in the bloodstream and increased its accumulation in the tumor tissue via the EPR effect. Finally, the PTX-loaded micelles displayed prominent in vivo anti-tumor activity in a 4T1 xenograft tumor model. In summary, the di-LA-PC crosslinked micelle platform possesses excellent stability, high loading capacity and reduction-responsive release profile, which may have applications in the delivery of PTX and other anti-cancer drugs.

Reduction-responsive crosslinked di-LA-PC micelles from amphiphilic bis-LA-PC conjugate for PTX loading and GSH-triggered release of PTX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号