首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Herein, a facile hydrothermally-assisted sonochemical approach for the synthesis of a ZnO decorated Sn3O4 nano-heterostructure is reported. The phase purity of the nano-heterostructure was confirmed by X-ray diffraction and Raman spectroscopy. The morphological analysis demonstrated a nanosheet-like structure of Sn3O4 with a thickness of 20 nm, decorated with ZnO. The optical band gap was found to be 2.60 eV for the ZnO@Sn3O4 nano-heterostructure. Photoluminescence studies revealed the suppression of electron–hole recombination in the ZnO@Sn3O4 nano-heterostructure. The potential efficiency of ZnO@Sn3O4 was further evaluated towards photocatalytic hydrogen production via H2O splitting and degradation of methylene blue (MB) dye. Interestingly, it showed significantly superior photocatalytic activity compared to ZnO and Sn3O4. The complete degradation of MB dye solution was achieved within 40 min. The nano-heterostructure also exhibited enhanced photocatalytic activity towards hydrogen evolution (98.2 μmol h−1/0.1 g) via water splitting under natural sunlight. The superior photocatalytic activity of ZnO@Sn3O4 was attributed to vacancy defects created due to its nano-heterostructure.

Herein, a facile hydrothermally-assisted sonochemical approach for the synthesis of a ZnO decorated Sn3O4 nano-heterostructure is reported.  相似文献   

2.
Bimetallic zeolite-imidazole frameworks with controllable flat band position, band gap and hydrogen evolution reaction characteristics were adopted as a photocatalytic hydrogen production catalyst. Furthermore, the g-C3N4–MoS2 2D–2D surface heterostructure was introduced to the ZnM-ZIF to facilitate the separation as well as utilization efficiency of the photo-exited charge carriers in the ZnM-ZIFs. On the other hand, the ZnM-ZIFs not only inhibited the aggregation of the g-C3N4–MoS2 heterostructure, but also improved the separation and transport efficiency of charge carriers in g-C3N4–MoS2. Consequently, the optimal g-C3N4–MoS2–ZnNi-ZIF exhibited an extraordinary photocatalytic hydrogen evolution activity 214.4, 37.5, and 3.7 times larger than that of the pristine g-C3N4, g-C3N4–ZnNi-ZIF and g-C3N4–MoS2, respectively, and exhibited a H2-evolution performance of 77.8 μmol h−1 g−1 under UV-Vis light irradiation coupled with oxidation of H2O into H2O2. This work will furnish a new MOF candidate for photocatalysis and provide insight into better utilization of porous MOF-based heterostructures for hydrogen production from pure water.

The g-C3N4-MoS2 could facilitate the separation as well as utilization efficiency of the photo-generated charge carriers in the ZnM-ZIFs, and hence improved the photocatalytic H2 production with and without sacrificial agent.  相似文献   

3.
Heterojunction construction has been proved to be an effective way to enhance photocatalysis performance. In this work, Cl-doped carbon nitride nanofibers (Cl–CNF) with broadband light harvesting capacity were in situ grown on carbon nitride nanosheets (CNS) by a facile hydrothermal method to construct a type II heterojunction. Benefiting from the joint effect of the improved charge carriers separation efficiency and a broadened visible light absorption range, the optimal heterostructure of Cl–CNF/CNS exhibits a H2O2 evolution rate of 247.5 μmol g−1 h−1 under visible light irradiation, which is 3.4 and 3.1 times as much as those of Cl–CNF (72.2 μmol g−1 h−1) and CNS (80.2 μmol g−1 h−1), respectively. Particularly, the heterojunction nanostructure displays an apparent quantum efficiency of 23.67% at 420 nm. Photoluminescence spectra and photocurrent measurements both verified the enhanced charge carriers separation ability. Our work provides a green and environmentally friendly strategy for H2O2 production by elaborate nanostructure design.

The Cl-CNF/CNS heterostructure can efficiently boost the photocatalytic H2O2 generation activity.  相似文献   

4.
Flower-like hydrogen titanate nanosheets were prepared by a hydrothermal method and an assembling process. Then the Pt nanoparticles as cocatalysts were supported on the hydrogen titanate nanosheets through a photoreduction method. The samples were characterized by XRD, TG-DTA, ICP, SEM, TEM, XPS and UV-vis DRS. Their photocatalytic activity for H2 production was also evaluated. The TEM results revealed that the as-prepared H2Ti2O5·H2O was with flower-like structure in which nanosheets were interlaced together. The formation mechanism of flower-like H2Ti2O5·H2O nanosheets was briefly proposed. With Pt cocatalyst, the flower-like H2Ti2O5·H2O had better photocatalytic activity (hydrogen production rate: 9.28 mmol g−1 h−1) and good cycling stability than original H2Ti2O5·H2O and commercial P25 under the same conditions. It was also found that the amount of cocatalyst Pt was positively correlated with photocatalytic performance.

Hydrogen titanate nanosheets were assembled into the flower-like hydrogen titanate nanosheets to obtain high photocatalytic performance.  相似文献   

5.
Semiconductor heterostructures are regarded as an efficient way to improve the photocurrent in photoelectrochemical cell-type (PEC) photodetectors. To better utilize solar energy, TiO2@Sn3O4 arrays vertically aligned on carbon fiber papers were synthesized via a hydrothermal route with a two-step method and used as photoanodes in a self-powered photoelectrochemical cell-type (PEC) photodetector under visible light. TiO2@Sn3O4 heterostructures exhibit a stable photocurrent of 180 μA, which is a 4-fold increase with respect to that of the Sn3O4 nanoflakes on carbon paper, and a two-order increase with respect to that of the TiO2 NRs arrays. The evolution of hydrogen according to the photo-catalytic water-splitting process showed that Sn3O4/TiO2 heterostructures have a good photocatalytic hydrogen evolution activity with the rate of 5.23 μmol h−1, which is significantly larger than that of Sn3O4 nanoflakes (0.40 μmol h−1) and TiO2 nanorods (1.13 μmol h−1). Furthermore, the mechanism behind this was discussed. The detector has reproducible and flexible properties, as well as an enhanced photosensitive performance.

Semiconductor heterostructures are regarded as an efficient way to improve the photocurrent in photoelectrochemical cell-type (PEC) photodetectors.  相似文献   

6.
Herein, a facile in situ solvothermal technique for the synthesis of a CdMoO4/graphene composite photocatalyst is reported. Graphene oxide (GO) was synthesised by an improved Hummers'' method and was further used for the in situ synthesis of graphene via GO reduction and the formation of a CdMoO4 nanowire/graphene composite. The structural phase formation of tetragonal CdMoO4 was confirmed from X-ray diffraction measurements. The small nanoparticle assembled nanowires, prismatic microsphere morphology and crystalline nature of the synthesized material were investigated using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Due to its unique morphology and stability, the CdMoO4/graphene composite was used as a photocatalyst for H2O splitting. In comparison to pristine CdMoO4, the CdMoO4/graphene composite showed the best hydrogen evolution rate, i.e. 3624 μmole h−1 g−1, with an apparent quantum yield of 30.5%. The CdMoO4/graphene composite has a higher photocatalytic activity due to the inhibition of charge carrier recombination. H2 production measurements showed that the ternary semiconductor/graphene composite has enhanced photocatalytic activity for H2 generation.

Herein, a facile in situ solvothermal technique for the synthesis of a CdMoO4/graphene composite photocatalyst for hydrogen generation under natural solar light.  相似文献   

7.
Correction for ‘Electrochemical investigation and amperometry determination iodate based on ionic liquid/polyoxotungstate/P-doped electrochemically reduced graphene oxide multi-component nanocomposite modified glassy carbon electrode’ by Minoo Sharifi et al., RSC Adv., 2021, 11, 8993–9007, DOI: 10.1039/D1RA00845E.

The authors regret that eqn (3) and (4) were shown incorrectly in the original article.The corrected equations are shown below.3H4SiW4VW7VINi(H2O)O396− + IO3 → 3H2SiW2VW9VINi(H2O)O396− + I + 3H2O (3)3H6SiW6VW5VINi(H2O)O396− + IO3 → 3H4SiW4VW7VINi(H2O)O396− + I + 3H2O (4)The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

8.
The use of low-cost photocatalysts to split water into H2 fuel via solar energy is highly desirable for the production of clean energy and a sustainable society. Here three-dimensional graphene oxide (3DG) porous materials were prepared by cross-linking graphene oxide (GO) sheets using aromatic diamines (benzidine, 2,2′-dimethyl-4,4′-biphenyldiamine, 4,4′-diaminodiphenylmethane) that reacted with the carboxyl groups of the GO sheets at room temperature. The prepared 3DG porous materials were used as efficient metal-free photocatalysts for the production of H2via water splitting under full-spectrum light, where the photocatalytic activity was highly dependent on the cross-linker and the 3DG reduction level. It was also found that the 3DG prepared with benzidine as the linker demonstrated a significantly higher H2 evolution rate than the 3DGs prepared using 2,2′-dimethyl-4,4′-biphenyldiamine and 4,4′-diaminodiphenylmethane as the cross-linkers. The photoactivity was further tuned by varying the mass ratio of GO to benzidine. Among the prepared 3DG materials, 3DG-3, with an intermediate C/O ratio of 1.84, exhibited the highest H2 production rate (690 μmol g−1 h−1), which was significantly higher than the two-dimensional GO (45 μmol g−1 h−1) and the noncovalent 3DG synthesized by a hydrothermal method (128 μmol g−1 h−1). Moreover, this study revealed that the 3DG photocatalytic performance was favored by effective charge separation, while it could be further tuned by changing the reduction level. In addition, these results could prompt the preparation of other 3D materials and the application of new types of photocatalysts for H2 evolution.

Three-dimensional graphene oxide covalently linked by benzidine works as an efficient metal-free photocatalyst for H2 evolution.  相似文献   

9.
Integration of a nanostructure design with a sub-bandgap has shown great promise in enhancing the photocatalytic H2 production activity of g-C3N4via facilitating the separation of photogenerated charges while simultaneously increasing the active sites and light harvesting ability. However, the development of a synthetic route to generate an ordered g-C3N4 structure with remarkable sub-bandgap absorption via a scalable and economic approach is challenging. Herein, we report the preparation of a honeycomb-like structured g-C3N4 with broad oxygen sub-bandgap absorption (denoted as HOCN) via a scalable one-pot copolymerization process using oxamide as the modelling agent and oxygen doping source. The morphology and sub-bandgap position can be tailored by controlling the oxamide to dicyandiamide ratio. All HOCN samples exhibit remarkable enhancement of photocatalytic H2 production activity due to the synergistic effect between the sub-bandgap and honeycomb structure, which results in strong light absorption extending up to 1000 nm, fast separation of photogenerated charge carriers, and rich photocatalytic reaction sites. In particular, HOCN4 exhibits a remarkable photocatalytic H2 production rate of 1140 μmol h−1 g−1 under visible light irradiation (>420 nm), which is more than 13.9 times faster than the production rate of pristine g-C3N4. Moreover, even under longer wavelength light irradiation (i.e., >500 and >800 nm), HOCN4 still exhibits a high H2 production rate of 477 and 91 μmol h−1 g−1, respectively. In addition, HOCN4 possesses an apparent quantum yield (AQY) of 4.32% at 420 nm and 0.12% at 800 nm. These results confirm that the proposed synthesis strategy allow for scalable production of g-C3N4 with an ordered nanostructure via electronic modulation, which is beneficial for its practical application in photocatalytic H2 production.

Integration of a nanostructure design with a sub-bandgap enhances the photocatalytic H2 production activity of g-C3N4via facilitating separation of photogenerated charges while simultaneously increasing the active sites and light harvesting ability.  相似文献   

10.
The combination of zinc oxide (ZnO) and transition metal dichalcogenide (TMD) nanoparticles has higher photocatalytic efficiency and field emission performance than TMDs or ZnO, as well as significantly higher water cracking photocatalytic activity. By first-principles calculation, we investigated the structural and optoelectronic properties of the two-dimensional (2D) WS2/ZnO van der Waals (vdWs) heterostructure, and the regulation effect of biaxial strain. It is revealed that the conduction-band minimum (CBM) is lower than the reduction potential of water (EH+/H2 ≈ −4.44 eV), and the valence-band maximum (VBM) is lower than the oxidation potential (EO2/H2O ≈ −5.67 eV), thus the heterostructure is a good oxidant in the water decomposition process, but cannot match the requirements for water reduction. By applying a −2% biaxial strain, the CBM is elevated to a position higher than the reduction potential of water, then the 2D vdWs WS2/ZnO heterostructure becomes a good material for the application of water reduction and other photovoltaic and photocatalytic devices.

2D WS2/ZnO vdWs heterostructure becomes a good material for water-splitting applications after a strain is applied.  相似文献   

11.
Photocatalytic H2 production and photocatalytic decomposition are efficient and economical methods to obtain hydrogen fuel and dispose of organic pollutants. In this paper, amorphous nickel phosphide (Ni2P) is synthesized by an extremely simple precipitation method under low temperature. The prepared nickel phosphide was not only used to produce H2 in the presence of Eosin Y as sensitizer and triethanolamine (TEOA) as a sacrificial electron donor but also to degrade 4-nitrophenol under visible light illumination. The rate of hydrogen evolution is 34.0 μmol h−1 g−1 and the degradation efficiency is 25.5% within 4 h at initial 5.0 mg L−1 4-nitrophenol. Probable photocatalytic mechanisms were discussed. The present work is expected to contribute toward the hydrogen evolution and disposal of highly toxic pollutants by cost-effective photocatalytic means.

Amorphous nickel phosphide (Ni2P) was synthesized by a simple precipitation method. The nickel phosphide was used to produce H2 from water with Eosin Y as sensitizer and degrade 4-nitrophenol under visible light illumination.  相似文献   

12.
The NiCo2O4 nanowires and reduced graphene oxide (rGO) hybrid nanostructure has been constructed on carbon fibers (NiCo2O4/rGO/CF) via a hydrothermal method. The effects of graphene oxide (GO) concentration on the structure and performance of the NiCo2O4/rGO/CF were investigated in detail to obtain the optimized electrode. When the GO concentration was 0.4 mg ml−1, the rGO/NiCo2O4/CF composite exhibited a maximum specific capacitance of 931.7 F g−1 at 1 A g−1, while that of NiCo2O4/CF was 704.9 F g−1. Furthermore, the NiCo2O4/rGO/CF//AC asymmetric supercapacitor with a maximum specific capacitance of 61.2 F g−1 at 1 A g−1 was fabricated, which delivered a maximum energy density (24.6 W h kg−1) and a maximum power density (8477.7 W kg−1). Results suggested that the NiCo2O4/rGO/CF composite would be a desirable electrode for flexible supercapacitors.

The NiCo2O4 nanowires and rGO hybrid nanostructure was constructed on carbon fibers (NiCo2O4/rGO/CF) via a hydrothermal method.  相似文献   

13.
Research into the preparation and application of metal/graphene nanocomposite materials is an important issue in the field of graphene applications. Metal nanomaterials and graphene materials have many excellent properties and have been perfectly combined into metal/graphene nanocomposite materials. These offer the high catalytic activity of metal nanomaterials and the high specific surface area and favorable electrical conductivity of graphene. The unique advantages can produce synergistic effects and can significantly improve the overall performance of the composite materials. This gives the metal/graphene nanocomposite materials excellent application prospects for hydrogen evolution. Here, we report the preparation of yttrium-doped palladium/iron on graphene (Pd/YFeO3/GC) using a simple and efficient method. The catalytic performance of the Pd/YFeO3/GC nanocomposites for water electrolysis and hydrogen production was evaluated. The results show that the overpotential for the hydrogen evolution reaction at −10 mA cm−2 is only 15 mV, which is competitive with Pt/C catalysts. The Pd/YFeO3/GC is highly active for hydrogen evolution with an onset potential of −8 mV in 0.5 M H2SO4 solution and a Tafel slope of 37 mV dec−1 with a Pd loading of only 20 μgPd cm−2. These results clearly demonstrated that Pd/YFeO3/GC is an excellent catalyst for hydrogen evolution.

Research into the preparation and application of metal/graphene nanocomposite materials is an important issue in the field of graphene applications.  相似文献   

14.
Tungstovanadophosphoric heteropoly acid H5PW10V2O40·5.76H2O (HPWV) has been synthesized via stepwise acidification and gradual addition of elements. Some metals like Fe, Al and Cu were introduced into the heteropoly acid (HPA) in the molar ratio of 10 : 6, 10 : 6 and 10 : 4 respectively. The prepared catalysts were characterized by UV, FTIR, TG/DTA and XRD. The results indicated that HPWV and its metal salts all contain Keggin units, which are the primary structures of the heteropoly acids. The homogeneous photocatalytic degradation of phenol by heteropoly acid salts was studied in detail under artificial UV irradiation and addition of hydrogen peroxide (H2O2), and the effects of initial phenol and H2O2 concentrations on the rate of photocatalytic phenol degradation were examined. The results suggested that the heteropoly acid salts showed good catalytic activities for phenol degradation via the ·OH radical mechanism. Under irradiation with a 10 W Hg lamp, 96% phenol was degraded within less than 60 min in the solution containing 50 mg L−1 phenol + 2 μmol L−1 Fe5(PW10V2O40)3 + 4 μmol L−1 H2O2, with the performance of the catalysts in order FePWV > AlPWV > CuPWV > HPWV. This work demonstrated that the photo-Fenton reaction catalyzed by the heteropoly acid salts was a promising advanced oxidation tool for the treatment of phenol-containing wastewater.

Tungstovanadophosphoric heteropoly acid H5PW10V2O40·5.76H2O (HPWV) has been synthesized via stepwise acidification and gradual addition of elements.  相似文献   

15.
The performance of semiconductor photocatalysts has been limited by rapid electron–hole recombination. One strategy to overcome this problem is to construct a heterojunction structure to improve the survival rate of electrons. In this context, a novel g-C3N4/TiO2/CuO double-heterojunction photocatalyst was developed and characterized. Its photocatalytic activity for hydrogen production from water–methanol photocatalytic reforming was explored. Methanol is always used to eliminate semiconductor holes. The g-C3N4/TiO2/CuO double-heterojunction photocatalyst with a narrow bandgap of ∼1.38 eV presented excellent photocatalytic activity for hydrogen evolution (97.48 μmol (g h)−1) under visible light irradiation. Compared with g-C3N4/TiO2 and CuO/TiO2, the photocatalytic activity of g-C3N4/TiO2/CuO for hydrogen production was increased approximately 7.6 times and 1.8 times, respectively. Below 240 °C, the sensitivity of g-C3N4/TiO2/CuO to ammonia was approximately 90% and 46% higher than that of g-C3N4/TiO2 and CuO/TiO2, respectively. The enhancement of the photocatalytic activity and gas sensing properties of the g-C3N4/TiO2/CuO composite resulted from the close interface contact established by the double heterostructure. The trajectory of electrons in the double heterojunction conformed to the S-scheme. UV-vis, PL, and transient photocurrent characterization showed that the double heterostructure effectively inhibited the recombination of e/h+ pairs and enhanced the migration of photogenerated electrons.

The trajectory of electrons in the g-C3N4/TiO2/CuO double-heterojunction conforms to the S-scheme.  相似文献   

16.
We engineered high aspect ratio Fe2O3 nanorods (with an aspect ratio of 17 : 1) coated with g-C3N4 using a sequential solvothermal method at very low temperature followed by a thermal evaporation method. Here, the high aspect ratio Fe2O3 nanorods were directly grown onto the FTO substrate under relatively low pressure conditions. The g-C3N4 was coated onto a uniform Fe2O3 nanorod film as the heterostructure, exhibiting rational band conduction and a valence band that engaged in surface photoredox reactions by a direct z-scheme mechanism. The heterostructures, particularly 0.75g-C3N4@Fe2O3 nanorods, exhibited outstanding photocatalytic activities compared to those of bare Fe2O3 nanorods. In terms of 4-nitrophenol degradation, 0.75g-C3N4@Fe2O3 nanorods degraded all of the organic pollutant within 6 h under visible irradiation at a kinetic constant of 12.71 × 10−3 min−1, about 15-fold more rapidly than bare Fe2O3. Further, the hydrogen evolution rate was 37.06 μmol h−1 g−1, 39-fold higher than that of bare Fe2O3. We suggest that electron and hole pairs are efficiently separated in g-C3N4@Fe2O3 nanorods, thus accelerating surface photoreaction via a direct z-scheme under visible illumination.

The engineered high aspect ratio of Fe2O3 nanorods coated with g-C3N4 demonstrates z-scheme mechanism, showing the best performance in 4-nitrophenol photodegradation and H2 evolution.  相似文献   

17.
A multiple core–shell heterostructure Rh–Rh3+ modified Ta2O5@TaON@Ta3N5 nanophotocatalyst was successfully constructed through nitriding Rh3+-doped Ta2O5 nanoparticles, which exhibited a much higher carrier separation efficiency about one order of magnitude higher than the Ta2O5@Ta3N5 precursor, and thus an excellent visible light photocatalytic H2-evolution activity (83.64 μmol g−1 h−1), much superior to that of Rh anchored Ta2O5@TaON (39.41 μmol g−1 h−1), and improved stability due to the residual Rh–O/N in the Ta3N5 shell layer. Rh-modifying significantly extended light absorption to the overall visible region. Localized built-in electric fields with hierarchical potential gradients at the multiple interfaces including a Rh/Ta3N5 Schottky junction and double n–n Ta3N5/TaON/Ta2O5 mutant heterojunctions, drove charge carriers to directionally transfer from inside to outside, and efficiently separate. Enhanced photoactivity was ascribed to a synergetic effect of improved light absorption ability, increased carrier separation efficiency, and accelerated surface reaction. A promising strategy of developing excellent Ta3N5-based photocatalysts for solar energy conversion is provided by constructing double n–n mutant heterojunctions.

Localized built-in electric fields at multiple hierarchical interfaces facilitate the efficient separation and fast inside-out directional transfer of photogenerated carriers.  相似文献   

18.
The photocatalytic hydrogen evolution of TiO2 is deemed to be one of the most promising ways of converting solar energy to chemical energy; however, it is a challenge to improve the photo-generated charge separation efficiency and enhance solar utilization. Herein, black mesoporous rutile/anatase TiO2 microspheres with a homojunction and surface defects have been successfully synthesized by an evaporation-induced self-assembly, solvothermal and high-temperature surface hydrogenation method. The H500-BMR/ATM (HX-BMR/ATM, where X means the different hydrogen calcination temperatures) materials not only possess a mesoporous structure and relatively high specific surface area of 39.2 m2 g−1, but also have a narrow bandgap (∼2.87 eV), which could extend the photoresponse to the visible light region. They exhibit high photocatalytic hydrogen production (6.4 mmol h−1 g−1), which is much higher (approximately 1.8 times) than that of pristine mesoporous rutile/anatase TiO2 microspheres (3.58 mmol h−1 g−1). This enhanced photocatalytic hydrogen production property is attributed to the synergistic effect of the homojunction and surface defects in improving efficient electron–hole separation and high utilization of solar light. This work proposes a new approach to improve the performance of photocatalytic hydrogen production and probably offers a new insight into fabricating other high-performance photocatalysts.

Mesoporous rutile/anatase TiO2 microspheres with surface defects are fabricated and exhibit excellent solar-driven photocatalytic performance due to synergistic effect of the homojunction and surface defects favoring efficient e–h separation.  相似文献   

19.
The current study aims at the development of an electrochemical sensor based on a silver nanoparticle–reduced graphene oxide–polyaniline (AgNPs–rGO–PANI) nanocomposite for the sensitive and selective detection of hydrogen peroxide (H2O2). The nanocomposite was fabricated by simple in situ synthesis of PANI at the surface of rGO sheet which was followed by stirring with AEC biosynthesized AgNPs to form a nanocomposite. The AgNPs, GO, rGO, PANI, rGO–PANI, and AgNPs–rGO–PANI nanocomposite and their interaction were studied by UV-vis, FTIR, XRD, SEM, EDX and XPS analysis. AgNPs–rGO–PANI nanocomposite was loaded (0.5 mg cm−2) on a glassy carbon electrode (GCE) where the active surface area was maintained at 0.2 cm2 for investigation of the electrochemical properties. It was found that AgNPs–rGO–PANI–GCE had high sensitivity towards the reduction of H2O2 than AgNPs–rGO which occurred at −0.4 V vs. SCE due to the presence of PANI (AgNPs have direct electronic interaction with N atom of the PANI backbone) which enhanced the rate of transfer of electron during the electrochemical reduction of H2O2. The calibration plots of H2O2 electrochemical detection was established in the range of 0.01 μM to 1000 μM (R2 = 0.99) with a detection limit of 50 nM, the response time of about 5 s at a signal-to-noise ratio (S/N = 3). The sensitivity was calculated as 14.7 μA mM−1 cm−2 which indicated a significant potential as a non-enzymatic H2O2 sensor.

The current study aims at the development of an electrochemical sensor based on a silver nanoparticle–reduced graphene oxide–polyaniline (AgNPs–rGO–PANI) nanocomposite for the sensitive and selective detection of hydrogen peroxide (H2O2).  相似文献   

20.
By combining the anionic salt meso-tetra(4-carboxyphenyl)porphyrin (TCPP4−) and the Keggin polyoxometalate cation cluster [Al13O4(OH)24(H2O)12]7+via a simple ion-exchange method, a hybrid (C48H26N4O8)[Al13O4(OH)24(H2O)12]2(OH)10·18H2O (Al13–TCPP) was prepared and thoroughly characterized as a prototype of polyoxometalate–porphyrin hybrids for the photocatalytic degradation of the mustard gas simulant 2-chloroethyl ethyl sulfide (CEES). The experimental results showed that the catalytic degradation rate of CEES in the presence of Al13–TCPP reached 96.16 and 99.01% in 180 and 90 min in methanol and methanol–water solvent mixture (v/v = 1 : 1), respectively. The reaction followed first-order reaction kinetics, and the half-life and kinetic constant in methanol and solvent mixture were 39.8 min, −0.017 min−1 and 14.7 min, −0.047 min−1. Mechanism analysis indicated that under visible light irradiation in air, CEES was degraded through a combination of oxidation and alcoholysis/hydrolysis in methanol and the methanol–water solvent mixture. The superoxide radical (O2˙) and singlet molecular oxygen (1O2) generated by Al13–TCPP selectively oxidized CEES into a non-toxic sulfoxide. The singlet oxygen capture experiments showed that Al13–TCPP (Φ = 0.236) had a higher quantum yield of singlet oxygen generation than H4TCPP (Φ = 0.135) under visible light irradiation in air. The material Al13–TCPP has good reusability, and the degradation rate of CEES can still reach 98.37% after being recycled five times.

A hybrid Al13–TCPP was thoroughly characterized as a prototype of polyoxometalate–porphyrin hybrids for the photocatalytic degradation of the mustard gas simulant 2-chloroethyl ethyl sulfide (CEES).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号