首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Acetaminophen hepatotoxicity is the leading cause of drug-induced liver failure. Despite substantial efforts in the past, the mechanisms of acetaminophen-induced liver cell injury are still incompletely understood. Recent advances suggest that reactive metabolite formation, glutathione depletion, and alkylation of proteins, especially mitochondrial proteins, are critical initiating events for the toxicity. Bcl-2 family members Bax and Bid then form pores in the outer mitochondrial membrane and release intermembrane proteins, e.g., apoptosis-inducing factor (AIF) and endonuclease G, which then translocate to the nucleus and initiate chromatin condensation and DNA fragmentation, respectively. Mitochondrial dysfunction, due to covalent binding, leads to formation of reactive oxygen and peroxynitrite, which trigger the membrane permeability transition and the collapse of the mitochondrial membrane potential. In addition to the diminishing capacity to synthesize ATP, endonuclease G and AIF are further released. Endonuclease G, together with an activated nuclear Ca2+,Mg2+-dependent endonuclease, cause DNA degradation, thereby preventing cell recovery and regeneration. Disruption of the Ca2+ homeostasis also leads to activation of intracellular proteases, e.g., calpains, which can proteolytically cleave structural proteins. Thus, multiple events including massive mitochondrial dysfunction and ATP depletion, extensive DNA fragmentation, and modification of intracellular proteins contribute to the development of oncotic necrotic cell death in the liver after acetaminophen overdose. Based on the recognition of the temporal sequence and interdependency of these mechanisms, it appears most promising to therapeutically target either the initiating event (metabolic activation) or the central propagating event (mitochondrial dysfunction and peroxynitrite formation) to prevent acetaminophen-induced liver cell death.  相似文献   

2.
Acetaminophen (APAP) hepatotoxicity is the most frequent cause of acute liver failure in many countries. The mechanism of cell death is initiated by formation of a reactive metabolite that binds to mitochondrial proteins and promotes mitochondrial dysfunction and oxidant stress. Manganese superoxide dismutase (SOD2) is a critical defense enzyme located in the mitochondrial matrix. The objective of this investigation was to evaluate the functional consequences of partial SOD2-deficiency (SOD2+/−) on intracellular signaling mechanisms of necrotic cell death after APAP overdose. Treatment of C57Bl/6J wild type animals with 200 mg/kg APAP resulted in liver injury as indicated by elevated plasma alanine aminotransferase activities (2870 ± 180 U/L) and centrilobular necrosis at 6 h. In addition, increased tissue glutathione disulfide (GSSG) levels and GSSG-to-GSH ratios, delayed mitochondrial GSH recovery, and increased mitochondrial protein carbonyls and nitrotyrosine protein adducts indicated mitochondrial oxidant stress. In addition, nuclear DNA fragmentation (TUNEL assay) correlated with translocation of Bax to the mitochondria and release of apoptosis-inducing factor (AIF). Furthermore, activation of c-jun-N-terminal kinase (JNK) was documented by the mitochondrial translocation of phospho-JNK. SOD2+/− mice showed 4-fold higher ALT activities and necrosis, an enhancement of all parameters of the mitochondrial oxidant stress, more AIF release and more extensive DNA fragmentation and more prolonged JNK activation. Conclusions: the impaired defense against mitochondrial superoxide formation in SOD2+/− mice prolongs JNK activation after APAP overdose and consequently further enhances the mitochondrial oxidant stress leading to exaggerated mitochondrial dysfunction, release of intermembrane proteins with nuclear DNA fragmentation and more necrosis.  相似文献   

3.
Methadone (d,l-methadone hydrochloride) is a full-opioid agonist, originally developed as a substitution for heroin or other opiates abusers. Nowadays methadone is also being applied as long-lasting analgesics in cancer, and it is proposed as a promising agent for leukemia therapy. Previously, we have demonstrated that high concentrations of methadone (0.5 mM) induced necrotic-like cell death in SH-SY5Y cells. The pathway involved is caspase-independent but involves impairment of mitochondrial ATP synthesis and mitochondrial cytochrome c release. However, the downstream mitochondrial pathways remained unclear. Here, we studied the participation of apoptosis inducing factor (AIF) in methadone-induced cell death. Methadone resulted in a translocation of AIF from mitochondria to the nucleus. Translocation was inhibited by cyclosporine A, but not by lack of Bax protein. Therefore the effect seems mediated by the formation of the mitochondrial transition pore, but is apparently independent of Bax. Furthermore, methadone-treated SH-SY5Y nuclei show characteristics that are typical for stage I nuclear condensation. Methadone did not induce degradation of DNA into oligonucleosomal fragments or into high molecular weight DNA fragments. Absence of DNA fragmentation coincided with a considerable decrease in the levels of the caspase-actived endonuclase DNase and its chaperone-inhibitor ICAD. In conclusion, our results provide mechanistic insights into the molecular mechanisms that underlie methadone-induced cell death. This knowledge may prove useful to develop novel strategies to prevent toxic side-effects of methadone thereby sustaining its use as therapeutical agent against tumors.  相似文献   

4.
Mouse models of acetaminophen (APAP) hepatotoxicity are considered relevant for the human pathophysiology. The C57BL/6 strain is most popular because it is the background strain of gene knock-out mice. However, conflicting results in the literature may have been caused by sub-strain mismatches, e.g. C57BL/6J and C57BL/6N. This study was initiated to determine the mechanism behind the sub-strain susceptibility to APAP toxicity. C57BL/6N and C57BL/6J mice were dosed with 200 mg/kg APAP and sacrificed at different time points. C57BL/6N mice developed significantly more liver injury as measured by plasma ALT activities and histology. Although there was no difference in glutathione depletion or cytochrome P450 activity between groups, C57BL/6N had a higher glutathione disulfide-to-glutathione ratio and more APAP protein adducts. C57BL/6N showed more mitochondrial translocation of phospho-JNK and BAX, and more release of mitochondrial intermembrane proteins apoptosis-inducing factor (AIF), second mitochondria-derived activator of caspases (SMAC), which caused more DNA fragmentation. The increased mitochondrial dysfunction was confirmed in vitro as C57BL/6N hepatocytes had a more precipitous drop in JC-1 fluorescence after APAP exposure. Conclusion: C57BL/6N mice are more susceptible to APAP-induced hepatotoxicity, likely due to increased formation of APAP-protein adducts and a subsequent enhancement of mitochondrial dysfunction associated with aggravated nuclear DNA fragmentation.  相似文献   

5.
DNA fragmentation in hepatocytes occurs early after acetaminophen (AAP) overdose in mice. DNA strandbreaks can induce excessive activation of poly(ADP-ribose) polymerases (PARP), which may lead to oncotic necrosis. Based on controversial findings with chemical PARP inhibitors, the role of PARP-1 activation in AAP hepatotoxicity remains unclear. To investigate PARP-1 activation and evaluate a pathophysiological role of PARP-1, we used both PARP inhibitors (3-aminobenzamide; 5-aminoisoquinolinone) and PARP gene knockout mice (PARP-/-). Treatment of C3Heb/FeJ mice with 300 mg/kg AAP resulted in DNA fragmentation and alanine aminotransferase (ALT) release as early as 3 h, with further increase of these parameters up to 12 h. Few nuclei of hepatocytes stained positive for poly-ADP-ribosylated nuclear proteins (PAR) as indicator for PARP-1 activation at 4.5 h. However, the number of PAR-positive cells and staining intensity increased substantially at 6 and 12 h. Pretreatment with 500 mg/kg 3-aminobenzamide before AAP attenuated hepatic glutathione depletion and completely eliminated DNA fragmentation and liver injury. Delayed treatment several hours after AAP was still partially protective. On the other hand, liver injury was not attenuated in PARP-/- mice compared to wild-type animals. Similarly, the specific PARP-1 inhibitor 5-aminoisoquinolinone (5 mg/kg) was not protective. However, 3-aminobenzamide attenuated liver injury in WT and PARP-/- mice. In summary, PARP-1 activation is a consequence of DNA fragmentation after AAP overdose. However, PARP-1 activation is not a relevant event for AAP-induced oncotic necrosis. The protection of 3-aminobenzamide against AAP-induced liver injury was due to reduced metabolic activation and potentially its antioxidant effect but independent of PARP-1 inhibition.  相似文献   

6.
Hwang HJ  Kwon MJ  Nam TJ 《Toxicology》2007,230(1):76-82
The insulin-like growth factor (IGF) system and type-I IGF receptor (IGF-IR) signaling are involved in protecting against chemotherapeutic drug-induced cell death in human hepatoma cells. Acetaminophen (AAP) hepatotoxicity is the leading cause of liver failure, and the prevention of AAP-induced cell death has been the focus of many studies. We determined whether IGF-I could protect against AAP-induced cell death in Chang liver cells and investigated the protective mechanism. Based on the results of MTS assays, LDH release assays, Hoechst 33342 cell staining, and DNA fragmentation experiments, AAP induced cell death in a dose-dependent manner. According to Western blot analysis, treatment with AAP increased the level of poly(ADP-ribose) polymerase (PARP) fragments in cells compared with that in control cells; however, caspase-3, a critical signaling molecule in apoptosis, was not activated after AAP overdose. Moreover, combined treatment with AAP and IGF-I inhibited PARP cleavage, which was consistent with the ability of IGF-I to restore the level of glutathione (GSH) and cell viability in GSH and MTS assays, respectively. We investigated whether the protective effect of IGF-I against AAP cytotoxicity is related to the extracellular signal-related kinase ERK1/2, which is generally activated by mitogenic and proliferative stimuli such as growth factors. Compared with AAP treatment alone, IGF-I and AAP co-treatment increased ERK1/2 phosphorylation but inhibited PARP cleavage. Thus ERK1/2 activation is instrumental in the protective effect of IGF-I against AAP-induced cell death in Chang liver cells.  相似文献   

7.
We investigated the cytotoxicity of recently synthesized (S,S)-ethylendiamine-N,N'-di-2-(3-cyclohexyl)propanoic acid esters toward human leukemic cell lines and healthy blood mononuclear cells. Cell viability was assessed by acid phosphatase assay, apoptosis, and differentiation were analyzed by flow cytometry and electron microscopy, while intracellular localization of apoptosis-inducing factor (AIF) was determined by immunoblotting. It was demonstrated that methyl, ethyl, and n-propyl esters were toxic to HL-60, REH, MOLT-4, KG-1, JVM-2, and K-562 leukemic cell lines, while the nonesterified parental compound and n-butyl ester were devoid of cytotoxic action. The ethyl ester exhibited the highest cytotoxic activity (IC?? 10.7 μM-45.4 μM), which was comparable to that of the prototypical anticancer drug cisplatin. The observed cytotoxic effect in HL-60 cells was associated with an increase in superoxide production and mitochondrial membrane depolarization, leading to apoptotic cell death characterized by phosphatidylserine externalization and DNA fragmentation in the absence of autophagic response. DNA fragmentation preceded caspase activation and followed AIF translocation from mitochondria to nucleus, which was indicative of caspase-independent apoptotic cell death. HL-60 cells treated with subtoxic concentration of the compound displayed morphological signs of granulocytic differentiation (nuclear indentations and presence of cytoplasmic primary granules), as well as an increased expression of differentiation markers CD11b and CD15. The cyclohexyl analogues of ethylenediamine dipropanoic acid were also toxic to peripheral blood mononuclear cells of both healthy controls and leukemic patients, the latter being more sensitive. Our data demonstrate that the toxicity of the investigated cyclohexyl compounds against leukemic cell lines is mediated by caspase-independent apoptosis associated with oxidative stress, mitochondrial dysfunction, and AIF translocation.  相似文献   

8.
Hepatotoxicity is a serious problem during drug development and for the use of many established drugs. For example, acetaminophen overdose is currently the most frequent cause of acute liver failure in the United States and Great Britain. Evaluation of the mechanisms of drug-induced liver injury indicates that mitochondria are critical targets for drug toxicity, either directly or indirectly through the formation of reactive metabolites. The consequence of these modifications is generally a mitochondrial oxidant stress and peroxynitrite formation, which leads to structural alterations of proteins and mitochondrial DNA and, eventually, to the opening of mitochondrial membrane permeability transition (MPT) pores. MPT pore formation results in a collapse of mitochondrial membrane potential and cessation of adenosine triphosphate synthesis. In addition, the release of intermembrane proteins, such as apoptosis-inducing factor and endonuclease G, and their translocation to the nucleus, leads to nuclear DNA fragmentation. Together, these events trigger necrotic cell death. Alternatively, the release of cytochrome c and other proapoptotic factors from mitochondria can promote caspase activation and apoptotic cell death. Drug toxicity can also induce an inflammatory response with the formation of reactive oxygen species by Kupffer cells and neutrophils. If not properly detoxified, these extracellularly generated oxidants can diffuse into hepatocytes and trigger mitochondrial dysfunction and oxidant stress, which then induces MPT and necrotic cell death. This review addresses the formation of oxidants and the defense mechanisms available for cells and applies this knowledge to better understand mechanisms of drug hepatotoxicity, especially acetaminophen-induced liver injury.  相似文献   

9.
The mechanism of liver cell injury induced by an overdose of the analgesic acetaminophen (AAP) remains controversial. Recently, it was hypothesized that a significant number of hepatocytes die by apoptosis. Since caspases have been implicated as critical signal and effector proteases in apoptosis, we investigated their potential role in the pathophysiology of AAP-induced liver injury. Male C3Heb/FeJ mice were fasted overnight and then treated with 500 mg/kg AAP. Liver injury became apparent at 4 h and was more severe at 6 h (plasma ALT activities: 4110 +/- 320 U/liter; centrilobular necrosis). DNA fragmentation increased parallel to the increase of plasma ALT values. At 6 h there was a 420% increase of DNA fragmentation and a 74-fold increase of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells located predominantly around central veins. However, the activity of the proapoptotic caspase-3 was not increased at any time after AAP. In contrast, injection of the anti-Fas antibody Jo-2 (positive control) caused a 28-fold increase of caspase-3 activity and severe DNA fragmentation before significant ALT release. Treatment with the caspase inhibitor ZVAD-CHF2 had no effect on AAP toxicity but completely prevented Jo-mediated apoptosis. In contrast, Jo-induced caspase activation and apoptosis could be inhibited by AAP treatment in a time- and dose-dependent manner. We conclude that AAP-induced DNA fragmentation does not involve caspases, suggesting a direct activation of endonucleases through elevated Ca2+ levels. In addition, electrophilic metabolites of AAP may inactivate caspases or their activation pathway. This indicates that AAP metabolism has the potential to inhibit signal transduction mechanisms of receptor-mediated apoptosis.  相似文献   

10.
The aim of this study was to investigate the effect of Moutan Cortex on acetaminophen (AAP)-induced toxicity in human Chang liver cells. Cells were incubated with AAP (0-30 mM) to evaluate the drug's ability to reduce cytoviability. For the cells treated with 10, 20 and 30 mM AAP, LDH leakage was 39.8%, 49.0% and 57.6%, respectively. Administration of Moutan Cortex reduced cytotoxicity in a dose-dependent manner. Glutathione (GSH) concentration in human liver cells decreased significantly after exposure to 20 (p<0.05) and 30 mM (p<0.01) AAP, and increased (p<0.05) if incubated with AAP and Moutan Cortex. The ability of AAP to inhibit mitochondrial function and its counteraction by Moutan Cortex was also evaluated. Moutan Cortex showed dose-dependent increases in MTT metabolism and ATP levels in AAP-treated cells. The DNA content of AAP-treated cells increased with the treatment of Moutan Cortex. These observations demonstrate that Moutan Cortex may significantly attenuate AAP-induced toxicity. It can be considered a cytoprotective agent in this in vitro model of drug toxicity.  相似文献   

11.
在细胞正常生理状态下,凋亡诱导因子定位在线粒体内膜上,与呼吸链复合体Ⅰ互相作用,催化电子从泛醌到细胞色素C的传递。当细胞受到凋亡信号刺激后,凋亡诱导因子变成可溶性蛋白,从线粒体释放到细胞浆中,再通过其核定位信号序列进入细胞核内,和其他因子一起作用于染色体,使染色体凝聚和DNA呈大片段断裂(约50kb),最终诱导细胞凋亡。凋亡诱导因子受p53、Bcl-2家族、Hsp70等多种因子的调节。  相似文献   

12.
13.
扑热息痛肝损伤机制研究进展   总被引:7,自引:0,他引:7  
扑热息痛(AAP)肝损伤是药物性肝损伤的常见原因之一。但迄今为止,其肝损伤机制仍不完全清楚。最新研究进展指出活性代谢产物的形成、谷胱甘肽的耗竭、线粒体蛋白的烷化和过氧化亚硝酸盐的形成是主要原因。本文主要描述了AAP过量所致的线粒体功能异常的研究进展,另外也综述了氧化应激和炎症介质在扑热息痛肝损伤机制中的作用。  相似文献   

14.
Molecular mechanisms of sulfasalazine-induced T-cell apoptosis   总被引:4,自引:0,他引:4  
Impaired apoptosis of T-lymphocytes is involved in the development of chronic inflammatory disorders. Previously we have shown that the anti-inflammatory drug sulfasalazine induces apoptosis in a murine T-lymphocyte cell line. The aims of the present study were to expand these observations to human systems and to analyse the molecular basis for sulfasalazine-induced apoptosis. Sulfasalazine induces apoptosis both in Jurkat cells, a human T-leukaemia cell line (ED50 value approximately 1.0 mM), and in primary human peripheral blood T-lymphocytes (ED50 value approximately 0.5 mM). In contrast SW620 colon carcinoma cells or primary human synoviocytes are not affected at these concentrations suggesting a cell type-specific sensitivity to sulfasalazine. Sulfasalazine triggers the mitochondrial accumulation of Bax and induces a collapse of the mitochondrial transmembrane potential (deltapsi(m)). Sulfasalazine causes cytochrome c release from mitochondria and subsequent activation of caspase-3 and downstream substrates. However, the pan-caspase inhibitor Z-VAD.fmk fails to inhibit sulfasalazine-induced apoptosis. Sulfasalazine stimulates mitochondrio-nuclear translocation of the novel apoptogenic factor apoptosis-inducing factor (AIF) and triggers large-scale DNA fragmentation, a characteristic feature of AIF-mediated apoptosis. Sulfasalazine-induced DeltaPsi(m) loss, AIF redistribution, and cell death are fully prevented by overexpression of Bcl-2. In conclusion, our data suggest that sulfasalazine-induced apoptosis of T-lymphocytes is mediated by mitochondrio-nuclear translocation of AIF and occurs in a caspase-independent fashion. Sulfasalazine-induced apoptosis by AIF and subsequent clearance of T-lymphocytes might thus provide the molecular basis for the beneficial therapeutic effects of sulfasalazine in the treatment of chronic inflammatory diseases.  相似文献   

15.
Isoobtusilactone A, a constituent isolated from the leaves of Cinnamomum kotoense, has been demonstrated by us earlier to be an agent capable of inducing apoptotic cell death of Hep G2 cells. In order to clarify if caspases alone were the sole mediator for eliciting this apoptotic process, a broad caspases inhibitor, Z-VAD.fmk, was utilized to explore this possibility. Interestingly, although Z-VAD.fmk was demonstrated to be capable of completely inhibiting isoobtusilactone A-induced oligonucleosomal DNA fragmentation, yet it could only prevent limited amount of cells from becoming apoptosis-prone. These data implied that some other mechanism(s) might be involved. Thus, the involvement of apoptosis-inducing factor (AIF), a mediator arbitrating caspase-independent apoptosis, in isoobtusilactone A-induced apoptotic process was examined. These findings indicated that isoobtusilactone A could elicit the nuclear translocation of AIF that accompanied the occurrence of large-scale DNA fragmentation. Reduction of AIF expression by AIF-siRNA transfection suppressed large-scale DNA fragmentation. Interestingly, inhibition of AIF expression by AIF-siRNA could not prevent isoobtusilactone A-induced oligonucleosomal DNA fragmentation. In the same vein, when the cells were simultaneously combined pretreatment with AIF-siRNA and Z-VAD.fmk, both large-scale DNA and oligonucleosomal DNA fragmentations could nearly be prevented. Taken together, these findings suggested that isoobtusilactone A-induced apoptotic cell death was mediated via both caspase-dependent and -independent pathways.  相似文献   

16.
Drug induced hepatotoxicity is a major problem where phytochemicals hold promise for its abrogation. This study was carried out to explore cytoprotective potential of lupeol, a triterpene, against acetaminophen (AAP)-induced toxicity in rat hepatocytes. AAP exposure significantly (p < 0.05) reduced cell viability, disturbed Bcl-2 family pro/anti-apoptotic protein balance, increased ROS production and altered redox homeostasis. It also induced mitochondria-mediated hepatocellular injury by significant mitochondrial depolarization, caspase-9/3 activation and subsequent DNA fragmentation. Our results suggest that lupeol pre-treatment effectively restored antioxidant enzyme levels, decreased lipid peroxidation, inhibited ROS generation and depolarization of mitochondria. Lupeol also attenuated mitochondria-mediated signaling pathway and DNA damage as evident from TUNEL assay and cell cycle studies leading to prevention of cytotoxicity. This study confirms the efficacy of lupeol, a food derived antioxidant, in abrogating ROS generation, maintaining redox balance and providing significant protection against mitochondria-mediated cell death during AAP-induced toxicity.  相似文献   

17.
The increase in cellular and mitochondrial glutathione disulfide (GSSG) levels and the GSSG:GSH ratio after acetaminophen (AAP) overdose suggest the involvement of an oxidant stress in the pathophysiology. However, the initial severe depletion of hepatocellular glutathione makes quantitative assessment of the oxidant stress difficult. Therefore, we tested the hypothesis that oxidant stress precedes the onset of cell injury in a cell culture model using 2',7'-dichlorofluorescein (DCF) fluorescence as a marker for intracellular oxidant stress. Cultured primary murine hepatocytes were exposed to 5 mM AAP. DCF fluorescence, XTT reduction, lactate dehydrogenase (LDH) release, and trypan blue uptake were determined from 0 to 12 h. After glutathione depletion at 3 h, DCF fluorescence increased by 16-fold and was maintained at that level up to 12 h. At 1.5 h after AAP, a significant decrease of the cellular XTT reduction capacity was observed, which continued to decline until 9 h. Cell necrosis (LDH release, trypan blue uptake) was detectable in 20% of cells at 6 h, with a significant further increase at later time points. Pretreatment with 20 mM N-acetylcysteine (NAC) 1 h before AAP enhanced cellular glutathione content, prevented or attenuated the AAP-induced decrease of GSH levels and XTT reduction capacity, respectively, and reduced the loss of cell viability. Additionally, treatment with NAC 2 h after AAP exposure prevented further deterioration of XTT reduction at 3 h and later, and attenuated cell necrosis. Thus, AAP-induced oxidant stress precedes cell necrosis and, in cultured hepatocytes, the oxidant stress is involved in the propagation of cell injury.  相似文献   

18.
Acetaminophen (AAP) overdose can cause severe hepatotoxicity and even liver failure in experimental animals and humans. Despite substantial efforts over the last 30 years, the mechanism of AAP-induced liver cell injury is still not completely understood. It is widely accepted that the injury process is initiated by the metabolism of AAP to a reactive metabolite, which first depletes glutathione and then binds to cellular proteins including a number of mitochondrial proteins. One consequence of this process may be the observed inhibition of mitochondrial respiration, ATP depletion and mitochondrial oxidant stress. In the presence of sufficient vitamin E, reactive oxygen formation does not induce severe lipid peroxidation but the superoxide reacts with nitric oxide to form peroxynitrite, a powerful oxidant and nitrating agent. Peroxynitrite can modify cellular macromolecules and may aggravate mitochondrial dysfunction and ATP depletion leading to cellular oncotic necrosis in hepatocytes and sinusoidal endothelial cells. Thus, we hypothesize that reactive metabolite formation and protein binding initiate the injury process, which may be then propagated and amplified by mitochondrial dysfunction and peroxynitrite formation. This concept also reconciles many of the controversial findings of the past and provides a viable hypothesis for the mechanism of hepatocellular injury after AAP overdose.  相似文献   

19.
Overdose of acetaminophen (APAP) is a common cause of acute liver injury and liver failure. The mechanism involves formation of a reactive metabolite, protein binding, oxidative stress and activation of c-Jun N-terminal kinase (JNK), mitochondrial dysfunction, and nuclear DNA fragmentation caused by endonucleases released from damaged mitochondria. Previous work has shown that the natural product resveratrol (RSV) can protect against APAP hepatotoxicity in mice through prevention of lipid peroxidation and anti-inflammatory effects. However, these earlier studies did not take into consideration several fundamental aspects of the pathophysiology. To address this, we treated C57Bl/6 mice with 300 mg/kg APAP followed by 50 mg/kg RSV 1.5 h later. Our results confirmed that RSV reduced liver injury after APAP overdose in mice. Importantly, RSV did not inhibit reactive metabolite formation and protein bindings, nor did it reduce activation of JNK. However, RSV decreased protein nitration after APAP treatment, possibly through direct scavenging of peroxynitrite. Interestingly, RSV also inhibited release of apoptosis-inducing factor and endonuclease G from mitochondria independent of Bax pore formation and prevented the downstream nuclear DNA fragmentation. Our data show that RSV protects against APAP hepatotoxicity both through antioxidant effects and by preventing mitochondrial release of endonucleases and nuclear DNA damage.  相似文献   

20.
The molecular mechanisms responsible for the cellular effects of the nitrogen-containing bisphosphonate zoledronic acid (Zol) were assessed on several osteosarcoma cell lines differing in their p53 and retinoblastoma (Rb) status. Zol inhibited cell proliferation and increased atypical apoptosis. The Zol effects on proliferation were due to cell cycle arrest in S and G2/M phases subsequent to the activation of the intra-S DNA damage checkpoint with an increase in P-ATR, P-chk1, Wee1, and P-cdc2 levels and a decrease in cdc25c, regardless of the p53 and Rb status. In addition, the atypic apoptosis induced by Zol was independent of caspase activation, and it was characterized by nuclear alterations, increased Bax expression, and reduced Bcl-2 level. Furthermore, mitochondrial permeability was up-regulated by Zol independently of p53 in association with the translocation of apoptosis-inducing factor (AIF) and endonuclease-G (EndoG). Zol also disturbed cytoskeletal organization and cell junctions and inhibited cell migration and phosphorylation of focal adhesion kinases. The main difficulty encountered in treating cancer relates to mutations in key genes such as p53, Rb, or proteins affecting caspase signaling carried by many tumor cells. We have demonstrated for the first time that zoledronic acid activated the DNA damage S-phase checkpoint and the mitochondrial pathway via AIF and EndoG translocation, and it inhibited cell proliferation and induced cell death, bypassing these potentials mutations. Therefore, zoledronic acid may be considered as an effective therapeutic agent in clinical trials of osteosarcoma in which mutation for p53 and Rb very often occur, and where current treatment with traditional chemotherapeutic agents is ineffective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号