首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel fluorescent probe based on molecularly imprinted polymers (MIPs) coupled with N-doped carbon dots (CDs) was prepared and used for specific recognition and sensitive determination of tetracycline (TC). N-doped CDs were synthesized using citric acid as a carbon source and ethylenediamine as a nitrogen source by a microwave assisted pyrolysis method. The determination conditions such as the solvents, material amount, pH value, and temperature were optimized. The CDs-MIPs have the best quenching on TC in water. The proposed method used for TC determination in milk powder samples had a detection limit of 0.054 μg mL−1 and a wide range of 0.5–30 μg mL−1. Meanwhile, satisfactory recoveries were obtained ranging from 95 to 108%. Oxytetracycline, chlorotetracycline and most of the coexisting substances showed no obvious interference indicating that the CDs-MIP probe exhibited high selectivity due to the presence of imprinted sites. Charge transfer from CDs-MIPs to TC may be through the mechanism of fluorescence quenching. This work gives a feasible strategy for the synthesis of N-doped carbon dot based molecularly imprinted polymers used as a fluorescent sensor in the food analysis field.

A novel fluorescent probe based on MIP coupled with N-doped CDs was prepared and used for sensitive recognition of tetracycline.  相似文献   

2.
In this study, a sensitive ratiometric fluorescent nanosensor was constructed using a facile one-pot method by encapsulating carbon dots (CDs) and cadmium telluride quantum dots (CdTe QDs) into the pore cavities of a metal–organic framework (ZIF-8). In this nanosensor (CD/CdTe QD@ZIF-8), the fluorescence attributed to CdTe QDs was quenched by silver ions (Ag+), and the fluorescence intensity of CDs did not change. The introduction of ZIF-8 into the system can not only adsorb Ag+ but also easily separate CDs and CdTe QDs from the matrix. The developed CD/CdTe QD@ZIF-8 composite used as a ratiometric fluorescent probe exhibited high sensitivity and selectivity towards Ag+. The working linear range was 0.1–20 μM with a limit of detection (LOD) of 1.49 nM. Finally, the proposed nanosensor was applied to determine Ag+ in lake water with satisfactory results.

A novel ratiometric fluorescent sensor (CDs/CdTe QDs@ZIF-8) combining the advantages of ratiometric and MOFs was synthesized for Ag+ detection.  相似文献   

3.
Heteroatom doping in carbon dots (CDs) was found to be an efficient way to regulate the structure of electronic energy levels and enhance the fluorescence characteristics of CDs. Nevertheless, most reported fabrication processes of heteroatom-doped CDs are rigorous and complex. Herein, a facile and novel strategy was developed to rapidly prepare nitrogen and phosphorus co-doped CDs (N,P-CDs) using acetic acid as the carbon source, and arginine, 1,2-ethylenediamine (EDA) and diphosphorus pentoxide as the dopants, respectively. The optical, morphological and structural characterizations of the synthesized N,P-CDs were investigated via UV and photoluminescence spectroscopy, X-ray photoelectron spectroscopy, TEM, and FT-IR spectroscopy. The N,P-CDs display outstanding fluorescence stability under high ionic strength (1.6 M KCl), and long time UV irradiation, indicating that they can be used as favorable candidates for fluorescent probes. The fluorescence of N,P-CDs was selectively quenched by chloramphenicol (CAP) with a short response time. The linear range of the response to CAP was from 0.8 to 70 μM with a limit of detection of 0.36 μM (S/N = 3). Notably, the fabricated N,P-CDs were employed for the highly selective and sensitive detection of CAP in milk samples, indicating their potential applications in biologically related areas.

The spontaneous synthesis of nitrogen and phosphorus co-doped carbon dots was reported, and they were used as a probe for chloramphenicol.  相似文献   

4.
In this study, we developed a facile method for synthesizing dual-emission carbon nanodots (CDs) through trimesic acid and o-phenylenediamine through electrolysis for 2 h. The synthesized CDs were mainly 3–7 nm in size, with an average size of 5.17 nm. The dual-emission fluorescent property of these CDs could be observed under two different excitation wavelengths. The green emission of the CDs could be quenched after the addition of mercury ions or copper ions, and the blue emission of the CDs could be inhibited using hydroxychloroquine (HCQ). Furthermore, the quenched fluorescence of CDs/Cu2+ could be recovered through the addition of glyphosate. We developed a multifunctional chemical sensor by using these special fluorescence materials. Under optimal conditions, the detection limits of mercury ions, glyphosate, and HCQ were 0.42 μM, 1.1 mg L−1, and 0.14 μM, respectively. Moreover, this method can be used to detect mercury ions, glyphosate, and HCQ in environmental water, cereals, and urine samples, respectively.

The synthetic procedure and the applications of CDs.  相似文献   

5.
In this work, an electrochemical sensor was designed for trace monitoring of bisphenol A (BPA) by decorating a hybrid bilayer molecularly imprinted membrane (MIM) on a multi-walled carbon nanotube-modified glassy carbon electrode. When BPA in the MIM was eluted, a composite molecularly imprinted electrochemical sensor was constructed. Under optimal conditions, the developed sensor showed two linear relationships between ΔIp and BPA concentration in the range of 0.04 μM to 8 μM, as well as good selectivity and stability, and was also applied to detect BPA in water samples with desirable recoveries ranging from 92.0% to 107.0%.

A hybrid bilayer molecularly imprinted membrane-dependent electrochemical sensor was developed for bisphenol A assay based on 4-pentenoyl-isoleucyl-chitosan oligosaccharide and acrylamide functional monomers.  相似文献   

6.
In this work, a novel strategy for synthesizing carbon dots (CDs) with a quantum yield of approximately 15.36% has been established by employing a bathroom lamp as a light source. Compared with other current protocols, the method described here displayed various advantages such as environmentally friendly manipulations and low power and cost. Subsequently, we applied the CDs as a fluorescence probe for the detection of nimesulide (Nim) firstly under the optimal conditions. A linear relationship between ln(F0/F) and the concentration of Nim was obtained in the range from 0.5 μM to 75 μM with a detection limit of 100 nM. In addition, the as-prepared CDs showed excellent biocompatibility and were applied for cell imaging, which presented great potential applications in cell imaging.

This work reported the simple preparation method of carbon dots using weak power bathroom lamp irradiation, and explored their potential application in cell imaging and as a fluorescent sensor for the determination of nimesulide.  相似文献   

7.
A kind of highly selective and sensitive fluorescent probe for detecting Fe3+, carbon dots (CDs), was prepared with renewable reed naturally containing C, N, O, and S elements as a green and eco-friendly carbon source by a simple hydrothermal process. The fluorescence of CDs without purification and surface modification can be quenched by Fe3+ in a wide concentration range of 0 to 362 μmol L−1 (concentration of Fe3+), with detection limits as low as 0.014 μmol L−1 in 0–50 μmol L−1. Characterizations, such as TEM, XPS, Raman and FTIR, confirmed that the static quenching mechanism involved the generation of non-luminescent complexes between Fe3+ and functional groups (carboxyl group, sulfur-oxyl group and hydroxyl group) on the surface of CDs and with the aggregation of CDs. More importantly, CDs had good biocompatibility and nontoxicity according to an MTT cell-viability assay, and cells labeled with CDs emitted blue, green and red color fluorescence. Thus, the static quenching mechanism was confirmed. So, this reed-derived natural CD solution can be utilized in detecting Fe3+, culture cells, and cell imaging.

A highly selective and sensitive fluorescent probe for detecting Fe3+, carbon dots (CDs), was prepared with renewable reed naturally containing C, N, O, and S elements as a green and eco-friendly carbon source by a simple hydrothermal process.  相似文献   

8.
An eco-friendly fluorescent molecularly imprinted polymer anchored on the surface of graphene quantum dots (GQDs@MIP) was developed with an efficient sol–gel polymerization for highly sensitive and selective determination of p-nitroaniline (p-NA). The GQDs@MIP was characterized in detail by Fourier-transform infrared, fluorescence spectrometer, scanning electron microscope, transmission electron microscope and ultraviolet spectrophotometer. The results showed that the imprinted layer was successfully grafted on the surface of the GQDs. The fluorescence of the GQDs@MIP is efficiently quenched when p-NA recombines with the imprinting sites based on the photo-induced electron transfer fluorescence quenching mechanism. A good linear relationship was obtained between the fluorescence quenching efficiency of the GQDs@MIP and the concentration of p-NA in the range of 0–15.0 μM with a correlation coefficient of 0.99. The practicability of the proposed method in real samples was successfully evaluated through monitoring p-NA in water and fish samples with satisfactory recovery. The developed method provides a feasible and eco-friendly strategy to fabricate MIPs anchored on GQDs with good fluorescence properties for sensitive detection of organic pollutants in complex samples.

An eco-friendly fluorescent molecularly imprinted polymer anchored on the surface of graphene quantum dots (GQDs@MIP) was developed with an efficient sol–gel polymerization for highly sensitive and selective determination of p-nitroaniline (p-NA).  相似文献   

9.
Highly fluorescent carbon dots (CDs) were synthesized through facile hydrothermal carbonization and ethylenediamine passivation of an easily available prawn shell precursor. The as-prepared CDs exhibit high water solubility, wavelength-tunable fluorescence with quantum yield up to 68.9%, high photostability and resistance against biomolecules, thus enabling the application as viable fluorescent nanoprobes for detection of guest quenchers. The fluorescence of the CDs can be effectively quenched by clomifene citrate (CC, a common drug for infertility) through static quenching, and therefore can serve as a simple and efficient fluorescent nanoprobe for determination of CC with wide linear range (0.25–10 μg mL−1) and low detection limit (0.2 μg mL−1). The CDs also showed low cytotoxicity, which enables the safe and accurate fluorescent detection of spiked CC in human serum, demonstrating their potential as a credible fluorescent CC nanoprobe in clinical examination.

Highly fluorescent carbon dots (CDs) were synthesized through facile hydrothermal carbonization and ethylenediamine passivation of an easily available prawn shell precursor.  相似文献   

10.
A novel, simple and effective dual-emissive fluorescent probe for the sensitive and selective detection of Cu(ii) has been developed by mixing blue carbon dots and orange carbon dots, with a sensitive detection limit of 7.31 nM. The blue fluorescence can be selectively quenched by Cu(ii), while the orange fluorescence is a internal reference, resulting in a distinguishable fluorescence color change from blue to orange under a UV lamp. Meanwhile, its as-prepared text paper provides a convenient and simple approach for the visual detection of Cu(ii) and successfully applied in real water samples, with a dose-discerning ability as low as 50 nM. The methodology reported here opens a novel pathway toward the real applications of fluorescent test papers.

A ratiometric fluorescence nanosensor has been developed by mixing blue fluorescent carbon dots and orange fluorescent carbon dots for the detection of copper ions.  相似文献   

11.
A carbon dot/polyacrylamide (CDs/PAM) composite hydrogel film with stable fluorescence performance was fabricated by merging a hydrogel film and carbon dots (CDs) with blue fluorescence, which were prepared by hydrothermal synthesis using anhydrous citric acid and acrylamide as carbon sources. The obtained CDs/PAM composite hydrogel film exhibited a good fluorescence quenching effect on ornidazole (ONZ), and can be used for the quantitative detection of ONZ. In the ONZ concentration range of 5–60 μM, a good linear relationship between the fluorescence quenching efficiency of the CDs/PAM composite hydrogel film and the concentration of ONZ solution was obtained with a low detection limit of 2.35 μM. In addition, the detection system has good selectivity and strong anti-interference capacity, and can be used in repeated cycles for detection.

A novel carbon dot/polyacrylamide composite hydrogel film with stable blue fluorescence performance was fabricated by merging a hydrogel film and carbon dots, which was used for highly selective and quantitative detection of ONZ in real samples.  相似文献   

12.
Carbon dots (CDs) as fluorescent probes have been widely exploited to detect biomarkers, however, tedious surface modification of CDs is generally required to achieve a relatively good detection ability. Here, we synthesized N-doped carbon dots (N-CDs) from triethylenetetramine (TETA) and m-phenylenediamine (m-PD) using a one-step hydrothermal method. When the pH increases from 3 to 11, the fluorescence intensity of the N-CDs gradually decreases. Furthermore, it displays a linear response to the physiological pH range of 5–8. Au3+ is reduced by amino groups on the surface of N-CDs to generate gold nanoparticles (AuNPs), causing fluorescence quenching of the N-CDs. If glutathione (GSH) is then added, the fluorescence of the N-CDs is recovered. The fluorescence intensity of the N-CDs is linearly correlated with the GSH concentration in the range of 50–400 μM with a limit of detection (LOD) of 7.83 μM. The fluorescence probe was used to distinguish cancer cells from normal cells using pH and to evaluate intracellular GSH. This work expands the application of CDs in multicomponent detection and provides a facile fluorescent probe for the detection of intracellular pH and GSH.

N-doped carbon dots used as a fluorescence probe can distinguish cancer cells from normal cells by pH and evaluate intracellular GSH.  相似文献   

13.
We have demonstrated a fluorescent functional monomer instead of the traditional functional monomers for molecularly imprinted sensors. The sensors were firstly used to selectively detect 2,4,6-trichlorophenol (2,4,6-TCP) by solid fluorescence detection without a dispersion solution. Moreover, the selectivity and anti-interference ability of the SiO2@dye-FMIPs sensor meet the requirements of a fluorescent sensor. The novel fluorescent monomer introduced into MIP is no longer just a fluorophore without recognizing ability. The fluorescence intensity of SiO2@dye-FMIPs showed a linear response to 2,4,6-TCP concentration in the range of 0–100 nM with a detection limit of 0.0534 nM. We could also demonstrate that such a system can not only get rid of the confines of traditional functional monomers and detection manner, but also improved the applications of MIPs sensors in sensing systems.

We have demonstrated a molecularly imprinted sensor with a fluorescent functional monomer instead of the traditional functional monomers to detect 2,4,6-TCP.  相似文献   

14.
Self-functionalized carbon dots (CDs) were prepared from ethanolic shallot extract to obtain a total phenolic precursor. The total phenolic extract was then heated at 180 °C for four hours in an autoclave. Only 1 mg L−1 of CDs had high fluorescence emission at 430 nm after excitation at 340 nm and manifested a high selectivity for Cr(vi) ions. The inter- and intra-day emission stability, pH, ionic strength, solvent effect, Stern–Volmer constant, incubation time, speciation of Cr(iii) and Cr(vi) ions, and ion selectivity of the as-prepared CDs were investigated in detail. The proposed method was validated in 20–100 μM linearity with y = 2.2346x as the set-zero intercept linear equation, 0.9981 as the correlation coefficient, 3.5 μM as the limit of detection (LOD), 11.7 μM as the limit of quantification (LOQ), and 2.78% and 5.29% as the intra-day and inter-day relative standard deviations (RSD), respectively. The recovery of drinking water, milk, soymilk, fruit juices (apple and coconut), tap water, and chromium-coated industrial waste water by the investigated Cr sensor was found to be 78.58–119.69%. Therefore, the proposed Cr(vi) sensor had superior advantages of sensitivity, selectivity, rapidity, and reproducibility.

Self-functionalized carbon dots (CDs) were prepared from ethanolic shallot extract to obtain a total phenolic precursor.  相似文献   

15.
Tetracycline (TC) is widely used as a veterinary drug, and its residue in livestock products could enter the human body and cause damage. In this study, we developed an eco-friendly approach that utilized pomelo peel as a carbon source to synthesize new water-soluble N-doped carbon dots (P-NCDs) with blue fluorescence, obtaining a high quantum yield of up to 76.47% and achieving the goal of turning waste into value. Our prepared P-NCDs can selectively recognized TC, and their fluorescence was quenched based on the IFE. P-NCDs could measure the TC concentration in the linear range of 0–100 μmol L−1 with a detection limit (LOD, S/N = 3) as low as 0.045 μmol L−1. Furthermore, we have successfully applied our P-NCDs to the detection of TC in milk samples with convincing results within 90 s. Overall, our newly synthesized fluorescent sensor, P-NCDs, demonstrated huge potential to become an alternative way to detect TC in a simple, efficient, sensitive way without using any special instruments.

We developed an eco-friendly approach utilizing pomelo peel as a carbon source to synthesize P-NCDs, obtaining a high quantum yield of up to 76.47%. Our prepared P-NCDs can recognize tetracycline, and their fluorescence was quenched based on an IFE.  相似文献   

16.
Highly luminescent carbon dots (CDs) are obtained from mint leaves adopting a simple and cost effective route devoid of additional chemical reagents and functionalization. The as-synthesized CDs are characterized by TEM, FE-SEM, XRD analysis, FTIR, Raman, UV-visible and photoluminescence spectral studies. The results reveal that the CDs have an average diameter of 4 nm with a hydroxyl-rich surface. The luminescence of the dots was excitation dependent and was stable towards variation in the medium. The system could perform as a promising on–off–on fluorescent sensor for the selective and sensitive dual analyte recognition of Fe3+ and AA with a detection limit of 374 nM and 79 nM, respectively. The mechanism of ascorbic acid sensing by the CD–Fe3+ unit is established by identifying the binding sites of the biomolecule with the metal ion by examining the behaviour of the sensor in the presence of ascorbic acid derivatives.

Highly luminescent carbon dots (CDs) are obtained from mint leaves adopting a simple and cost effective route devoid of additional chemical reagents and functionalization.  相似文献   

17.
Novel fluorescent carbon dots (CDs) were synthesized using an economically feasible and green one-step heating process. Miscanthus, a perennial grass and an inexpensive sustainable biomass, was utilized as the starting material to prepare CDs and doped CDs (nitrogen, phosphorous and nitrogen-phosphorous dual doped). The abundance of oxygen-containing functional groups in Miscanthus-derived CDs (MCD) and doped MCD was confirmed via Fourier-transform infrared (FTIR) and energy dispersive X-ray spectroscopy (EDS). The average size of MCD, N-doped MCD, P-doped MCD and dual-doped MCDs was found to be 7.87 ± 0.27, 4.6 ± 0.21, 6.7 ± 0.38 and 5.3 ± 0.32 nm, respectively. The synthesized MCD and doped MCD exhibited a quantum yield (QY) of 4.71, 11.65, 2.33 and 9.63% for the MCD, N-doped MCD, P-doped MCD and dual-doped MCD, respectively. MCD and doped MCD exhibited excellent excitation-dependent photoluminescence properties, with strong blue fluorescence upon irradiation with UV-light (365 nm). N-doped MCD exhibited superb selectivity towards Fe3+ ions, with a detection limit of 20 nM and a detection range from 0.02 to 2000 μM. The normalized linear relationship between the intensity of fluorescence emission of the prepared N-doped MCD and the concentration of Fe3+ ions was utilized to selectively and sensitively detect Fe3+ ions.

Fluorescent carbon dots for the selective and sensitive detection of Fe3+ ions with a wide detection range and very low detection limit.  相似文献   

18.
In this work, we reported a highly rapid and non-enzymatic method for cholesterol measuring based on carbon nitride quantum dots (CNQDs) as fluorescent nanoprobes, which were synthesized through chemical oxidation. The obtained CNQDs displayed high quantum yield up to 35% as well as excellent photostability, water solubility and low toxicity. We found that the fluorescence of CNQDs could be quenched more than 90% within 30 seconds by cholesterol through the formation of hydrogen bonds between –NH2, –NH on the surface of CNQDs and cholesterol containing –OH. According to this phenomenon, a cholesterol detection method was constructed with a wide linear region over the range of 0–500 μmol L−1 and a detection limit as low as 10.93 μmol L−1, and it possessed the obvious advantages of being a very rapid process and avoiding the use of enzymes. In addition, this method showed high selectivity in the presence of various interfering reagents and applicability to the measurement of cholesterol in fetal bovine serum, which indicated its potential application value in clinical settings.

Highly rapid and non-enzymatic method for the detection of cholesterol was constructed based on carbon nitride quantum dots (CNQDs) as fluorescent nanoprobes. The fluorescence of CNQDs could be effectively and rapidly quenched by cholesterol.  相似文献   

19.
Copper ion (Cu2+) plays an important role in the human body because it is beneficial for metabolism. However, an excessive or slight amount of Cu2+ can cause various symptoms. Therefore, it is necessary for human health to realize the trace and visual detection of Cu2+. Referring to traditional fluorescence test papers, the qualitative and semi-quantitative detection of Cu2+ could be realized by a dual-carbon dots (CDs) ratiometric fluorescent paper-based sensor with the advantages of environmental protection, portability and low cost. In this paper, the inkjet-printed test paper with the best mixing ratio of the two CDs has been researched to maximize the spectral energy transfer of ion detection (maximum color gamut expansion). Among them, the preparation method of b-CDs has been improved, increasing the photoluminescence quantum yield (PLQY) to 88.9%. The sensitivity detection limit of the double emission ratio sensor was 0.15 nM in solution, and the human eye can distinguish at least 3 μmol L−1 Cu2+ in the paper-based sensor. Compared with the traditional single-emission sensor, the human eye was more sensitive to the color change of the emission ratio sensor. The results indicate that we not only realized the micro detection of Cu2+ with convenient methods, but also provided a promising strategy for the visual detection of Cu2+.

A fluorescent test paper sensor for qualitative and semi-quantitative detection of Cu2+ is designed based on high photoluminescence quantum yield (PLQY) carbon dots (CDs).  相似文献   

20.
In the present study, novel β-cyclodextrin doped carbon dots (CCDs) were prepared via a simple one-pot hydrothermal method at a mild temperature (140 °C), using mixtures of β-cyclodextrin and citric acid as precursors. By characterizing the chemical properties of CCDs prepared at 140 °C and 180 °C, the importance of low-temperature reaction for preservation of the specific structure of β-CD was elucidated. The CCDs showed excellent optical properties and were stable to changes in pH, ionic strength and light irradiation. Since the fluorescence of the CCDs could be selectively quenched by isoniazid (INZ) through specific host–guest recognition effects, a convenient isoniazid fluorescence sensor was developed. Under the optimal conditions, the sensor exhibited a relatively low detection limit of 0.140 μg mL−1 and a wide detection range from 0.2 μg mL−1 to 50 μg mL−1 for INZ detection. Furthermore, the sensor was employed successfully for the determination of INZ in urine samples with satisfactory recovery (91.1–109.5%), displaying potential in clinical applications. Finally, low cytotoxicity of the prepared CCDs was confirmed using the CCK-8 method, followed by application in HepG2 cell imaging.

Novel β-cyclodextrin (β-CD) doped carbon dots (CCDs) were prepared at a mild temperature to preserve the host–guest recognition properties of β-CD. An isoniazid fluorescence sensor was constructed with a limit of detection of 0.14 μg mL−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号