首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A NIR luminescent octanuclear Zn(ii)–Nd(iii) nanocluster 1 was constructed by the use of a salen-type Schiff base ligand. 1 exhibits a lanthanide luminescent response to Que with high sensitivity. The quenching constant of Que to the lanthanide emission is 2.6 × 104 M−1, and the detection limit of 1 to Que is 2.5 μM. The response behavior of 1 to Que is not affected by the existence of some potential interferents such as biomolecules.

An octanuclear Zn(ii)–Nd(iii) nanocluster was constructed by the use of a salen-type Schiff base ligand, and it shows an interesting NIR lanthanide luminescent response to quercetin with high sensitivity and selectivity.  相似文献   

2.
Y mainly exists in ionic rare-earth resources. During rare-earth carbonate precipitation, rare-earth ion loss in the precipitated rare-earth mother liquor often occurs due to CO32− coordination and Y(iii) hydration. Microscopic information on the coordination and hydration of CO32− and H2O to Y(iii) has not yet been elucidated. Therefore, in this study, the macroscopic dissolution of Y(iii) in different aqueous solutions of Na2CO3 was studied. The radial distribution function and coordination number of Y(iii) by CO32− and H2O were systematically analyzed using molecular dynamics (MD) simulations to obtain the complex ion form of Y(iii) in carbonate solutions. Density functional theory (DFT) was used to geometrically optimize and calculate the UV spectrum of Y(iii) complex ions. This spectrum was then analyzed and compared with experimentally determined ultraviolet-visible spectra to verify the reliability of the MD simulation results. Results showed that Y(iii) in aqueous solution exists in the form of [Y·3H2O]3+ and that CO32− is present in the bidentate coordination form. In 0–0.8 mol L−1 CO32− solutions, Y(iii) was mainly present as the 5-coordinated complex [YCO3·3H2O]+. When the concentration of CO32− was increased to 1.2 mol L−1, [YCO3·3H2O]+ was converted into a 6-coordinated complex [Y(CO3)2·2H2O]. Further increases in CO32− concentration promoted Y(iii) dissolution in solution in the form of complex ions. These findings can be used to explain the problem of incomplete precipitation of rare earths in carbonate solutions.

Based on MD results, DFT was used to geometrically optimize and calculate the UV spectrum of Y(iii) complex ions. Data validation was further performed using UV-vis experiments to reveal Y(iii) coordination and hydration properties.  相似文献   

3.
The antimony(iii) complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA) has been prepared and its exceptionally low stability observed. The Sb(iii) ion in Na[Sb(DOTA)]·4H2O shows an approximately square antiprismatic coordination geometry that is close to superimposable to the Bi(iii) geometry in [Bi(DOTA)] in two phases containing this anion, Na[Bi(DOTA)]·4H2O, [H3O][Bi(DOTA)]·H2O for which structures are also described. Interestingly, DOTA itself in [(H6DOTA)]Cl2·4H2O·DMSO shows the same orientation of the N4O4 metal binding cavity reflecting the limited flexibility of DOTA in an octadentate coordination mode. In 8-coordinate complexes it can however accommodate M(iii) ions with rion spanning a relatively wide range from 87 pm (Sc(iii)) to 117 pm (Bi(iii)). The larger Bi3+ ion appears to be the best metal–ligand size match since [Bi(DOTA)] is associated with greater complex stability. In the solution state, [Sb(DOTA)] is extremely susceptible to transmetallation by trivalent ions (Sc(iii), Y(iii), Bi(iii)) and, significantly, even by biologically important divalent metal ions (Mg(ii), Ca(ii), Zn(ii)). In all cases just one equivalent is enough to displace most of the Sb(iii). [Sb(DOTA)] is resistant to hydrolysis; however, since biologically more abundant metal ions easily substitute the antimony, DOTA complexes will not be suitable for deployment for the delivery of the, so far unexploited, theranostic isotope pair 119Sb and 117Sb.

The antimony(iii) complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate (DOTA) has been prepared and its exceptionally low stability observed.  相似文献   

4.
The present investigation involves synthesis and characterization of MCM-41–AEAPTMS–Fe(iii)Cl using coordinated Fe(iii) on MCM-41–AEAPTMS for efficient removal of hazardous Cr(vi) ions from aqueous solution. The adsorbent MCM-41–AEAPTMS–Fe(iii)Cl was characterized using small-angle X-ray diffraction (SAX), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier-transform infrared (FT-IR) and Brunauer–Emmett–Teller (BET) surface analyzer techniques. The BET surface area was found to be 87.598 m2 g−1. The MCM-41–AEAPTMS–Fe(iii)Cl effectively adsorbs Cr(vi) with an adsorption capacity acquiring the maximum value of 84.9 mg g−1 at pH 3 at 298 K. The data followed pseudo-second-order kinetics and obeyed the Langmuir isotherm model. The thermodynamic data proved the exothermic and spontaneous nature of Cr(vi) ion adsorption on MCM-41–AEAPTMS–Fe(iii). Further, the higher value of ΔH° (−64.339 kJ mol−1) indicated that the adsorption was chemisorption in nature.

The present investigation involves synthesis and characterization of MCM-41–AEAPTMS–Fe(iii)Cl using coordinated Fe(iii) on MCM-41–AEAPTMS for efficient removal of hazardous Cr(vi) ions from aqueous solution.  相似文献   

5.
This report demonstrates the mimicking of an electronic circuit diagram towards Ce(iii) ion sensing response supported by molecular keypads. The probe naphthyl based triazole linked silatrane (NTS) was efficiently synthesized using a series of microwave mediated reactions. The luminescent sensor NTS was explored for the ion sensing response towards Ce(iii) ions using DMSO and DMSO : H2O 4 : 1 (v/v) as solvent media, respectively. The role of water in Ce(iii) ion sensing was detected as ‘turn-off’ response that contradicts the ‘turn-on’ with DMSO. Further, the sensing of NO3 ions by NTS–Ce(iii) ensemble was associated with blue shift on absorption maxima. These mimicking response studies were sketched as circuit diagrams assisted by molecular keypad behaviour as IMPLICATION output logic gate.

This report demonstrates the mimicking of an electronic circuit diagram towards Ce(iii) ion sensing response supported by molecular keypads.  相似文献   

6.
In this work, an outstanding nanolayered tin phosphate with 15.0 Å interlayer spacing, Sn (HPO4)2·3H2O (SnP–H+), has been synthesized by conventional hydrothermal method and first used in the adsorptive removal of Cr(iii) from aqueous solution. A number of factors such as contact time, initial concentration of Cr(iii), temperature, pH, and ionic strength on adsorption were investigated by batch tests. Moreover, the isothermal adsorption characteristics and kinetic model of Cr(iii) onto SnP–H+ were studied. The results showed that the adsorption of Cr(iii) by SnP–H+ was in accordance with the Langmuir adsorption isotherm model and the pseudo-second-order kinetic model. The adsorption capacity of Cr(iii) onto SnP–H+ at temperature 40.0 °C and pH 3.0 could reach 81.1 mg g−1. And the distribution coefficient Kd was 23.0 g L−1. Overall, experiments certified that SnP–H+ was an excellent adsorbent that can effectively remove Cr(iii) from aqueous solution.

In this work, an outstanding nanolayered tin phosphate with 15.0 Å interlayer spacing, Sn (HPO4)2·3H2O (SnP–H+), has been synthesized by conventional hydrothermal method and first used in the adsorptive removal of Cr(iii) from aqueous solution.  相似文献   

7.
New selective and sensitive electrochemical sensors were designed based on the deposition of a promising ion imprinted polymer (IIP) on the surface of glassy carbon electrode (GCE) for the detection and monitoring of Cd(ii) in different real samples. Herein, a highly selective Cd-imprinted polymer was successfully synthesized using a novel heterocyclic compound based on the benzo[f]chromene scaffold that acted as a complexing agent and a functional monomer in the presence of azobisisobutyronitrile (initiator) and ethylene glycol dimethacrylate (cross-linker). The characterization of the synthesized chelating agent and IIP was performed using FT-IR, SEM, 1H-NMR, EIMS, and EDX analyses. After that, the voltammetric sensor was manufactured by introducing graphene oxide (GO) on the surface of GCE; then, the IIP was grown by a drop coating technique. The electrochemical characterization of the voltammetric sensor (IIP/GO@GCE) was performed by CV and EIS. For comparison, the potentiometric sensor was also prepared by embedding IIP in plasticized polyvinyl chloride and depositing it as one layer on the GCE surface. Anodic stripping voltammetry was used to construct the calibration graph; the IIP/GO@GCE exhibited a wider detection range (4.2 × 10−12–5.6 × 10−3 mol L−1) and extremely low detection limit (7 × 10−14 mol L−1) for Cd(ii). Meanwhile, the potentiometric sensor showed a linear calibration curve for Cd(ii) over a concentration range from 7.3 × 10−8 mol L−1 to 2.4 × 10−3 mol L−1 with a detection limit of 6.3 × 10−10 mol L−1. Furthermore, both sensors offered outstanding selectivity for Cd(ii) over a wide assortment of other common ions, high reproducibility, and excellent stability.

New selective and sensitive electrochemical sensors were designed based on the deposition of a promising ion imprinted polymer (IIP) on the surface of glassy carbon electrode (GCE) for the detection and monitoring of Cd(ii) in different real samples.  相似文献   

8.
Oxidation of As(iii) to As(v) is an effective way to improve the performance of most arsenic removal technologies. In this study, a new alternative biosorbent, TiO2-loaded biochar prepared by waste Chinese traditional medicine dregs (TBC) was applied in remediation for As(iii) from aqueous solution. Compared with unmodified biochar, the specific surface areas and total pore volumes of TBC increased while the average aperture decreased due to the loading of nano-TiO2. The X-ray diffraction (XRD) of TBC confirmed that the precipitated titanium oxide was primarily anatase. pH did not have a significant effect on the adsorption capacity at 10 mg L−1 As(iii) in suspension with a pH ranging from 2 to 10. Adsorption kinetics data were best fitted by the pseudo-second-order model (R2 > 0.999). The Sips maximum adsorption capacity was 58.456 mg g−1 at 25 °C, which is comparable with other adsorbents reported in previous literature. The Gibbs free energy (ΔG) of As(iii) adsorption was negative, indicating the spontaneous nature of adsorption. The results of free radical scavenging and N2 purging experiments indicated that O2 acted as an electron accepter and O2˙ dominated the oxidation of As(iii). The oxidation of As(iii) obviously affected the adsorption capacity for As(iii) by TBC. X-ray photoelectron spectroscopy (XPS) studies showed that As(iii) and As(v) existed on the surface of TBC, suggesting that the oxidation of As(iii) occurred. TBC played multiple roles for As(iii), including direct adsorption and photocatalytic oxidation adsorption. Regeneration and stability experiments showed that TBC was an environment-friendly and efficient adsorbent for As(iii) removal.

TiO2-loaded biochar prepared by waste Chinese traditional medicine dregs (TBC) was applied in remediation for As(iii) from aqueous solution.  相似文献   

9.
Monodispersed colloidal gold nanoparticles (AuNPs) were synthesized by an easy, cost-effective, and eco-friendly method. The AuNPs were mostly quasi-hexagonal in shape with sizes ranging from 15 to 18 nm. A screen-printed electrode modified with AuNPs (AuNPs/SPE) was used as an electrochemical sensor for the detection of As(iii) in water samples. The mechanistic details for the detection of As(iii) were investigated and an electrochemical reaction mechanism was proposed. Under the optimal experimental conditions, the sensor was highly sensitive to As(iii), with a limit of detection of 0.11 μg L−1 (1.51 nM), which is well below the regulatory limit of 10 μg L−1 established by the United States Environmental Protection Agency and the World Health Organization. The sensor responses were highly stable, reproducible, and linear over the As(iii) concentration range of 0.075 to 30 μg L−1. The presence of co-existing heavy metal cations such as lead, copper, and mercury did not interfere with the sensor response to As(iii). Furthermore, the voltammogram peaks for As(iii), lead, copper, and mercury were sufficiently separate for their potential simultaneous measurement, and at very harsh acidic pH it may be possible to detect As(v). The AuNPs/SPE could detect As(iii) in tap water samples at near-neutral pH, presenting potential possibilities for real-time, practical applications.

Monodispersed colloidal gold nanoparticles (AuNPs) were synthesized by an easy, cost-effective, and eco-friendly method for electrochemical detection of As(iii).  相似文献   

10.
Mercury(ii) ions act as catalyst in the substitution of cyanide ion in hexacyanoruthenate(ii) by pyrazine (Pz) in an acidic medium. This property of Hg(ii) has been utilized for its determination in aqueous solutions. The progress of reaction was followed spectrophotometrically by measuring the increase in absorbance of the yellow colour product, [Ru(CN)5Pz]3− at 370 nm (λmax, ε = 4.2 × 103 M−1 s−1) under the optimized reaction conditions; 5.0 × 10−5 M [Ru(CN)64−], 7.5 × 10−4 M [Pz], pH 4.00 ± 0.02, ionic strength (I) = 0.05 M (KCl) and temp. 45.0 ± 0.1 °C. The proposed method is based on the fixed time procedure under optimum reaction conditions. The linear regression (calibration) equations between the absorbance at fixed times (t = 15, 20 and 25 min) and [Hg(ii)] were established in the range of 1.0 to 30.0 × 10−6 M. The detection limit was found to be 1.5 × 10−7 M of Hg(ii). The effect of various foreign ions on the proposed method was also studied and discussed. The method was applied for the determination of Hg(ii) in different wastewater samples. The present method is simple, rapid and sensitive for the determination of Hg(ii) in trace amount in the environmental samples.

Mercury(ii) ions act as catalyst in the substitution of cyanide ion in hexacyanoruthenate(ii) by pyrazine (Pz) in an acidic medium.  相似文献   

11.
This work reported on the application of mercapto-functionalized silica-supported organic–inorganic hybrid sorbent as a solid phase extraction (SPE) extractant for effective separation and preconcentration of Sb(iii) species in real water samples. The influences of pH, sorbent amounts, flow rates and the concentration of eluent on the adsorption and desorption of Sb(iii) species had been evaluated. The recovery of Sb(iii) species at pH 5 with 100 mg mercapto-functionalized hybrid sorbent at the flow rate of 5.0 mL min−1 was greater than 95% without interference from all of metal ions tested. The trapped Sb(iii) species by extractant was then eluted with 5% HCl solution at the flow rate of 5.0 mL min−1. The proposed procedure permitted large enrichment factors of about 200 and higher for 10 μg L−1 of Sb(iii) species. The merits of analytical figures for the determination of Sb(iii) species were as follows: detection limit (3σ, n = 11), 2 ng L−1; precision, 1.6% (n = 11) for 10 μg L−1 of Sb(iii) species; the linear calibration curve presented in the concentration range of 1.0–200.0 μg L−1. The validity of the proposed procedure was checked by the analysis of standard reference materials. Excellent agreement between the analytical results and the certified values (t-test at 95% confidence level) was found. The mercapto-functionalized hybrid sorbent as a SPE extractant was applied to the determination of Sb(iii) species in various water samples with satisfactory results.

This work reported on the application of mercapto-functionalized silica-supported organic–inorganic hybrid sorbent as a solid phase extraction (SPE) extractant for effective separation and preconcentration of Sb(iii) species in real water samples.  相似文献   

12.
Cr(vi) laden wastewaters generally comprise a range of multiple heavy metals such as Au(iii) and Cu(ii) with great toxicity. In the present study, cooperative cathode modification by biogenic Au nanoparticles (BioAu) reduced from aqueous Au(iii) and in situ Cu(ii) co-reduction were investigated for the first time to enhance Cr(vi) removal in microbial fuel cells (MFCs). With the co-existence of Cu(ii) in the catholyte, the MFC with carbon cloth modified with nanocomposites of multi-walled carbon nanotubes blended with BioAu (BioAu/MWCNT) obtained the highest Cr(vi) removal rate (4.07 ± 0.01 mg L−1 h−1) and power density (309.34 ± 17.65 mW m−2), which were 2.73 and 3.30 times as high as those for the control, respectively. The enhancements were caused by BioAu/MWCNT composites and deposited reduzates of Cu(ii) on the cathode surface, which increased the adsorption capacity, electronic conductivity and electrocatalytic activity of the cathode. This study provides an alternative approach for efficiently remediating co-contamination of multiple heavy metals and simultaneous bioenergy recovery.

The cooperative cathode modification by BioAu from Au(iii) and in situ Cu(ii) co-reduction enhanced Cr(vi) removal and bioelectricity generation in MFCs.  相似文献   

13.
We report a simple and cost-effective paper-based and colorimetric dual-mode detection of As(iii) and Pb(ii) based on glucose-functionalized gold nanoparticles under optimized conditions. The paper-based detection of As(iii) and Pb(ii) is based on the change in the signal intensity of AuNPs/Glu fabricated on a paper substrate after the deposition of the analyte using a smartphone, followed by processing with the ImageJ software. The colorimetric method is based on the change in the color and the red shift of the localized surface plasmon resonance (LSPR) absorption band of AuNPs/Glu in the region of 200–800 nm. The red shift (Δλ) of the LSPR band observed was from 525 nm to 660 nm for As(iii) and from 525 nm to 670 nm for Pb(ii). The mechanism of dual-mode detection is due to the non-covalent interactions of As(iii) and Pb(ii) ions with glucose molecule present on the surface AuNPs, resulting in the aggregation of novel metal nanoparticles. The calibration curve gave a good linearity range of 20–500 μg L−1 and 20–1000 μg L−1 for the determination of As(iii) and Pb(ii) with the limit of detection of 5.6 μg L−1 and 7.7 μg L−1 for both metal ions, respectively. The possible effects of different metal ions and anions were also investigated but did not cause any significant interference. The employment of AuNPs/Glu is successfully demonstrated for the determination of As(iii) and Pb(ii) using paper-based and colorimetric sensors in environmental water samples.

We report a simple and cost-effective paper-based and colorimetric dual-mode detection of As(iii) and Pb(ii) based on glucose-functionalized gold nanoparticles under optimized conditions.  相似文献   

14.
Due to the toxicity of lead(ii) to all living organisms as it destroys the central nervous system leading to circulatory system and brain disorders, the development of effective and selective lead(ii) ionophores for its detection is very important. In this work, 1,3-bis[2-(N-morpholino)acetamidophenoxy]propane (BMAPP), belonging to acyclic diamides, was applied as a highly selective lead(ii) ionophore in a carbon paste ion selective electrode for the accurate and precise determination of Pb(ii) ions even in the presence of other interfering ions. Factors affecting the electrode''s response behavior were studied and optimized. Scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and FT-IR spectroscopy were used for studying the morphology and response mechanism of the prepared sensor. The lipophilicity of the used ionophore, which contributes to the mechanical stability of the sensor, was studied using the contact angle measurement technique. The selectivity coefficients obtained by the separate solution method (SSM) and fixed interference method (FIM) confirmed the selectivity of the proposed sensor for Pb(ii) ions. The proposed sensor exhibited a Nernstian slope of 29.96 ± 0.34 mV per decade over a wide linear range of 5 × 10−8 to 1 × 10−1 mol L−1 and detection limit of 3 × 10−8 mol L−1 for 2 months with a fast response time (<10 s) and working pH range (2.5–5.5). To further ensure the practical applicability of the sensor, it was successfully applied for the lead(ii) ion determination in different water samples and the obtained data showed an agreement with those obtained by atomic absorption spectroscopy. In addition, it was successfully applied for the potentiometric titration of Pb(ii) against K2CrO4 and Na2SO4.

Due to the toxicity of lead(ii) to all living organisms destroying the central nervous system and leading to circulatory system and brain disorders, the development of effective and selective lead(ii) ionophores for its detection is very important.  相似文献   

15.
Direct and indirect antioxidant activities of rosmarinic acid (RA) based on HOO˙/CH3OO˙ radical scavenging and Fe(iii)/Fe(ii) ion chelation were theoretically studied using density functional theory at the M05-2X/6-311++G(2df,2p) level of theory. First, four antioxidant mechanisms including hydrogen atom transfer (HAT), radical adduct formation (RAF), proton loss (PL) and single electron transfer (SET) were investigated in water and pentyl ethanoate (PEA) phases. Regarding the free radical scavenging mechanism, HAT plays a decisive role with overall rate coefficients of 1.84 × 103 M−1 s−1 (HOO˙) and 4.49 × 103 M−1 s−1 (CH3OO˙) in water. In contrast to PL, RAF and especially SET processes, the HAT reaction in PEA is slightly more favorable than that in water. Second, the [Fe(iii)(H2O)6]3+ and [Fe(ii)(H2O)6]2+ ion chelating processes in an aqueous phase are both favorable and spontaneous especially at the O5, site-1, and site-2 positions with large negative ΔrG0 values and great formation constant Kf. Finally, the pro-oxidant risk of RA was also considered via the Fe(iii)-to-Fe(ii) complex reduction process, which may initiate Fenton-like reactions forming reactive HO˙ radicals. As a result, RA does not enhance the reduction process when ascorbate anions are present as reducing agents, whereas the pro-oxidant risk becomes remarkable when superoxide anions are found. The results encourage further attempts to verify the speculation using more powerful research implementations of the antioxidant activities of rosmarinic acid in relationship with its possible pro-oxidant risks.

Direct and indirect antioxidant activities of rosmarinic acid (RA) based on HOO˙/CH3OO˙ radical scavenging and Fe(iii)/Fe(ii) ion chelation were theoretically studied using density functional theory at the M05-2X/6-311++G(2df,2p) level of theory.  相似文献   

16.
A potentiometric sensor, based on the glassy carbon electrode (GCE) modified with a magnetic multi-walled carbon nanotubes/cesium ion-imprinted polymer composite (MMWCNTs@Cs-IIP), is introduced for the detection of cesium(i). The IIP was synthesized using cesium ions as the template ions, chitosan as the functional monomer and glutaraldehyde as the cross-linking agent. The membrane, which was coated on the surface of the GCE, was prepared using MMWCNTs@Cs(i)-IIP as the modifier, PVC as the neutral carrier, 2-nitrophenyloctyl ether as the plasticizer and sodium tetraphenylborate as the lipophilic salt. The proposed sensor exhibited a Nernstian slope of 0.05954 V dec−1 in a working concentration range of 1 × 10−7 to 1 × 10−4 M (mol L−1) with a detection limit of 4 × 10−8 M. The sensor exhibited high selectivity for cesium ions and was successfully applied for the determination of Cs(i) in real samples.

A Cs(i)-selective potentiometric microsensor based on the glassy carbon electrode (GCE) modified with a magnetic multi-walled carbon nanotubes/cesium ion-imprinted polymer has been developed.  相似文献   

17.
Chromium(iii) and bismuth(iii) co-doped ZnGa2O4 nanoparticles are synthesized by a hydrothermal method assisted by microwave heating. The obtained nanoparticles, with a diameter smaller than 10 nm, present good luminescence emission in the deep red range centered at 695 nm after coating with a silica layer and calcination at 1000 °C during 2 h. Persistent luminescence and photoluminescence properties are investigated at several temperatures. Bandwidth and luminescence intensity ratio of persistent emission do not present enough change with temperature to obtain a competitive nanothermometer with high sensitivity. Nevertheless, persistent luminescence decay curves present a significant shape change since the trap levels involved in the deexcitation mechanism are unfilled with increase of temperature. Even if the sensitivity reaches 1.7% °C−1 at 190 °C, the repeatability is not optimal. Furthermore, photoluminescent lifetime in the millisecond range extracted from the photoluminescence decay profiles drastically decreases with temperature increase. This variation is attributed to the thermal equilibrium between two thermally coupled chromium(iii) levels (2E and 4T2) that have very different deexcitation lifetimes. For ZnGa2O4:Cr3+0.5%,Bi3+0.5%, the temperature sensitivity reaches 1.93% °C−1 at 200 °C. Therefore, this kind of nanoparticle is a very promising thermal sensor for temperature determination at the nanoscale.

Luminescence properties of chromium(iii) and bismuth(iii) co-doped ZnGa2O4 nanoparticles are investigated for thermometry applications.  相似文献   

18.
Bifunctional heterogeneous catalytic processes for highly efficient removal of arsenic (As(iii)) are receiving increased attention. However, the agglomerated nature and stability of nanoparticles are major concerns. Herein, we report a new process regarding the anchoring of CuFe2O4 nanoparticles on a substrate material, a kind of Fe–Ni foam, to form porous CuFe2O4 foam (CuFe2O4-foam) by in situ synthesis. The prepared material was then applied to activate peroxymonosulfate (PMS) for fast and efficient removal of As(iii) from water. The results of removal experiments show that the complete removal of arsenic (<10 μg L−1) from 1 mg L−1 As(iii) aqueous solution can be achieved within shorter time (<10 min) using this adsorbent coupled with PMS. The maximum adsorption capability of As(iii) and As(v) on the prepared adsorbent is observed to be about 105.78 mg g−1 and 120.32 mg g−1, respectively. CuFe2O4-foam/PMS couple could work effectively in a wide pH range (3.0–9.0) and temperature range (10–60 °C), which is more beneficial to its application in actual water treatment engineering. The exhausted adsorbents can be refreshed for cyclic runs (at least 7 cycles) with insignificant capacity loss using alkaline solution as a regeneration strategy, suggesting this process has good stability. Investigation of the mechanism reveals that the route to the removal of As(iii) is synchronous oxidation and sequestration in the arsenic removal process. The large As(iii) removal capability and stability of CuFe2O4-foam/PMS show its potential as a promising candidate in real As(iii)-contaminated groundwater treatment.

Bifunctional heterogeneous catalytic processes for highly efficient removal of arsenic (As(iii)) are receiving increased attention.  相似文献   

19.
Deep eutectic solvents (DESs) were used as alternatives to the aqueous phase in solvent extraction of iron(iii), zinc(ii) and lead(ii). The selective extraction of iron(iii) and zinc(ii) was studied from a feed of ethaline (1 : 2 molar ratio of choline chloride : ethylene glycol) and lactiline (1 : 2 molar ratio of choline chloride : lactic acid), with the former DES being more selective. A commercial mixture of trialkylphosphine oxides (Cyanex 923, C923) diluted in an aliphatic diluent selectively extracted iron(iii) from a feed containing also zinc(ii) and lead(ii). The subsequent separation of zinc(ii) from lead(ii) was carried out using the basic extractant Aliquat 336 (A336). The equilibration time and the extractant concentration were optimized for both systems. Iron(iii) and zinc(ii) were stripped using 1.2 mol L−1 oxalic acid and 0.5 mol L−1 aqueous ammonia, respectively. An efficient solvometallurgical flowsheet is proposed for the separation and recovery of iron(iii), lead(ii) and zinc(ii) from ethaline using commercial extractants. Moreover, the process was upscaled in a countercurrent mixer-settler set-up resulting in successful separation and purification.

Deep eutectic solvents (DESs) were used as alternatives to the aqueous phase in solvent extraction of iron(iii), zinc(ii) and lead(ii).  相似文献   

20.
Novel Bi2WO6/bentonite (denoted as BWO/BENT) composites were prepared via a typical hydrothermal process and employed for the photocatalytic oxidation of arsenic(iii) (As(iii)). The properties of the prepared samples were characterized through X-ray diffraction, transmission and scanning electron microscopy, UV-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. Effects of the BENT ratio on the As(iii) removal were explored under simulated sunlight, and the best photocatalytic effect was observed for the composite with BWO : BENT = 7 : 3 w/w. Compared with the pure BWO, the BWO/BENT composites exhibited an improved photocatalytic ability in the removal of As(iii), which was mainly ascribed to the enlarged specific surface area and the suppressed electron–hole recombination by the incorporated BENT. Furthermore, photo-generated holes (h+) and superoxide radicals ·O2 were confirmed to be the major contributors to the oxidation of As(iii), and an associated mechanism of photocatalytic oxidation of As(iii) over BWO/BENT composites was proposed.

Novel Bi2WO6/bentonite (denoted as BWO/BENT) composites were prepared via a typical hydrothermal process and employed for the photocatalytic oxidation of arsenic(iii) (As(iii)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号