首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tyrosine kinases (TKs) are involved in key signaling events/pathways that regulate cancer cell proliferation, apoptosis, angiogenesis and metastasis. Deregulated activity of TKs has been implicated in several types of cancers. In recent years, tyrosine kinase inhibitors (TKIs) have been developed to inhibit specific kinases whose constitutive activity results in specific cancer types. These TKIs have been found to demonstrate effective anticancer activity and some of them have been approved by the Food and Drug Administration for clinical use or are in clinical trials. However, these targeted therapeutic agents are also transported by ATP-binding cassette (ABC) transporters, resulting in altered pharmacokinetics or development of resistance to these drugs in cancer patients. This review covers the recent findings on the interactions of clinically important TKIs with ABC drug transporters. Future research efforts in the development of novel TKIs with specific targets, seeking improved activity, should consider these underlying causes of resistance to TKIs in cancer cells.  相似文献   

2.
Targeting multidrug resistance in cancer   总被引:2,自引:0,他引:2  
Effective treatment of metastatic cancers usually requires the use of toxic chemotherapy. In most cases, multiple drugs are used, as resistance to single agents occurs almost universally. For this reason, elucidation of mechanisms that confer simultaneous resistance to different drugs with different targets and chemical structures - multidrug resistance - has been a major goal of cancer biologists during the past 35 years. Here, we review the most common of these mechanisms, one that relies on drug efflux from cancer cells mediated by ATP-binding cassette (ABC) transporters. We describe various approaches to combating multidrug-resistant cancer, including the development of drugs that engage, evade or exploit efflux by ABC transporters.  相似文献   

3.
《药学学报(英文版)》2020,10(1):105-112
Drug metabolism is an orchestrated process in which drugs are metabolized and disposed through a series of specialized enzymes and transporters. Alterations in the expression and/or activity of these enzymes and transporters can affect the bioavailability (pharmacokinetics, or PK) and therapeutic efficacy (pharmacodynamics, or PD) of drugs. Recent studies have suggested that the long non-coding RNAs (lncRNAs) are highly relevant to drug metabolism and drug resistance, including chemo-resistance in cancers, through the regulation of drug metabolism and disposition related genes. This review summarizes the regulation of enzymes, transporters, or regulatory proteins involved in drug metabolism by lncRNAs, with a particular emphasis on drug metabolism and chemo-resistance in cancer patients. The perspective strategies to integrate multi-dimensional pharmacogenomics data for future in-depth analysis of drug metabolism related lncRNAs are also proposed. Understanding the role of lncRNAs in drug metabolism will not only facilitate the identification of novel regulatory mechanisms, but also enable the discovery of lncRNA-based biomarkers and drug targets to personalize and improve the therapeutic outcome of patients, including cancer patients.  相似文献   

4.
Introduction: Rhabdomyosarcomas (RMS) are rare heterogeneous pediatric tumors that are treated by surgery, chemotherapy and irradiation. New therapeutic approaches are needed, especially in the advanced stages to target the pro-oncogenic signals. Exploring the molecular interactions of the regulatory signals and their roles in the developmental aspects of different subtypes of RMS is essential to identify potential targets and develop new therapeutic drugs. Areas covered: Insights into different drug discovery approaches are discussed with specific emphasis on gene expression profiling, fusion protein, role of small interfering RNA (siRNA)- and microRNA (miRNA)-based discovery approaches, targeting cancer stem cells, and in vitro and in vivo model systems. Targeting some overexpressed signals along with the possibilities of combination therapy of validated drug targets is discussed. Additionally, methods to overcome the limitations of discovery-based research are briefly discussed. Expert opinion: Due to drug resistance, ineffective therapy in advanced stages and relapse, there is a demand to explore new drug targets and discovery approaches. Implementing miRNA-based profiling would reveal the extent of miR-based regulation, various biomarkers and potential targets in RMS. A suitable combination of innovative techniques and the use of model systems might assist the identification and validation of novel targets and drug discovery methods. Combining specific drugs along with type-specific target inhibition of overexpressed mRNAs through siRNA approaches would enable the development of personalized therapy.  相似文献   

5.
Resistance to chemotherapeutic drugs is a significant clinical problem for the treatment of cancer patients and has been linked to the activation of survival pathways and expression of multidrug efflux transporters. Thus inhibition of these survival pathways or efflux transporter expression may increase the efficacy of drug treatment. Here we review the role of the oncogenic PIM kinase family in regulating important proliferation and survival pathways in cancer cells and the involvement of PIM kinases in the expression and activity of MDR-1 and BCRP, two of the most important drug efflux transporters. PIM kinases are over expressed in various types of tumors and regulate the activation of signaling pathways that are important for tumor cell proliferation, survival and expression of drug efflux proteins. This makes PIM kinases attractive targets for the development of anti-cancer chemotherapeutic drugs. Focussing mainly on solid tumors, we provide an update on the literature describing the tumorigenic functions of PIM kinases. Also we provide an overview of the development of selective small molecule PIM kinase inhibitors. Because of the intense effort by pharmaceutical companies and academia it is reasonable to expect that PIM kinase inhibitors will enter the clinic in the foreseeable future. We therefore finish this review with a discussion on the most efficient application of these PIM inhibitors. This includes a consideration of which tumor type is the most appropriate target for treatment, how to select the patient population that stands to gain the most from treatment with PIM inhibitors, which molecular markers are suitable to follow the course of treatment and whether PIM kinase inhibitors should be used as monotherapy or in combination with other cytotoxic agents.  相似文献   

6.
Ovarian cancer of epithelial origin remains one of the most lethal malignancies despite response rates of more than 80% in first-line combination chemotherapy with platinum drugs and taxanes following surgery. Poor overall prognosis is mainly due to acquired resistance of the recurring tumor mass to initially used and other chemotherapeutic agents. Therefore, novel therapeutic approaches are based on concepts to prevent (improvement of tumor exposure to drugs) or circumvent drug resistance, e.g. with new drugs structurally related to the currently used cytotoxic agents, other types of cytotoxic substances, or with target-specific novel drugs interfering with signaling and apoptotic pathways. In addition, acquired molecular characteristics of drug resistant ovarian carcinoma cells can be defined by expression profiling at different stages of therapy and might be used as specific targets for tumor-suppressing drugs and prodrugs containing cytotoxic components. Revelation of mechanistic details of drug resistance also provides the basis for the development of therapies with novel or conventional antitumor drugs in combination with specific inhibitors able to re-establish chemosensitivity. In this review, we summarize novel approaches in the treatment of ovarian cancer progressed to drug resistant stages and focus on the discussion of recently reported experimental and early clinical results with potentially useful strategies to overcome or modulate acquired drug resistance.  相似文献   

7.
Myelodysplastic syndrome is a clonal hematopoietic stem cell disorder that presents a poor survival for patients treated with standard therapies other than stem-cell transplantation. Multi-drug resistance (MDR) to simultaneous drugs used in chemotherapy is a major concern in the treatment of cancer and also in MDS. ATP-binding cassette (ABC) transporters are involved in the main mechanism that confers drug resistance to cells. Increased expression of drug resistance genes, such as MDR1, MRP1 and LRP, is involved with multi-drug resistance in MDS. The expression of these drug efflux transporters acts in synergy with other alterations, such as epigenetic events, increases in multidrug resistance in MDS. Methylation, the main epigenetic mechanism is widely explored in other hematological malignancies; however, in MDS, this mechanism is poorly investigated. Clinical trials evaluated or are under ongoing evaluation of drugs that abrogated ABC transporters action or reversed the abnormal methylation of some genes in MDS. In this report, we explore the data available in the field of drug resistance and methylation both in pediatric and adult MDS.  相似文献   

8.
The role of ABC transporters in drug resistance, metabolism and toxicity   总被引:1,自引:0,他引:1  
ATP Binding Cassette (ABC) transporters form a special family of membrane proteins, characterized by homologous ATP-binding, and large, multispanning transmembrane domains. Several members of this family are primary active transporters, which significantly modulate the absorption, metabolism, cellular effectivity and toxicity of pharmacological agents. This review provides a general overview of the human ABC transporters, their expression, localization and basic mechanism of action. Then we shortly deal with the human ABC transporters as targets of therapeutic interventions in medicine, including cancer drug resistance, lipid and other metabolic disorders, and even gene therapy applications. We place a special emphasis on the three major groups of ABC transporters involved in cancer multidrug resistance (MDR). These are the classical P-glycoprotein (MDR1, ABCB1), the multidrug resistance associated proteins (MRPs, in the ABCC subfamily), and the ABCG2 protein, an ABC half-transporter. All these proteins catalyze an ATP-dependent active transport of chemically unrelated compounds, including anticancer drugs. MDR1 (P-glycoprotein) and ABCG2 preferentially extrude large hydrophobic, positively charged molecules, while the members of the MRP family can extrude both hydrophobic uncharged molecules and water-soluble anionic compounds. Based on the physiological expression and role of these transporters, we provide examples for their role in Absorption-Distribution-Metabolism-Excretion (ADME) and toxicology, and describe several basic assays which can be applied for screening drug interactions with ABC transporters in the course of drug research and development.  相似文献   

9.
Refractoriness to the pharmacological treatment of cancer is dependent on the expression levels of genes involved in mechanisms of chemoresistance and on the existence of genetic variants that may affect their function. Thus, changes in genes encoding solute carriers may account for considerable inter-individual variability in drug uptake and the lack of sensitivity to the substrates of these transporters. Moreover, changes in proteins involved in drug export can affect their subcellular localization and transport ability and hence may also modify the bioavailability of antitumor agents. Regarding pro-drug activation or drug inactivation, genetic variants are responsible for changes in the activity of drug-metabolizing enzymes, which affect drug clearance and may determine the lack of response to anticancer chemotherapy. The presence of genetic variants may also decrease the sensitivity to pharmacological agents acting through molecular targets or signaling pathways. Recent investigations suggest that changes in genes involved in DNA repair may affect the response to platinum-based drugs. Since most anticancer agents activate cell death pathways, the evasion of apoptosis plays an important role in chemoresistance. Several genetic variants affecting death-receptor pathways, the mitochondrial pathway, downstream caspases and their natural modulators, and the p53 pathway, whose elements are mutated in more than half of tumors, and survival pathways, have been reported. The present review summarizes the available data regarding the role of genetic variants in the different mechanisms of chemoresistance and discusses their potential impact in clinical practice and in the development of tools to predict and overcome chemoresistance.  相似文献   

10.
Multidrug resistance: retrospect and prospects in anti-cancer drug treatment   总被引:20,自引:0,他引:20  
Conventional cancer chemotherapy is seriously limited by the multidrug resistance (MDR) commonly exhibited by tumour cells. One mechanism by which a living cell can achieve multiple resistances is via the active efflux of a broad range of anticancer drugs through the cellular membrane by MDR proteins. Such drugs are exported in both ATP-dependent and -independent manners, and can occur despite considerable concentration gradients. To the ATP-dependent group belongs the ATP-binding cassette (ABC) transporter family, which includes P-gp, MRP, BCRP, etc. Another protein related to MDR, though not belonging to the ABC transporter family, is lung resistance-related protein (LRP). All of these proteins are involved in diverse physiological processes, and are responsible for the uptake and efflux of a multitude of substances from cancer cells. Many inhibitors of MDR transporters have been identified over the years. Firstly, MDR drugs were not specifically developed for inhibiting MDR; in fact, they had other pharmacological properties, as well as a relatively low affinity for MDR transporters. They included compounds of diverse structure and function, such as verapamil and cyclosporine, and caused side effects. Secondly, the new drugs were more inhibitor-specific, in terms of MDR transport, and were designed to reduce such side effects (e.g., R-verapamil, dexniguldipine, etc.). Unfortunately, they displayed poor response in clinical studies. Recently, new compounds obtained from drug development programs conducted by the pharmaceutical industry are characterized by a high affinity to MDR transporters and are efficient at nanomolar concentrations. Some of these compounds (e.g., MS-209) are currently under clinical trials for specific forms of advanced cancers. We aim to provide an overview of the properties associated with those mammalian MDR transporters known to mediate significant transport of relevant drugs in cancer treatments. We also summarize recent advances concerning resistance to cancer drug therapies with respect to the function and overexpression of ABC and LRP multidrug transporters.  相似文献   

11.
目的:研究乳腺癌患者肿瘤细胞对3种铂类药物的体外敏感性,并进一步研究其敏感性与乳腺癌细胞中ABC跨膜转运蛋白基因表达的关系。方法:对人乳腺癌细胞进行体外培养,用MTT法检测顺铂、卡铂、奥沙利铂等药物作用后肿瘤细胞的活力变化;同时采用实时荧光定量PCR技术,对乳腺癌细胞中的11种ABC跨膜转运蛋白基因表达水平进行检测。结果:顺铂耐药组的ABCB1、ABCG2表达明显高于敏感组;卡铂耐药组的ABCB1表达明显高于敏感组;乳腺癌细胞的ABCB1、ABCC6表达水平与顺铂对肿瘤细胞的抑制率有明显相关性;ABCB1的表达水平与卡铂对肿瘤细胞的抑制率有明显相关性。奥沙利铂对肿瘤细胞的抑制率与ABC跨膜转运蛋白的基因表达水平无明显相关性。结论:ABC跨膜转运蛋白家族的多个蛋白的高表达与顺铂、卡铂的耐药有关,其中ABCB1的高表达与药物耐药的关系最为显著。  相似文献   

12.
13.
Parasitic protozoa are responsible for a wide spectrum of diseases in humans and domestic animals. The main line of defence available against these organisms is chemotherapy. However, the application of chemotherapeutic drugs has resulted in the development of resistance mechanisms, which limit the number of antiprotozoal drugs that are effective in the treatment and control of parasitic diseases. Knowledge about the resistance mechanisms involved may allow the development of new drugs that minimise or circumvent drug resistance or may identify new targets for drug development. This review focuses on the role of protozoal ATP-binding cassette (ABC) transporters in drug resistance. These membrane proteins mediate the ATP-dependent transport of a wide variety of chemotherapeutic drugs away from their targets inside the parasites. The genome sequence of Plasmodium falciparum and Plasmodium yoelii has recently been completed, and the sequencing of other parasitic genomes are now underway. As a result, many new membrane transporters belonging to the ABC superfamily are being discovered. We review the ABC transporters in major parasitic protozoa, including Plasmodium, Leishmania, Trypanosoma and Entamoeba species. Transporters with an established role in drug resistance have been emphasised, but newly discovered transporters with a significant amino acid sequence identity to established ABC drug transporters have also been included.  相似文献   

14.
Members of the solute carrier family of transporters are responsible for the cellular uptake of a broad range of endogenous compounds and xenobiotics in multiple tissues. Several of these solute carriers are known to be expressed in cancer cells or cancer cell lines, and decreased cellular uptake of drugs potentially contributes to the development of resistance. As result, the expression levels of these proteins in humans have important consequences for an individual's susceptibility to certain drug-induced side effects, interactions, and treatment efficacy. In this review article, we provide an update of this rapidly emerging field, with specific emphasis on the direct contribution of solute carriers to anticancer drug uptake in tumors, the role of these carriers in regulation of anticancer drug disposition, and recent advances in attempts to evaluate these proteins as therapeutic targets.  相似文献   

15.
Adenosine triphosphate-binding cassette (ABC)-type transport proteins were initially described for their ability to reduce intracellular concentrations of anticancer compounds, thereby conferring drug resistance. In recent years, expression of this type of proteins has also been reported in numerous cell types under physiological conditions; here, these transporters are often reported to alter systemic and local drug disposition (e.g. in the brain or the gastrointestinal tract). In this context, peripheral blood cells have also been found to express several ABC-type transporters. While erythrocytes mainly express multidrug resistance protein (MRP) 1, MRP4 and MRP5, which are discussed with regard to their involvement in glutathione homeostasis (MRP1) and in the efflux of cyclic nucleotides (MRP4 and MRP5), leukocytes also express P-glycoprotein and breast cancer resistance protein. In the latter cell types, the main function of efflux transporters may be protection against toxins, as these cells demonstrate a very high turnover rate. In platelets, only two ABC transporters have been described so far. Besides MRP1, platelets express relatively high amounts of MRP4 not only in the plasma membrane but also in the membrane of dense granules, suggesting relevance for mediator storage.In addition to its physiological function, ABC transporter expression in these structures can be of pharmacological relevance since all systemic drugs reach their targets via circulation, thereby enabling interaction of the therapeutic agent with peripheral blood cells. Moreover, both intended effects and unwanted side effects occur in peripheral blood cells, and intracellular micropharmacokinetics can be affected by these transport proteins. The present review summarises the data available on expression of ABC transport proteins in peripheral blood cells.  相似文献   

16.
The advent of drugs targeting tumor-associated prosurvival alterations of cancer cells has changed the interest of antitumor drug development from cytotoxic drugs to target-specific agents. Although single-agent therapy with molecularly targeted agents has shown limited success in tumor growth control, a promising strategy is represented by the development of rational combinations of target-specific agents and conventional antitumor drugs. Activation of survival/antiapoptotic pathways is a common feature of cancer cells that converge in the development of cellular resistance to cytotoxic agents. The survival pathways implicated in cellular response to drug treatment are primarily PI3K/Akt and Ras/MAPK, which also mediate the signalling activated by growth factors and play a role in the regulation of critical processes including cell proliferation, metabolism, apoptosis and angiogenesis. Inhibitors of PI3K, Akt and mTOR have been shown to sensitize selected tumor cells to cytotoxic drugs through multiple downstream effects. Moreover, the MAPK pathway, also implicated in the regulation of gene expression in response to stress stimuli, can interfere with the chemotherapy-induced proapoptotic signals. Targeting Hsp90, which acts as a molecular chaperone for survival factors including Akt, may have the potential advantage to simultaneously block multiple oncogenic pathways. Overall, the available evidence supports the interest of rationally designed approaches to enhance the efficacy of conventional antitumor treatments through the inhibition of survival pathways and the notion that the concomitant targeting of multiple pathways may be a successful strategy to deal with tumor heterogeneity and to overcome drug resistance of tumor cells.  相似文献   

17.
Malignant gliomas are frequently chemoresistant and this resistance seems to depend on at least two mechanisms. First, the poor penetration of many anticancer drugs across the blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier (BCSFB) and blood-tumor barrier (BTB), due to their interaction with several ATP-binding cassette (ABC) drug efflux transporters that are overexpressed by the endothelial or epithelial cells of these barriers. Second, resistance may involve the tumor cells themselves. Although ABC drug efflux transporters in tumor cells confer multidrug resistance (MDR) on several other solid tumors, their role in gliomas is unclear. This review focuses on astrocytes and summarizes the current state of knowledge about the expression, distribution and function of ABC transporters in normal and tumor astroglial cells. The recognition of anticancer drugs by ABC transporters in astroglial cells and their participation in the multidrug resistance phenotype of human gliomas is discussed.  相似文献   

18.
Abstract: Protozoan parasites are responsible for important diseases that threaten the lives of nearly one-quarter of the human population world-wide. Among them, leishmaniasis has become the second cause of death, mainly due to the emergence of parasite resistance to conventional drugs. P-glycoprotein (Pgp)-like transporters overexpression is a very efficient mechanism to reduce the intracellular accumulation of many drugs in cancer cells and parasitic protozoans including Plasmodium and Leishmania, thus conferring a multidrug resistance (MDR) phenotype. Therefore, there is a great clinical interest in developing inhibitors of these transporters to overcome such a resistance. Pgps are active pumps belonging to the ATP-binding cassette (ABC) superfamily of proteins, and consist of two homologous halves, each containing a transmembrane domain (TMD) involved in drug efflux, and a cytosolic nucleotide-binding domain (NBD) responsible for ATP binding and hydrolysis. Most conventional cancer MDR modulators interact with the drug-binding sites on the TMDs of Pgps, but they are also usually transported and the required concentrations for a permanent inhibition produce subsequent side-effects that hamper their clinical use. Besides, they only poorly modulate the resistance in protozoan parasites. We review here a rational strategy developed to overcome the MDR phenotype in Leishmania, consisting in: i) the selection of an MDR Leishmania tropica line that overexpresses a Pgp-like transporter; ii) the use of their cytosolic NBDs as new pharmacological targets; iii) the search of new natural compounds that revert the MDR phenotype in Leishmania by binding to the TMDs; iv) the combination of subdoses of the above selected modulators directed to both targets in the transporter, NBDs and TMDs, to accumulate their reversal effects while diminishing their toxicity. In this way, we have reverted the MDR phenotype in Leishmania, including the resistance to the most promising new antileishmania agents, the alkyl-lysophospholipids. This approach might be extrapolated to be used in other eukaryotic cells.  相似文献   

19.
The synaptic actions of most neurotransmitters are inactivated by reuptake into the nerve terminals from which they are released, or by uptake into adjacent cells. A family of more than 20 transporter proteins is involved. In addition to the plasma membrane transporters, vesicular transporters in the membranes of neurotransmitter storage vesicles are responsible for maintaining vesicle stores and facilitating exocytotic neurotransmitter release. The cell membrane monoamine transporters are important targets for CNS drugs. The transporters for noradrenaline and serotonin are key targets for antidepressant drugs. Both noradrenaline-selective and serotonin-selective reuptake inhibitors are effective against major depression and a range of other psychiatric illnesses. As the newer drugs are safer in overdose than the first-generation tricyclic antidepressants, their use has greatly expanded. The dopamine transporter (DAT) is a key target for amphetamine and methylphenidate, used in the treatment of attention deficit hyperactivity disorder. Psychostimulant drugs of abuse (amphetamines and cocaine) also target DAT. The amino-acid neurotransmitters are inactivated by other families of neurotransmitter transporters, mainly located on astrocytes and other non-neural cells. Although there are many different transporters involved (four for GABA; two for glycine/D-serine; five for L-glutamate), pharmacology is less well developed in this area. So far, only one new amino-acid transporter-related drug has become available: the GABA uptake inhibitor tiagabine as a novel antiepileptic agent.  相似文献   

20.
《Drug metabolism reviews》2012,44(4):430-447
Abstract

After administration, drug molecules usually enter target cells to access their intracellular targets. In eukaryotic cells, these targets are often located in organelles, including the nucleus, endoplasmic reticulum, mitochondria, lysosomes, Golgi apparatus, and peroxisomes. Each organelle type possesses unique biological features. For example, mitochondria possess a negative transmembrane potential, while lysosomes have an intraluminal delta pH. Other properties are common to several organelle types, such as the presence of ATP-binding cassette (ABC) or solute carrier-type (SLC) transporters that sequester or pump out xenobiotic drugs. Studies on subcellular drug distribution are critical to understand the efficacy and toxicity of drugs along with the body’s resistance to them and to potentially offer hints for targeted subcellular drug delivery. This review summarizes the results of studies from 1990 to 2017 that examined the subcellular distribution of small molecular drugs. We hope this review will aid in the understanding of drug distribution within cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号