首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aluminum–air batteries are promising electronic power sources because of their low cost and high energy density. However, traditional aluminum–air batteries are greatly restricted from being used in the field of flexible electronics due to the rigid battery structure, and the irreversible corrosion of the anode by the alkaline electrolyte, which greatly reduces the battery life. To address these issues, a three-dimensional dual-network interpenetrating structure PVA/LiCl/PEO composite gel polymer electrolyte (GPE) is proposed. The gel polymer electrolyte exhibits good flexibility and high ionic conductivity (σ = 6.51 × 10−3 S cm−1) at room temperature. Meanwhile, benefiting from the high-performance GPE, an assembled aluminum–air coin cell shows a highest discharge voltage of 0.73 V and a peak power density (Pmax) of 3.31 mW cm−2. The Al specific capacity is as high as 735.2 mA h g−1. A flexible aluminum–air battery assembled using the GPE also performed stably in flat, bent, and folded states. This paper provides a cost-effective and feasible way to fabricate a composite gel polymer electrolyte with high performance for use in flexible aluminum–air batteries, suitable for a variety of energy-related devices.

Problems relating to the leakage of alkaline liquid electrolyte, the evaporation of water, and flexibility in traditional aluminum–air batteries are solved in this study.  相似文献   

2.
Flexible Zn–MnO2 batteries as wearable electronic power source have attracted much attention in recent years due to their low cost and high safety. To promote the practical application of flexible Zn–MnO2 batteries, it is imperative to develop flexible, mechanically robust and high performance solid state electrolyte. Herein, we construct a rechargeable quasi-solid-state zinc ion battery using kappa-carrageenan bio-polymer electrolyte. The kappa-carrageenan electrolyte is eco-friendly, low cost, and highly conductive (3.32 × 10−2 S cm−1 at room temperature). The mechanical robustness of kappa-carrageenan electrolyte is further reinforced by using a rice paper as scaffold. Benefiting from high ionic conductivity of the bio-polymer electrolyte, our zinc ion battery delivers a significant high energy density and power density (400 W h kg−1 and 7.9 kW kg−1, respectively), high specific capacity (291.5 mA h g−1 at 0.15 A g−1), fast charging and discharging capability (120.0 mA h g−1 at 6.0 A g−1). The zinc ion battery with bio-polymer electrolyte also shows excellent cycling stability and high bending durability. This work brings new research opportunities in developing low-cost flexible solid-state zinc ion batteries using green natural polymer.

The zinc ion batteries with KCR electrolyte show a high specific capacity and fast charging and discharging capability.  相似文献   

3.
Rechargeable aqueous zinc-ion batteries (ZIBs) are promising wearable electronic power sources. However, solid-state electrolytes with high ionic conductivities and long-term stabilities are still challenging to fabricate for high-performance ZIBs. Herein, locust bean gum (LBG) was used as a natural bio-polymer to prepare a free-standing quasi-solid-state ZnSO4/MnSO4 electrolyte. The as-obtained LBG electrolyte showed high ionic conductivity reaching 33.57 mS cm−1 at room temperature. This value is so far the highest among the reported quasi-solid-state electrolytes. Besides, the as-obtained LBG electrolyte displayed excellent long-term stability toward a Zn anode. The application of the optimized LBG electrolyte in Zn–MnO2 batteries achieved a high specific capacity reaching up to 339.4 mA h g−1 at 0.15 A g−1, a superior rate performance of 143.3 mA h g−1 at 6 A g−1, an excellent capacity retention of 100% over 3300 cycles and 93% over 4000 cycles combined with a wide working temperature range (0–40 °C) and good mechanical flexibility (capacity retention of 80.74% after 1000 bending cycles at a bending angle of 90°). In sum, the proposed ZIBs-based LBG electrolyte with high electrochemical performance looks promising for the future development of bio-compatible and environmentally friendly solid-state energy storage devices.

Locust bean gum was utilized to prepare a free-standing quasi-solid-state ZnSO4/MnSO4 electrolyte. Zinc-ion batteries with locust bean gum electrolyte achieved high energy density and superior lifetime.  相似文献   

4.
In modern society, flexible rechargeable batteries have become a burgeoning apodictic choice for wearable devices. Conventional lithium–sulfur batteries lack sufficient flexibility because their electrode materials are too rigid to bend. Along with the inherent high theoretical capacity of sulfur, lithium–sulfur batteries have some issues, such as dissolution and shuttle effect of polysulfides, which restricts their efficiency and practicability. Here, a flexible and “dead-weight”-free lithium–sulfur battery substrate with a three-dimensional structure was prepared by a simple strategy. With the cooperative assistance of carbon nanotubes and graphene attached to cotton fibers, the lithium–sulfur battery with 2.0 mg cm−2 sulfur provided a high initial discharge capacity of 1098.7 mA h g−1 at 1C, and the decay rate after 300 cycles was only 0.046% per cycle. The initial discharge capacity at 2C was 872.4 mA h g−1 and the capacity was maintained 734.4 mA h g−1 after 200 cycles with only a 0.079% per cycle decay rate.

A flexible, “dead weight”-free lithium–sulfur battery substrate was prepared, and batteries using these substrates showed great electrochemical performance.  相似文献   

5.
A three-dimensional cross-linked Ni–V2O5 nanomaterial with a particle size of 250–300 nm was successfully prepared in a 1-butyl-3-methylimidazole bromide ionic liquid (IL). The formation of this structure may follow the rule of dissolution–recrystallization and the ionic liquid, as both a dissolution and structure-directing agent, plays an important role in the formation of the material. After calcination of the precursor, the active material (Ni–V2O5–IL) was used as an anode for lithium-ion batteries. The designed anode exhibited excellent electrochemical performance with 765 mA h g−1 at a current density of 0.3 A g−1 after 300 cycles, which is much higher than that of a NiVO–W material prepared via a hydrothermal method (305 mA h g−1). These results show the remarkable superiority of this novel electrode material synthesized in an ionic liquid.

A three-dimensional cross-linked Ni–V2O5 nanomaterial with a particle size of 250–300 nm was successfully prepared in a 1-butyl-3-methylimidazole bromide ionic liquid (IL).  相似文献   

6.
Thanks to their intrinsic merits of low cost and natural abundance, potassium-ion batteries have drawn intense interest and are regarded as a possible replacement for lithium-ion batteries. The larger radius of potassium, however, provides slow mobility, which normally leads to sluggish diffusion of host materials and eventual expansion of volume, typically resulting in electrode failure. To address these issues, we design and synthesize an effective micro-structure with Co9S8 nanoparticles segregated in carbon fiber utilizing a concise electrospinning process. The anode delivers a high K+ storage capacity of 721 mA h g−1 at 0.1 A g−1 and a remarkable rate performance of 360 mA h g−1 at a high current density of 3 A g−1. A small charge-transfer resistance and a high pseudocapacitive contribution that benefit fast potassium ion migration are indicated by quantitative analysis. The outstanding electrochemical performance can be attributed to the distinct architecture design facilitating high active electrode–electrolyte area and fast kinetics as well as controlled volume expansion.

Co9S8@carbon nanofibers with boosted highly active electrode–electrolyte area, fast kinetics and controlled volume expansion show an excellent cycling and rate performance in potassium ion batteries.  相似文献   

7.
Lithium–sulfur batteries are regarded as a promising energy storage system. However, they are plagued by rapid capacity decay, low coulombic efficiency, a severe shuttle effect and low sulfur loading in cathodes. To address these problems, effective carriers are highly demanded to encapsulate sulfur in order to extend the cycle life. Herein, we introduced a doped-PEDOT:PSS-coated MIL-101/S multi-core–shell structured composite. The unique structure of MIL-101, large specific area and conductive shell ensure high dispersion of sulfur in the composite and minimize the loss of polysulfides to the electrolyte. The doped-PEDOT:PSS-coated sulfur electrodes exhibited an increase in initial capacity and an improvement in rate characteristics. After 192 cycles at the current density of 0.1C, a doped-PEDOT:PSS-coated MIL-101/S electrode maintained a capacity of 606.62 mA h g−1, while the MIL-101/S@PEDOT:PSS electrode delivered a capacity of 456.69 mA h g−1. The EIS measurement revealed that the surface modification with the conducting polymer provided a lower resistance to the sulfur electrode, which resulted in better electrochemical behaviors in Li–S battery applications. Test results indicate that the MIL-101/S@doped-PEDOT:PSS is a promising host material for the sulfur cathode in the lithium–sulfur battery applications.

Lithium–sulfur batteries are regarded as a promising energy storage system.  相似文献   

8.
Anode material Li2TiO3–coke was prepared and tested for lithium-ion batteries. The as-prepared material exhibits excellent cycling stability and outstanding rate performance. Charge/discharge capacities of 266 mA h g−1 at 0.100 A g−1 and 200 mA h g−1 at 1.000 A g−1 are reached for Li2TiO3–coke. A cycling life-time test shows that Li2TiO3–coke gives a specific capacity of 264 mA h g−1 at 0.300 A g−1 and a capacity retention of 92% after 1000 cycles of charge/discharge.

Anode material Li2TiO3–coke was prepared and tested for lithium-ion batteries. The as-prepared material exhibits excellent cycling stability and outstanding rate performance.  相似文献   

9.
Despite their high energy density, the poor cycling performance of lithium–oxygen (Li–O2) batteries limits their practical application. Therefore, to improve cycling performance, considerable attention has been paid to the development of an efficient electrocatalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Catalysts that can more effectively reduce the overpotential and improve the cycling performance for the OER during charging are of particular interest. In this study, porous carbon derived from protein-based tofu was investigated as a catalyst support for the oxygen electrode (O2-electrode) of Li–O2 batteries, wherein ORR and OER occur. The porous carbon was synthesized using carbonization and KOH activation, and RuO2 and Pt electrocatalysts were introduced to improve the electrical conductivity and catalytic performance. The well-dispersed Pt/RuO2 electrocatalysts on the porous N-doped carbon support (Pt/RuO2@ACT) showed excellent ORR and OER catalytic activity. When incorporated into a Li–O2 battery, the Pt/RuO2@ACT O2-electrode exhibited a high specific discharge capacity (5724.1 mA h g−1 at 100 mA g−1), a low discharge–charge voltage gap (0.64 V at 2000 mA h g−1), and excellent cycling stability (43 cycles with a limit capacity of 1000 mA h g−1). We believe that the excellent performance of the Pt/RuO2@ACT electrocatalyst is promising for accelerating the commercialization of Li–O2 batteries.

The excellent performance of the Pt/RuO2@ACT electrocatalyst is promising for accelerating the commercialization of Li–O2 batteries.  相似文献   

10.
ZnMnO3 has attracted enormous attention as a novel anode material for rechargeable lithium-ion batteries due to its high theoretical capacity. However, it suffers from capacity fading because of the large volumetric change during cycling. Here, porous ZnMnO3 yolk–shell microspheres are developed through a facile and scalable synthesis approach. This ZnMnO3 can effectively accommodate the large volume change upon cycling, leading to an excellent cycling stability. When applying this ZnMnO3 as the anode in lithium-ion batteries, it shows a remarkable reversible capacity (400 mA h g−1 at a current density of 400 mA g−1 and 200 mA h g−1 at 6400 mA g−1) and excellent cycling performance (540 mA h g−1 after 300 cycles at 400 mA g−1) due to its unique structure. Furthermore, a novel conversion reaction mechanism of the ZnMnO3 is revealed: ZnMnO3 is first converted into intermediate phases of ZnO and MnO, after which MnO is further reduced to metallic Mn while ZnO remains stable, avoiding the serious pulverization of the electrode brought about by lithiation of ZnO.

ZnMnO3 has attracted enormous attention as a novel anode material for rechargeable lithium-ion batteries due to its high theoretical capacity.  相似文献   

11.
High-performance lithium ion batteries are ideal energy storage devices for both grid-scale and large-scale applications. Germanium, possessing a high theoretical capacity, is a promising anode material for lithium ion batteries, but still faces poor cyclability due to huge volume changes during the lithium alloying/dealloying process. Herein, we synthesized an amorphous germanium and zinc chalcogenide (GZC) with a hierarchically porous structure via a solvothermal reaction. As an anode material in a lithium ion battery, the GZC electrode exhibits a high reversible capacity of 747 mA h g−1 after 350 cycles at a current density of 100 mA g−1 and a stable capacity of 370 mA h g−1 after 500 cycles at a current density of 1000 mA g−1 along with 92% capacity retention. All of these outstanding electrochemical properties are attributed to the hierarchically porous structure of the electrode that has a large surface area, fast ion conductivity and superior structural stability, which buffers the volumetric variation during charge/discharge processes and also makes it easier for the electrolyte to soak in, affording more electrochemically active sites.

High-performance lithium ion batteries are ideal energy storage devices for both grid-scale and large-scale applications.  相似文献   

12.
Organic carbonyl redox polymers, especially conjugated polyimides with multiple reversible redox centers have attracted considerable attention as electrode materials for organic Li-ion batteries. However, the low utilization of carbonyls hindered their potential applications in energy storage. Herein, a novel π-conjugated polyimide (PBPI) based on biphenyl diimide (BPI) containing two seven-membered imide rings is developed. PBPI is used as an anode material for organic Li-ion batteries, which show high conductivity and insolubility in the electrolyte and enable intercalation of four Li-ions per BPI unit, thus contributing to a reversible capacity of 136 mA h g−1 at 100 mA g−1 with coulombic efficiency close to 100%. Moreover, the battery based on PBPI manifested superior high-rate performance (65 mA h g−1 at 2000 mA g−1) as well as significant cycling stability (over 1600 cycles at 100 mA g−1). Remarkably, the full redox-active site (C Created by potrace 1.16, written by Peter Selinger 2001-2019 O) utilization of an aromatic diimide core to achieve its full potential applications is reported for the first time. This work provides a new strategy for developing redox π-conjugated polyimides and accommodation of more alkaline ions for high performance battery systems.

A novel π-conjugated polyimide based on the two seven-membered imide rings-containing BPI was reported, which be used as a highly stable anode electrode material with full utilization of carbonyls for the application organic Li-ion batteries.  相似文献   

13.
Nowadays, designing heteroatom-doped porous carbons from inexpensive biomass raw materials is a very attractive topic. Herein, we propose a simple approach to prepare heteroatom-doped porous carbons by using nettle leaves as the precursor and KOH as the activating agent. The nettle leaf derived porous carbons possess high specific surface area (up to 1951 m2 g−1), large total pore volume (up to 1.374 cm3 g−1), and high content of nitrogen and oxygen heteroatom doping (up to 17.85 at% combined). The obtained carbon as an electrode for symmetric supercapacitors with an ionic liquid electrolyte can offer a superior specific capacitance of 163 F g−1 at 0.5 A g−1 with a capacitance retention ratio as high as 67.5% at 100 A g−1, and a low capacitance loss of 8% after 10 000 cycles. Besides, the as-built supercapacitor demonstrates a high specific energy of 50 W h kg−1 at a specific power of 372 W kg−1, and maintains 21 W h kg−1 at the high power of 40 kW kg−1. Moreover, the resultant carbon as a Li-ion battery anode delivers a high reversible capacity of 1262 mA h g−1 at 0.1 A g−1 and 730 mA h g−1 at 0.5 A g−1, and maintains a high capacity of 439 mA h g−1 after 500 cycles at 1 A g−1. These results demonstrate that the nettle leaf derived porous carbons offer great potential as electrodes for advanced supercapacitors and lithium ion batteries.

Nettle leaf derived nitrogen and oxygen dual-doped porous carbons exhibit great potential as anodes for high performance supercapacitors and lithium ion batteries.  相似文献   

14.
A layered nanosphere structured NiO catalyst was successfully synthesized by a simple and efficient hydrothermal method as a cathode material for lithium–oxygen (Li–O2) batteries. Cyclic voltammetry (CV), dual electrode voltammetry (DECV) and chronoamperometry (CA) by rotating ring-disk electrode (RRDE) were carried out to investigate the catalytic activity of this catalyst for the oxygen evolution reaction (OER). The results revealed that the layered nanosphere NiO exhibited excellent electrochemical performance, stability and a typical four-electron reaction as a cathode electrocatalyst for rechargeable nonaqueous Li–O2 batteries. The overpotential of the NiO is only up to 0.61 V. X-ray photoelectron spectroscopy (XPS) characterization shows that the Li2O2 and Li2CO3 formed during the discharge process and decomposed after charging. Moreover, the cut-off voltage of discharging is about 2.0 V in the NiO-based Li–O2 batteries, while the specific capacity is up to 3040 mA h g−1. There is no obvious performance decline of the battery after 50 cycles at a current density of 0.1 mA cm−2 with a superior limited specific capacity of 800 mA h g−1. Herein, the layered nanosphere structured NiO catalyst is considered a promising cathode electrocatalyst for Li–O2 batteries.

A layered nanosphere structured NiO catalyst was synthesized by a simple and efficient hydrothermal method as a cathode material for lithium–oxygen (Li–O2) batteries.  相似文献   

15.
Room temperature ionic liquids (RTILs) are solvent-free liquids comprised of densely packed cations and anions. The low vapor pressure and low flammability make ILs interesting for electrolytes in batteries. In this work, a new class of ionic liquids were formed for rechargeable aluminum/graphite battery electrolytes by mixing 1-methyl-1-propylpyrrolidinium chloride (Py13Cl) with various ratios of aluminum chloride (AlCl3) (AlCl3/Py13Cl molar ratio = 1.4 to 1.7). Fundamental properties of the ionic liquids, including density, viscosity, conductivity, anion concentrations and electrolyte ion percent were investigated and compared with the previously investigated 1-ethyl-3-methylimidazolium chloride (EMIC-AlCl3) ionic liquids. The results showed that the Py13Cl–AlCl3 ionic liquid exhibited lower density, higher viscosity and lower conductivity than its EMIC-AlCl3 counterpart. We devised a Raman scattering spectroscopy method probing ILs over a Si substrate, and by using the Si Raman scattering peak for normalization, we quantified speciation including AlCl4, Al2Cl7, and larger AlCl3 related species with the general formula (AlCl3)n in different IL electrolytes. We found that larger (AlCl3)n species existed only in the Py13Cl–AlCl3 system. We propose that the larger cationic size of Py13+ (142 Å3) versus EMI+ (118 Å3) dictated the differences in the chemical and physical properties of the two ionic liquids. Both ionic liquids were used as electrolytes for aluminum–graphite batteries, with the performances of batteries compared. The chloroaluminate anion-graphite charging capacity and cycling stability of the two batteries were similar. The Py13Cl–AlCl3 based battery showed a slightly larger overpotential than EMIC-AlCl3, leading to lower energy efficiency resulting from higher viscosity and lower conductivity. The results here provide fundamental insights into ionic liquid electrolyte design for optimal battery performance.

Room temperature ionic liquids (RTILs) are solvent-free liquids comprised of densely packed cations and anions. Properties of Py13Cl–AlCl3 ILs were studied and compared with EMIC-AlCl3 ILs for use as electrolyte in Al–graphite battery.  相似文献   

16.
The high specific capacity, low cost and environmental friendliness make manganese dioxide materials promising cathode materials for zinc-ion batteries (ZIBs). In order to understand the difference between the electrochemical behavior of manganese dioxide materials with different valence states, i.e., Mn(iii) and Mn(iv), we investigated and compared the electrochemical properties of pure MnO2 and Mn2O3 as ZIB cathodes via a combined experimental and computational approach. The MnO2 electrode showed a higher discharging capacity (270.4 mA h g−1 at 0.1 A g−1) and a superior rate performance (125.7 mA h g−1 at 3 A g−1) than the Mn2O3 electrode (188.2 mA h g−1 at 0.1 A g−1 and 87 mA h g−1 at 3 A g−1, respectively). The superior performance of the MnO2 electrode was ascribed to its higher specific surface area, higher electronic conductivity and lower diffusion barrier of Zn2+ compared to the Mn2O3 electrode. This study provides a detailed picture of the diversity of manganese dioxide electrodes as ZIB cathodes.

MnO2 and Mn2O3 cathodes for zinc ion batteries were experimentally and computationally explored.  相似文献   

17.
SiO2 nanowire arrays have been prepared by a template-assisted sol gel method and used as a negative electrode material for lithium ion batteries. Amorphous SiO2 was confirmed by X-ray diffraction and Fourier transform infrared spectroscopy. The results of scanning electron microscopy and transmission electron microscopy confirmed that the SiO2 nanowire had a diameter of about 100 nm and a length of about 30 μm. Cyclic voltammetry and constant current charge and discharge tests showed the prepared SiO2 nanowire arrays were electrochemically active at a potential range of 0.05–3.0 V. At a current density of 200 mA g−1, the first discharge specific capacity was as high as 2252.6 mA h g−1 with a coulombic efficiency of 60.7%. Even after about 400 cycles, it still maintained 97.5% of the initial specific capacity. Moreover, a high specific capacity of 315 mA h g−1 was exhibited when the current density was increased to 2500 mA g−1. SiO2 nanowire array electrodes with high reversible capacity and good cycle performance provide potential anode materials for future lithium-ion batteries.

SiO2 nanowire arrays were synthesized using an AAO template-assisted sol–gel method. As a lithium negative electrode material, the sample exhibited excellent electrochemical properties.  相似文献   

18.
Cathode materials that operate at high voltages are required to realize the commercialization of high-energy-density sodium-ion batteries. In this study, we prepared different composites of sodium cobalt mixed-phosphate with multiwalled carbon nanotubes (Na4Co3(PO4)2P2O7–MWCNTs) by the sol–gel synthesis technique. The crystal structure and microstructure were characterized by using PXRD, TGA, Raman spectroscopy, SEM and TEM. The electrochemical properties of the Na4Co3(PO4)2P2O7–20 wt% MWCNT composite were explored using two different electrolytes. The composite electrode exhibited excellent cyclability and rate capabilities with the electrolyte composed of 1 M sodium hexafluorophosphate in ethylene carbonate:dimethyl carbonate (EC:DMC). The composite electrode delivered stable discharge capacities of 80 mA h g−1 and 78 mA h g−1 at room and elevated (55 °C) temperatures, respectively. The average discharge voltage was around 4.45 V versus Na+/Na, which corresponded to the Co2+/3+ redox couple. The feasibility of the Na4Co3(PO4)2P2O7 cathode for sodium-ion batteries has been confirmed in real time using a full cell configuration vs. NaTi2(PO4)3–20 wt% MWCNT, and it delivers an initial discharge capacity of 78 mA h g−1 at 0.2C rate.

Na4Co3(PO4)2P2O7–MWCNT composites in 1 M NaPF6 in EC:DMC electrolytes deliver stable discharge capacities of 80 mA h g−1 and 78 mA h g−1 at normal and elevated temperatures, respectively. In a full cell configuration vs. NaTi2(PO4)3–MWCNT, they deliver an initial discharge capacity of 78 mA h g−1 at 0.2C rate.  相似文献   

19.
Herein, hollow porous CuO–CuCo2O4 dodecahedrons are synthesized by using a simple self-sacrificial metal–organic framework (MOF) template, which resulted in dodecahedron morphology with hierarchically porous architecture. When evaluated as a cathodic electrocatalyst in lithium–oxygen batteries, the CuO–CuCo2O4 composite exhibits a significantly enhanced electrochemical performance, delivering an initial capacity of 6844 mA h g−1 with a remarkably decreased discharge/charge overpotential to 1.15 V (vs. Li/Li+) at a current density of 100 mA g−1 and showing excellent cyclic stability up to 111 charge/discharge cycles under a cut-off capacity of 1000 mA h g−1 at 400 mA g−1. The outstanding electrochemical performance of CuO–CuCo2O4 composite can be owing to the intrinsic catalytic activity, unique porous structure and the presence of substantial electrocatalytic sites. The ex situ XRD and SEM are also carried out to reveal the charge/discharge behavior and demonstrate the excellent reversibility of the CuO–CuCo2O4 based electrode.

Metal–organic framework derived porous CuO–CuCo2O4 dodecahedrons as a cathode catalyst for Li–O2 batteries with significantly enhanced rate and cyclic performance.  相似文献   

20.
Lithium–sulfur (Li–S) batteries are the most promising energy storage systems owing to their high energy density. However, shuttling of polysulfides detracts the electrochemical performance of Li–S batteries and thus prevents the commercialization of Li–S batteries. Here, TiO2@porous carbon nanofibers (TiO2@PCNFs) are fabricated via combining electrospinning and electrospraying techniques and the resultant TiO2@PCNFs are evaluated for use as an interlayer in Li–S batteries. TiO2 nanoparticles on PCNFs are observed from SEM and TEM images. A high initial discharge capacity of 1510 mA h g−1 is achieved owing to the novel approach of electrospinning the carbon precursor and electrospraying TiO2 nanoparticles simultaneously. In this approach TiO2 nanoparticles capture polysulfides with strong interaction and the PCNFs with high conductivity recycle and re-use the adsorbed polysulfides, thus leading to high reversible capacity and stable cycling performance. A high reversible capacity of 967 mA h g−1 is reached after 200 cycles at 0.2C. The cell with the TiO2@PCNF interlayer also delivers a reversible capacity of around 1100 mA h g−1 at 1C, while the cell without the interlayer exhibits a lower capacity of 400 mA h g−1. Therefore, this work presents a novel approach for designing interlayer materials with exceptional electrochemical performance for high performance Li–S batteries.

Lithium–sulfur (Li–S) batteries are the most promising energy storage systems owing to their high energy density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号