首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
ABSTRACT

The comet assay is a microgel electrophoresis technique for detecting DNA damage at the level of the single cell. When this technique is applied to detect genotoxicity in experimental animals, the most important advantage is that DNA lesions can be measured in any organ, regardless of the extent of mitotic activity. The purpose of this article is to summarize the in vivo genotoxicity in eight organs of the mouse of 208 chemicals selected from International Agency for Research on Cancer (IARC) Groups 1, 2A, 2B, 3, and 4, and from the U.S. National Toxicology Program (NTP) Carcinogenicity Database, and to discuss the utility of the comet assay in genetic toxicology.

Alkylating agents, amides, aromatic amines, azo compounds, cyclic nitro compounds, hydrazines, halides having reactive halogens, and polycyclic aromatic hydrocarbons were chemicals showing high positive effects in this assay. The responses detected reflected the ability of this assay to detect the fragmentation of DNA molecules produced by DNA single strand breaks induced chemically and those derived from alkali-labile sites developed from alkylated bases and bulky base adducts. The mouse or rat organs exhibiting increased levels of DNA damage were not necessarily the target organs for carcinogenicity. It was rare, in contrast, for the target organs not to show DNA damage. Therefore, organspecific genotoxicity was necessary but not sufficient for the prediction of organ-specific carcinogenicity. It would be expected that DNA crosslinkers would be difficult to detect by this assay, because of the resulting inhibition of DNA unwinding. The proportion of 10 DNA crosslinkers that was positive, however, was high in the gastrointestinal mucosa, stomach, and colon, but less than 50% in the liver and lung. It was interesting that the genotoxicity of DNA crosslinkers could be detected in the gastrointestinal organs even though the agents were administered intraperitoneally.

Chemical carcinogens can be classified as genotoxic (Ames test-positive) and putative nongenotoxic (Ames test-negative) carcinogens. The Ames test is generally used as a first screening method to assess chemical genotoxicity and has provided extensive information on DNA reactivity. Out of 208 chemicals studied, 117 are Ames test-positive rodent carcinogens, 43 are Ames test-negative rodent carcinogens, and 30 are rodent noncarcinogens (which include both Ames test-positive and negative noncarcinogens). High positive response ratio (110/117) for rodent genotoxic carcinogens and a high negative response ratio (6/30) for rodent noncarcinogens were shown in the comet assay. For Ames test-negative rodent carcinogens, less than 50% were positive in the comet assay, suggesting that the assay, which detects DNA lesions, is not suitable for identifying nongenotoxic carcinogens. In the safety evaluation of chemicals, it is important to demonstrate that Ames test-positive agents are not genotoxic in vivo. This assay had a high positive response ratio for rodent genotoxic carcinogens and a high negative response ratio for rodent genotoxic noncarcinogens, suggesting that the comet assay can be used to evaluate the in vivo genotoxicity of in vitro genotoxic chemicals. For chemicals whose in vivo genotoxicity has been tested in multiple organs by the comet assay, published data are summarized with unpublished data and compared with relevant genotoxicity and carcinogenicity data.

Because it is clear that no single test is capable of detecting all relevant genotoxic agents, the usual approach should be to carry out a battery of in vitro and in vivo tests for genotoxicity. The conventional micronucleus test in the hematopoietic system is a simple method to assess in vivo clastogenicity of chemicals. Its performance is related to whether a chemical reaches the hematopoietic system. Among 208 chemicals studied (including 165 rodent carcinogens), 54 rodents carcinogens do not induce micronuclei in mouse hematopoietic system despite the positive finding with one or two in vitro tests. Forty-nine of 54 rodent carcinogens that do not induce micronuclei were positive in the comet assay, suggesting that the comet assay can be used as a further in vivo test apart from the cytogenetic assays in hematopoietic cells. In this review, we provide one recommendation for the in vivo comet assay protocol based on our own data.  相似文献   

2.
As public interest in safety has increased the toxicity evaluation of chemicals become more important. In this study, the DNA-damaging effect of genotoxicants was examined in HepG2 cell line originated from human hepatocellular carcinoma by widely used genotoxicity assays: the comet assay and gammaH2AX immunostaining. Four different direct/indirect genotoxicants were tested in dose-/time-dependent manner. The comet assay and the gammaH2AX immunostaining enables detection of DNA damages in the form of DNA strand breaks with different sensitivity. Therefore, the combination of comet assay and gammaH2AX immunostaining will be complementary tool for evaluation of various forms and degree of DNA damage. Our result also suggested that HepG2 cells could be a suitable model for assessing the genotoxicity of various mutagens and for determining the lowest genotoxic concentration. Further analysis using a larger number of chemicals is warranted to determine the sensitivity and the specificity of HepG2 with in vitro genotoxicity test.  相似文献   

3.
For the assessment of genotoxic effects of cosmetic ingredients, a number of well-established and regulatory accepted in vitro assays are in place. A caveat to the use of these assays is their relatively low specificity and high rate of false or misleading positive results. Due to the 7th amendment to the EU Cosmetics Directive ban on in vivo genotoxicity testing for cosmetics that was enacted March 2009, it is no longer possible to conduct follow-up in vivo genotoxicity tests for cosmetic ingredients positive in in vitro genotoxicity tests to further assess the relevance of the in vitro findings. COLIPA, the European Cosmetics Association, has initiated a research programme to improve existing and develop new in vitro methods. A COLIPA workshop was held in Brussels in April 2008 to analyse the best possible use of available methods and approaches to enable a sound assessment of the genotoxic hazard of cosmetic ingredients. Common approaches of cosmetic companies are described, with recommendations for evaluating in vitro genotoxins using non-animal approaches. A weight of evidence approach was employed to set up a decision-tree for the integration of alternative methods into tiered testing strategies.  相似文献   

4.
三维(3D)重组皮肤模型已证实在模拟体内代谢条件、给药浓度及反应靶器官毒性特点方面具有突出优势。近年来已有多家公司构建3D重组人工皮肤模型,且一些制药公司已将3D细胞模型应用于药物的早期毒性筛选。我国动物实验替代方法的研究仍处于起步阶段,利用3D重组皮肤模型进行体外安全性评价成为目前替代方法的研究热点之一。综述人3D重组皮肤模型在遗传毒性评价中体外微核试验和彗星试验的研究进展,并对该模型在外用药物体外替代遗传毒性评价中的应用前景进行探讨。  相似文献   

5.
《Toxicology in vitro》2014,28(1):18-23
The Cosmetics Europe (formerly COLIPA) Genotoxicity Task Force has driven and funded three projects to help address the high rate of misleading positives in in vitro genotoxicity tests:The completed “False Positives” project optimized current mammalian cell assays and showed that the predictive capacity of the in vitro micronucleus assay was improved dramatically by selecting more relevant cells and more sensitive toxicity measures.The on-going “3D skin model” project has been developed and is now validating the use of human reconstructed skin (RS) models in combination with the micronucleus (MN) and Comet assays. These models better reflect the in use conditions of dermally applied products, such as cosmetics. Both assays have demonstrated good inter- and intra-laboratory reproducibility and are entering validation stages.The completed “Metabolism” project investigated enzyme capacities of human skin and RS models. The RS models were shown to have comparable metabolic capacity to native human skin, confirming their usefulness for testing of compounds with dermal exposure.The program has already helped to improve the initial test battery predictivity and the RS projects have provided sound support for their use as a follow-up test in the assessment of the genotoxic hazard of cosmetic ingredients in the absence of in vivo data.  相似文献   

6.
To address the provision of the 7th Amendment to the EU Cosmetics Directive banning the use of in vivo genotoxicity assays for testing cosmetic ingredients in 2009, the 3D EpiDerm™ reconstructed human skin micronucleus assay has been developed. To further characterise the EpiDerm™ tissue for potential use in genotoxicity testing, we have evaluated the dermal penetration and metabolism of two hair dye ingredients, p-aminophenol (PAP) and p-phenylenediamine (PPD) in this reconstructed epidermis model. When EpiDerm™ tissue was topically exposed to PAP or PPD for 30 min (typical for a hair dye exposure), the majority (80–>90%) of PAP or PPD was excluded from skin tissue and removed by rinsing. After a 23.5 h recovery period, the PAP fraction that did penetrate was completely N-acetylated to acetaminophen (APAP). Similarly, 30 min topical application of PPD resulted in the formation of the N-mono- and N,N′-diacetylated metabolites of PPD. These results are consistent with published data on the dermal metabolism of these compounds from other in vitro systems as well as from in vivo studies. When tissue was exposed topically (PAP) or via the culture media (PPD) for 24 h, there was good batch-to-batch and donor-to-donor reproducibility in the penetration and metabolism of PAP and PPD. Overall, the results demonstrate that these two aromatic amines are biotransformed in 3D EpiDerm™ tissue via N-acetylation. Characterising the metabolic capability of EpiDerm™ tissue is important for the evaluation of this model for use in genotoxicity testing.  相似文献   

7.
p-Mentha-1,8-dien-7-al is a naturally occurring cyclic alpha,beta-unsaturated aldehyde that is used as a flavoring substance throughout the world. Due to the chemical structure and the potential DNA reactivity of the alpha,beta-unsaturated carbonyl moiety, a battery of genotoxicity assays was requested by the European Food Safety Authority. Previous genotoxicity studies on the substance gave mixed results, but both positive and negative results were hampered by not always being performed to any standard guideline. The new test battery data indicated some evidence of mutagenicity in vitro, but an in vivo comet/micronucleus combination assay performed in rats was concluded by the study directors to not result in any biologically relevant positive responses. However, EFSA concluded that the in vivo assay gave evidence that p-mentha-1,8-dien-7-al was of potential genotoxic concern. The Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) has reviewed the newly available data and considered its interpretation relative to standard guidelines such as that established by the Organization for Economic Cooperation and Development, and has concluded that the results in the comet/micronucleus combination assay are consistent with the interpretation by the study directors; namely, that p-mentha-1,8-dien-7-al does not appear to have any in vivo genotoxic potential.  相似文献   

8.
3-Methyladenine DNA glycosylase (AlkD) belongs to a new family of DNA glycosylases; it initiates repair of cytotoxic and promutagenic alkylated bases (its main substrates being 3-methyladenine and 7-methylguanine). The modification of the comet assay (single cell gel electrophoresis) using AlkD enzyme thus allows assessment of specific DNA alkylation lesions. The resulting baseless sugars are alkali-labile, and under the conditions of the alkaline comet assay they appear as DNA strand breaks. The alkylating agent methyl methanesulfonate (MMS) was used to induce alkylation lesions and to optimize conditions for the modified comet assay method with AlkD on human lymphoblastoid (TK6) cells. We also studied cellular and in vitro DNA repair of alkylated bases in DNA in TK6 cells after treatment with MMS. Results from cellular repair indicate that 50% of DNA alkylation is repaired in the first 60 min. The in vitro repair assay shows that while AlkD recognises most alkylation lesions after 60 min, a cell extract from TK6 cells recognises most of the MMS-induced DNA adducts already in the first 15 min of incubation, with maximum detection of lesions after 60 min’ incubation. Additionally, we tested the in vitro repair capacity of human lymphocyte extracts from 5 individuals and found them to be able to incise DNA alkylations in the same range as AlkD. The modification of the comet assay with AlkD can be useful for in vitro and in vivo genotoxicity studies to detect alkylation damage and repair and also for human biomonitoring and molecular epidemiology studies.  相似文献   

9.
Myrciaria dubia, a plant native to the Amazon region, stands out as a fruit rich in vitamin C and other metabolites with nutritional potential. We evaluated the antioxidant, genotoxic and antigenotoxic potential of M. dubia juice on blood cells of mice after acute, subacute and chronic treatments. Flavonoids and vitamin C present in the fruit of M. dubia were quantified. In vitro antioxidant activity was evaluated by DPPH assay. Blood samples were collected for analysis after treatment, and the alkaline comet assay was used to analyze the genotoxic and antigenotoxic activity (ex vivo analysis using H2O2). The amount of vitamin C per 100 mL of M. dubia was 52.5 mg. DPPH assay showed an antioxidant potential of the fruit. No M. dubia concentration tested exerted any genotoxic effect on mice blood cells. In the ex vivo test, the juice demonstrated antigenotoxic effect, and acute treatment produced the most significant results. After the treatments, there was no evidence of toxicity or death. In conclusion, our data show that M. dubia juice has antigenotoxic and antioxidant activities, though with no genotoxicity for blood cells. Nevertheless, more in-depth studies should be conducted to assess the safety of this fruit for human consumption.  相似文献   

10.
In a context of growing awareness of aquatic pollution impacts, there is an increasing need to develop methods for hazard and risk assessment of pollutants. For this purpose, in vitro models such as fish cell lines warrant to be evaluated as possible alternative to in vivo fish testing, and new toxicity endpoints such as genotoxicity deserve to be considered. This study assesses the interest of the formamido pyrimidine glycosylase (Fpg)-modified comet assay applied to three fish cell lines (RTL-W1, RTG-W1, and PLHC-1) regarding the sensitivity of the system for measuring genotoxicity of various classes of pollutants. Cytochrome P450-dependent EROD activity has also been measured to evaluate the importance of the biotransformation capacity of the cell lines in genotoxicity assessment. For all cell lines and chemicals tested, a concentration dependent genotoxic effect was observed with a 10- to 1000-fold increased sensitivity when using the Fpg-protocol compared to the standard comet assay. Such a modified assay led in particular to improve the detection threshold of oxidative and alkylating DNA damages following exposure at environmentally relevant contaminant concentrations and could partly compensate for the lower sensitivity of cell lines versus whole organism testing often cited as a limit of in vitro testing.  相似文献   

11.
Titanium dioxide nanoparticles (TiO2-NPs, <100 nm) are increasingly being used in pharmaceuticals and cosmetics due to the unique properties derived from their small sizes. However, their large surface-area to mass ratio and high redox potential may negatively impact human health and the environment. TiO2-NPs can cause inflammation, pulmonary damage, fibrosis, and lung tumors and they are possibly carcinogenic to humans. Because cancer is a disease involving mutation, there are a large number of studies on the genotoxicity of TiO2-NPs. In this article, we review the results that have been reported in the literature, with a focus on data generated from the standard genotoxicity assays. The data include genotoxicity results from the Ames test, in vitro and in vivo Comet assay, in vitro and in vivo micronucleus assay, sister chromatid exchange assay, mammalian cell hypoxanthine-guanine phosphoribosyl transferase gene assay, the wing somatic mutation and recombination assay, and the mouse phosphatidylinositol glycan, class A gene assay. Inconsistent results have been found in these assays, with both positive and negative responses being reported. The in vitro systems for assessing the genotoxicity of TiO2-NPs have generated a greater number of positive results than the in vivo systems, and tests for DNA and chromosome damage have produced more positive results than the assays measuring gene mutation. Nearly all tests for measuring the mutagenicity of TiO2-NPs were negative. The current data indicate that the genotoxicity of TiO2-NPs is mediated mainly through the generation of oxidative stress in cells.  相似文献   

12.
The ISO 10993 standards on biocompatibility assessment of medical devices discourage the use of animal tests when reliable and validated in vitro methods are available. A round robin validation study of in vitro reconstructed human epidermis (RhE) assays was performed as potential replacements for rabbit skin irritation testing. The RhE assays were able to accurately identify strong irritants in dilute medical device extracts. However, there was some uncertainty about whether RhE tissues accurately predicted the results of the rabbit skin patch or intracutaneous irritation test. To address that question, this paper presents in vivo data from the round robin and subsequent follow-up studies. The follow-up studies included simultaneous in vitro RhE model and in vivo testing of round robin polymer samples and the results of dual in vitro/in vivo testing of currently marketed medical device components/materials. Our results show for the first time that for both pure chemicals and medical device extracts the intracutaneous rabbit test is more sensitive to detect irritant activity than the rabbit skin patch test. The studies showed that the RhE models produced results that were essentially equivalent to those from the intracutaneous rabbit skin irritation test. Therefore, it is concluded that RhE in vitro models are acceptable replacements for the in vivo rabbit intracutaneous irritation test for evaluating the irritant potential of medical devices.  相似文献   

13.
《Toxicology in vitro》2014,28(4):626-639
The sensitizing potential of chemicals is usually identified and characterized using in vivo methods such as the murine local lymph node assay (LLNA). Due to regulatory constraints and ethical concerns, alternatives to animal testing are needed to predict skin sensitization potential of chemicals. For this purpose, combined evaluation using multiple in vitro and in silico parameters that reflect different aspects of the sensitization process seems promising.We previously reported that LLNA thresholds could be well predicted by using an artificial neural network (ANN) model, designated iSENS ver.1 (integrating in vitro sensitization tests version 1), to analyze data obtained from two in vitro tests: the human Cell Line Activation Test (h-CLAT) and the SH test. Here, we present a more advanced ANN model, iSENS ver.2, which additionally utilizes the results of antioxidant response element (ARE) assay and the octanol–water partition coefficient (Log P, reflecting lipid solubility and skin absorption). We found a good correlation between predicted LLNA thresholds calculated by iSENS ver.2 and reported values. The predictive performance of iSENS ver.2 was superior to that of iSENS ver.1. We conclude that ANN analysis of data from multiple in vitro assays is a useful approach for risk assessment of chemicals for skin sensitization.  相似文献   

14.
ABSTRACT

Genotoxic compounds may be detoxified to non-genotoxic metabolites while many pro-carcinogens require metabolic activation to exert their genotoxicity in vivo. Standard genotoxicity assays were developed and utilized for risk assessment for over 40 years. Most of these assays are conducted in metabolically incompetent rodent or human cell lines. Deficient in normal metabolism and relying on exogenous metabolic activation systems, the current in vitro genotoxicity assays often have yielded high false positive rates, which trigger unnecessary and costly in vivo studies. Metabolically active cells such as hepatocytes have been recognized as a promising cell model in predicting genotoxicity of carcinogens in vivo. In recent years, significant advances in tissue culture and biological technologies provided new opportunities for using hepatocytes in genetic toxicology. This review encompasses published studies (both in vitro and in vivo) using hepatocytes for genotoxicity assessment. Findings from both standard and newly developed genotoxicity assays are summarized. Various liver cell models used for genotoxicity assessment are described, including the potential application of advanced liver cell models such as 3D spheroids, organoids, and engineered hepatocytes. An integrated strategy, that includes the use of human-based cells with enhanced biological relevance and throughput, and applying the quantitative analysis of data, may provide an approach for future genotoxicity risk assessment.  相似文献   

15.
16.
体内彗星试验是采用单细胞凝胶电泳的方法检测体内DNA损伤的技术。具有灵敏度高、操作简便、经济快速等优点。随着遗传毒性研究的发展,体内彗星试验已经成为重要的药物遗传毒性评价方法。对动物试验阶段和彗星试验阶段各操作步骤进行了归纳总结,以期对相关方法学建立提供参考,并提出采用简化和标准化的研究方法将有利于体内彗星试验在药物遗传毒性评价的应用。  相似文献   

17.
Small hydrophobic chemical compounds require solvents to produce suitable solutions for toxicological studies. However, some solvents can modify the biological properties of substances and therefore their toxicity. This specific issue has been raised for PEG-400 as an anti-inflammatory and anti-oxidative compound. Recently, in the context of the REACH Regulation, PEG-400 was used to test the in vivo genotoxicity of trimethylolpropane triacrylate (TMPTA) in the comet assay. TMPTA failed to increase DNA damage whereas it induces genotoxicity in vitro in DMSO. Therefore, we questioned whether PEG-400 could modify the genotoxicity of TMPTA. The aim of this study was to determine the potential impact of PEG-400 on the in vitro genotoxicity of TMPTA, compared to DMSO. TMPTA was dissolved in either PEG-400 or DMSO, and the induction of γH2AX and Caspase-3 was analyzed in HepG2 cells. TMPTA induced γH2AX and Caspase-3 with both PEG-400 and DMSO. However, TMPTA induced effects at 4-fold lower concentrations when PEG-400 is used as the solvent compared to DMSO. While genotoxic effects are observed at much lower concentrations with PEG-400, it does not modify the in vitro genotoxicity of TMPTA. However, further in vitro studies with small hydrophobic compounds should be done to clarify the effect of PEG-400. Moreover, in vivo studies should be performed to confirm that PEG-400 remains suitable for in vivo genotoxicity tests.  相似文献   

18.
Studies on reproductive toxicity need high numbers of test animals. Therefore, we investigated whether chemical structural features (SF) in combination with in vitro data on specific adverse outcome pathways (AOPs) may be used for predicting reproductive toxicity of untested chemicals. Using the OECD Toolbox and expert judgment, we identified 89 structure groups for 275 chemicals for which the results of prenatal developmental toxicity or multigeneration studies were present in the Fraunhofer database on Fertility and Developmental Toxicity in experimental animals (FeDTex) database. Likewise, we evaluated 220 chemicals which had been tested in reporter gene assays on endocrine ((anti)estrogenic and (anti)androgenic) properties in the CALUX® test battery. There was a large spread of effect levels for substances within the chemical structure groups for both, in vivo and in vitro results. The groups of highest concern (diphenyl derivatives, planar conjugated systems with fused rings, phenols and organophosphates) correlated quite well, however, between the in vivo and in vitro data on estrogenic activity. For the 56 chemicals represented in both databases, lowest effect doses in vivo correlated well with the estrogenic activity in vitro. These results suggest that a panel of assays covering relevant AOPs and data on metabolism and toxicokinetics may allow prediction of relative reproductive or development toxicity potency within the identified chemical structure groups.  相似文献   

19.
The US EPA is charged with screening chemicals for their ability to be endocrine disruptors through interaction with the estrogen, androgen and thyroid axes. The agency is exploring the use of high-throughput in vitro assays to use in the Endocrine Disruptor Screening Program (EDSP), potentially as replacements for lower-throughput in vitro and in vivo tests. The first replacement is an integrated computational and experimental model for estrogen receptor (ER) activity, to be used as an alternative to the EDSP Tier 1 in vitro ER binding and transactivation assays and the in vivo uterotrophic bioassay. The ER agonist model uses a set of 16 in vitro assays that incorporate multiple technologies and cell lines and probe multiple points in the ER pathway. Here, we demonstrate that subsets of assays with as few as 4 assays can predict the activity of all 1811 chemicals tested with accuracy equivalent to that of the full 16-assay model. The prediction accuracy against reference chemicals is higher than that of the full chemical set, partly because the larger set contains many chemicals that can cause a variety of types of assay interference There are multiple accurate assay subsets, allowing flexibility in the construction of a multiplexed assay battery. We also discuss the issue of challenging chemicals, i.e. those that can give false positive results in certain assays, and could hence be more problematic when only a few assays are used.  相似文献   

20.
《Toxicology in vitro》2010,24(7):2003-2011
Marine sediments are often a final sink for numerous anthropogenic contaminants and may impose serious effects on benthic organisms and ecosystem. An in vitro cell assay using a cell line derived from flounder gill (FG) cells, an in vitro comet assay in FG cells, and an in vitro zebrafish embryo assay were used to evaluate the in vitro cytotoxicity (measured by MTT reduction), genotoxicity and teratogenicity of crude sediment extracts of Li Cang (LC), Zhan Qiao (ZQ) and Olympic Sailing Center (OSC) from Qingdao coastal area. Sediments from the three sites displayed different cytotoxicity, genotoxicity and teratogenicity potencies; however, all three assays yielded similar LOECs (lowest observed effect concentration) for each site, suggesting that the assays were equally sensitive to and suitable for initial screening of the LOECs of marine sediments. The cytotoxicity, genotoxicity and teratogenicity for these three sampling sites were in the same order of LC > ZQ > OSC, indicating different degrees of contamination. Interestingly, trials with the three sediment extracts at the doses inducing a similar cytotoxicity as evaluated with MTT reduction did not produce similar genotoxicity and teratogenicity, with the genotoxic and teratogenic activities of LC and ZQ extracts being markedly higher than those of OSC sediments. These findings indicate that cytotoxicity does not form a fully equivalent toxicity index with that of genotoxicity and teratogenicity. Therefore, in order to assess the true toxic potential of marine sediments, all three assays should be performed. Analysis of 16 EPA (US Environmental Protection Agency) priority PAHs in these three sediment samples showed a clear correlation between PAH concentrations and sediment toxicities, with a higher PAH content corresponding to higher toxicity although PAHs are surely not the only cause.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号