首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Neuroblastoma-glioma hybrid cells (NG108-15) in suspension accumulate the permeant lipophilic cation [(3)H]tetraphenylphosphonium (TPP(+)) against a concentration gradient. The steady-state level of TPP(+) accumulation is about twice as great in physiological media of low K(+) concentration (i.e., 5 mM K(+)/135 mM Na(+)) than in a medium of high K(+) concentration (i.e., 121 mM K(+)/13.5 mM Na(+)). The latter manipulation depolarizes the NG108-15 plasma membrane and indicates that the resting membrane potential (DeltaPsi) is due primarily to a K(+) diffusion gradient (K(in) (+) --> K(out) (+)). TPP(+) accumulation is time and temperature dependent, achieving a steady state in 15-20 min at 37 degrees C, and is a linear function of cell number and TPP(+) concentration (i.e., the concentration gradient is constant). The difference in TPP(+) accumulation in low and high K(+) media under various conditions has been used to calculate mean (+/-SD) DeltaPsi values of -56 +/- 3, -63 +/- 4, and -66 +/- 5 mV at 26, 33, and 37 degrees C, respectively. Importantly, these values are virtually identical to those obtained by direct electrophysiological measurements made under the same conditions. TPP(+) accumulation is abolished by the protonophore carbonylcyanide-m-chlorophenylhydrazone, whereas the neurotoxic alkaloid veratridine diminishes uptake to the same level as that observed in high K(+) media. In addition, the effect of veratridine is dependent upon the presence of external Na(+) and is blocked by tetrodotoxin. The steady-state level of TPP(+) accumulation is enhanced by monensin, indicating that this ionophore induces hyperpolarization under appropriate conditions. Finally, ouabain has essentially no effect on the steady-state level of TPP(+) accumulation in short-term experiments, suggesting that Na(+),K(+)-ATPase activity makes little contribution to the resting potential in these cells. Because many of these observations are corroborated by intracellular recording techniques, it is concluded that TPP(+) distribution measurements can provide a biochemical method for determining membrane potentials in populations of cultured neuronal cells.  相似文献   

2.
The steroidogenic acute regulatory (StAR) protein mediates the delivery of cholesterol from the outer to the inner mitochondrial membrane, where the cholesterol side chain cleavage complex converts it to pregnenolone. While the mechanism by which this mitochondrial protein acts is poorly understood, one component of the mitochondrial electrochemical gradient, the electrochemical potential (DeltaPsi), appears to be essential. In this study, the importance of the other component, the proton gradient (DeltapH), was examined. Disruption of DeltapH with the electroneutral K(+)/H(+) exchanger, nigericin, had no effect on steroidogenesis in MA-10 mouse Leydig tumor cells at concentrations which significantly reduced StAR protein levels. These data indicate for the first time in true steroidogenic cells, that StAR can act prior to being fully imported into the mitochondria and are consistent with observations made in COS-1 cells using mutant forms of StAR. These results support the hypothesis that a DeltaPsi-dependent factor is required for StAR activity and demonstrate that nigericin is the first compound described, capable of inhibiting StAR accumulation without affecting steroidogenesis.  相似文献   

3.
The neurochemical activity of beta-bungarotoxin was investigated using a synaptosomal preparation of rat cerebral cortices. In preparations preincubated with [3H]choline in order to label acetylcholine the toxin caused a rapid release of the transmitter, which was calcium dependent but only a little affected by a depolarizing concentration of potassium. beta-Bungarotoxin was also shown to be a potent inhibitor of the high affinity transport system for choline, producing 50% inhibition at a concentration of 50 nM. These findings explain the observed electrophysiological effects of the toxin. Electron microscopy revealed no discernible effect of 0.1 muM beta-bungarotoxin on either synaptic vesicles or mitochondria. Neither the release of transmitter nor the inhibition of choline uptake by the toxin was affected by the presence of an inhibitor of phospholipase activity.  相似文献   

4.
We examined the effect of cardioprotective agents on three distinct phases of the H2O2-induced response that leads to loss of mitochondrial membrane potential (DeltaPsi(m)) and cell death in cultured cardiac myocytes: (1) priming, consisting of calcium-dependent morphological changes in mitochondria (swelling and loss of cristae), with preserved DeltaPsi(m), (2) depolarization, the rapid DeltaPsi(m) depolarization caused by mitochondrial permeability transition pore (PTP) opening, and (3) cell fragmentation. The mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel opener diazoxide markedly decreased the likelihood that cells would undergo priming: many mitochondria remained fully polarized and morphologically intact. Diazoxide not only decreased the number of cells undergoing DeltaPsi(m) depolarization but also delayed the onset of DeltaPsi(m) loss, whereas it did not change the duration of depolarization in unprotected cells. The adenine nucleotide translocase inhibitor bongkrekic acid mimicked the effect of diazoxide to suppress priming, except that its effects were not blocked by the mitoK(ATP) channel blocker 5-hydroxydecanoate. In contrast, the PTP inhibitor cyclosporin A (CsA) did not prevent priming: neither latency for DeltaPsi(m) depolarization nor mitochondrial morphological changes were affected. However, CsA slowed the process of depolarization and blunted its severity. Importantly, coapplication of diazoxide and CsA exhibited additive effects, improving the efficacy of protection. Activation of mitoK(ATP) channels suppresses the cell death process at its earliest stage, by preserving mitochondrial integrity during oxidative stress. By virtue of its pharmacology and its phenotypic consequences, this mode of action is distinguishable from that of other cardioprotective interventions.  相似文献   

5.
The extent, time course, and reversibility of mitochondrial Ca2+ uptake secondary to cellular Ca2+ influx stimulated by massive Na+ efflux were evaluated by electron probe microanalysis of rabbit portal vein smooth muscle. Strips of portal vein were Na+ loaded for 3 hours at 37 degrees C in a K+-free 1 mM ouabain solution, after which rapid Na+ efflux was induced by washing with a Na+-free K+-Li+ solution (1 mM ouabain). Li+ washing Na+-loaded portal vein produced a large transient contraction accompanied by an increase (over 100-fold) in mitochondrial Ca2+ and also significant (p less than 0.05) increases in phosphorus and Mg2+. The Ca2+ loading of the mitochondria was reversed during prolonged Li+ wash, and by 2 hours, mitochondrial Ca2+, Mg2+, and phosphorus had returned to control levels. The maximal contractile response to stimulation remained normal, demonstrating that pathologic Ca2+ loading of mitochondria is reversible in situ and compatible with normal maximal force developed by the smooth muscle. Mitochondrial Ca2+ and phosphorus uptake were reduced but still significant when the Li+ wash contained 0.2 mM Ca2+ or when ouabain was omitted. The fact that mitochondrial Ca2+ loading accompanied submaximal contractions during 0.2 mM Ca2+-Li wash suggests "supranormal" affinity of mitochondria for Ca2+ and may be due, in part, to reverse operation of the mitochondrial Na+-Ca2+ exchanger. Mitochondrial Ca2+, Mg2+, and phosphorus uptake were eliminated when the Li+ wash was performed at 2 degrees C or when the wash contained no Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We examined the effects of dihydropyridine Ca2+-channel agonists on synaptosomal voltage-dependent Ca2+ entry and endogenous dopamine release. The (-) isomer of Bay K 8644 and the (+) isomer of Sandoz compound 202-791 were 100-1000 times more potent than their respective opposite enantiomers in enhancing Ca2+ uptake and dopamine release from striatal synaptosomes. The active isomer of each of these compounds increased Ca2+ entry and dopamine release to the same extent at a concentration of 1 nM. Fast-phase Ca2+ entry into synaptosomes isolated from cerebellum, cortex, and hippocampus was sensitive to nanomolar concentrations of Bay K 8644. No effect of Bay K 8644 was observed in synaptosomes isolated from brainstem. Bay K 8644 increased synaptosomal Ca2+ uptake and endogenous dopamine release from striatal synaptosomes only during the initial seconds of KCl-induced depolarization. The greatest increase was observed during the first second of depolarization. No effect was observed after greater than or equal to 5 sec of depolarization. Bay K 8644 did not alter Ca2+ uptake or dopamine release under resting conditions (5 mM KCl) or in response to KCl at greater than 15 mM. The activity of Bay K 8644 was also attenuated by lowering the concentrations of divalent cations in the incubation medium. Agonist activity was observed at Mg2+ concentrations greater than 500 microM (Ca2+ held at 100 microM) and Ca2+ concentrations greater than 100 microM (Mg2+ held at 1000 microM). These results suggest that the Ca2+ channels present in synaptosomes are sensitive to nanomolar concentrations of dihydropyridine agonists under a narrow range of experimental conditions.  相似文献   

7.
The fundamental myocellular uptake and retention mechanisms of hexakis (2-methoxyisobutyl isonitrile) technetium(I) (Tc-MIBI), a technetium-99m-based myocardial perfusion imaging agent, are unresolved. Because of the lipophilic cationic nature of Tc-MIBI, it may be distributed across biological membranes in response to transmembrane potential. To test this hypothesis, net uptake and retention of Tc-MIBI in cultured chick embryo ventricular myocytes were determined under conditions known to alter mitochondrial and plasma membrane potentials. Isovolumic depolarization of plasma membrane potentials in 130 mM extracellular K (Ko) 20 mM extracellular Cl buffer reduced net accumulation of Tc-MIBI from 171 +/- 16 (control) to 29 +/- 3.3 fmol intracellular Tc-MIBI/mg protein.nM extracellular Tc-MIBI. Unidirectional influx of Tc-MIBI in cells depolarized in 30 mM Ko buffer was also reduced; a resting plasma membrane potential of -87 +/- 6 mV was calculated from the Goldman flux equation using normal Ko/high Ko Tc-MIBI influx ratios. Addition of the potassium ionophore valinomycin to cells incubated in 130 mM Ko buffer to additionally depolarize mitochondrial membrane potentials further reduced net uptake of Tc-MIBI to levels comparable to that found in nonviable freeze-thawed preparations ([Tc-MIBI]i/[Tc-MIBI]o = 1). By depolarizing mitochondrial (and in part plasma membrane) potentials with the protonophores 2,4-dinitrophenol and carbonyl cyanide m-chlorophenylhydrazone (CCCP) Tc-MIBI was rapidly depleted from 181 +/- 16 (control) to 16 +/- 2.6 and 31 +/- 4.2 fmol/mg protein.nMo, respectively, with kinetics that did not correlate with loss of cellular ATP content. CCCP alone inhibited 90 +/- 3% of net accumulation or 66 +/- 3% of unidirectional influx of Tc-MIBI in a concentration-dependent manner. By hyperpolarizing mitochondrial membrane potentials with the K+/H+ ionophore nigericin or the ATP synthase inhibitor oligomycin, net uptake and retention of Tc-MIBI were increased by 60 +/- 9% and 375 +/- 20%, respectively. Caffeine, as well as the respiratory chain electron transport inhibitor rotenone, did not significantly alter net cell uptake (p greater than 0.2). These data indicate that the fundamental myocellular uptake mechanism of Tc-MIBI involves passive distribution across plasma and mitochondrial membranes and that at equilibrium Tc-MIBI is sequestered within mitochondria by the large negative transmembrane potentials.  相似文献   

8.
Rationale: Activation of the mitochondrial ATP-sensitive potassium channel (mitoK(ATP)) has been implicated in the mechanism of cardiac ischemic preconditioning, yet its molecular composition is unknown. Objective: To use an unbiased proteomic analysis of the mitochondrial inner membrane to identify the mitochondrial K(+) channel underlying mitoK(ATP). Methods and Results: Mass spectrometric analysis was used to identify KCNJ1(ROMK) in purified bovine heart mitochondrial inner membrane and ROMK mRNA was confirmed to be present in neonatal rat ventricular myocytes and adult hearts. ROMK2, a short form of the channel, is shown to contain an N-terminal mitochondrial targeting signal, and a full-length epitope-tagged ROMK2 colocalizes with mitochondrial ATP synthase β. The high-affinity ROMK toxin, tertiapin Q, inhibits mitoK(ATP) activity in isolated mitochondria and in digitonin-permeabilized cells. Moreover, short hairpin RNA-mediated knockdown of ROMK inhibits the ATP-sensitive, diazoxide-activated component of mitochondrial thallium uptake. Finally, the heart-derived cell line, H9C2, is protected from cell death stimuli by stable ROMK2 overexpression, whereas knockdown of the native ROMK exacerbates cell death. Conclusions: The findings support ROMK as the pore-forming subunit of the cytoprotective mitoK(ATP) channel.  相似文献   

9.
Glial Cell Function: Uptake of Transmitter Substances   总被引:28,自引:4,他引:28       下载免费PDF全文
Rabbit-brain fractions enriched in neuronal cell bodies and in glial cells accumulated norepinephrine, serotonin, dopamine, and gamma-aminobutyric acid, substances believed to serve as neurotransmitters in the central nervous system. Both neurons and glia were able to concentrate the monoamine transmitters about 4-fold from a medium containing 0.1-1 muM concentrations. However, the glial-cell fraction concentrated aminobutyrate over a 100-fold from the medium, in contrast to the neuronal fraction, which concentrated this amino acid only 4-fold. The uptake of aminobutyrate by glial cells was 30-50% of that of synaptosome preparations. Its uptake in all fractions was temperature sensitive, sensitive to metabolic inhibitors, and exhibited K(m) values of 0.72 muM for the neuronal fraction, 0.42 muM for the synaptosomal fraction, and 0.27 muM for the glial-cell fraction. These results are interpreted as evidence that the glial cell is involved in limiting the extracellular build-up of substances that might trigger synaptic transmission by removing any transmitters that may diffuse out of the synaptic cleft during the transmission of impulses. The possible function of the enormous ability of glia and synaptosomes to accumulate aminobutyrate is discussed in light of the actions and distribution of this substance in the central nervous system.  相似文献   

10.
We investigated the impact of a diabetic state with hyperglycemia on morphometry of β cell mitochondria and modifying influence of a K (+) -ATP channel opener and we related in vivo findings with glucose effects in vitro. For in vivo experiments islets from syngeneic rats were transplanted under the kidney capsule to neonatally streptozotocin-diabetic or non-diabetic recipients. Diabetic recipients received vehicle, or tifenazoxide (NN414), intragastrically for 9 weeks. Non-diabetic rats received vehicle. Transplants were excised 7 d after cessation of treatment (wash-out) and prepared for electron microscopy. Morphological parameters were measured from approx. 25,000 mitochondria. Rat islets were cultured in vitro for 2-3 weeks at 27 or 11 (control) mmol/l glucose. Transplants to diabetic rats displayed decreased numbers of mitochondria (-31%, p < 0.05), increased mitochondrial volume and increased mitochondrial outer surface area, p < 0.001. Diabetes increased variability in mitochondrial size with frequent appearance of mega-mitochondria. Tifenazoxide partly normalized diabetes-induced effects, and mega-mitochondria disappeared. Long-term culture of islets at 27 mmol/l glucose reproduced the in vivo morphological abnormalities. High-glucose culture was also associated with reduced ATP and ADP contents, reduced oxygen consumption, reduced signaling by MitoTracker Red and reduction of mitochondrial proteins (complexes I-IV), OPA 1 and glucose-induced insulin release. We conclude that (1) a long-term diabetic state leads to a reduced number of mitochondria and to distinct morphological abnormalities which are replicated by high glucose in vitro; (2) the morphological abnormalities are coupled to dysfunction; (3) K (+) -ATP channel openers may have potential to partly reverse glucose-induced effects.  相似文献   

11.
BACKGROUND: The identification of protein kinase A (PKA) anchoring proteins on mitochondria implies a direct effect of PKA on mitochondrial function. However, little is known about the relationship between PKA and mitochondrial metabolism. METHODS AND RESULTS: The effects of PKA on the mitochondrial redox state (flavin adenine dinucleotide (FAD)), mitochondrial membrane potential (DeltaPsi(m)) and reactive oxygen species (ROS) production were investigated in saponin-permeabilized rat cardiomyocytes. The PKA catalytic subunit (PKAcat; 50 unit/ml) increased FAD intensities by 56.6+/-7.9% (p<0.01), 2'7'-dichlorofluorescin diacetate (DCF) intensities by 10.5+/-3.3 fold (p<0.01) and depolarized DeltaPsi(m) to 48.1+/-9.5% of the control (p<0.01). Trolox (a ROS scavenger; 100 micromol/L) inhibited PKAcat-induced DeltaPsi(m), FAD and DCF alteration. PKAcat-induced DeltaPsi(m) depolarization was inhibited by an inhibitor of the inner membrane anion channel (IMAC), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS: 1 micromol/L) but not by an inhibitor of mitochondrial permeability transition pore (mPTP), cyclosporine A (100 nmol/L). CONCLUSIONS: PKAcat alters FAD and DeltaPsi(m) via mitochodrial ROS generation, and PKAcat-induced DeltaPsi(m) depolarization was not caused by mPTP but rather by DIDS-sensitive mechanisms, which could be caused by opening of the IMAC. The effects of PKA on mitochondrial function could be related to myocardial function under the condition of extensive beta-adrenergic stimulation.  相似文献   

12.
Glucose-induced insulin secretion from beta-cells is often impaired in diabetic condition and by exposure to diabetogenic pharmacological agents. In pancreatic beta-cells, intracellular glucose metabolism regulates exocytosis of insulin granules, according to metabolism-secretion coupling in which glucose-induced mitochondrial ATP production plays an essential role. Impaired glucose-induced insulin secretion often results from impaired glucose-induced ATP elevation in beta-cells. Mitochondrial ATP production is driven by the proton-motive force including mitochondrial membrane potential (DeltaPsi(m)) generated by the electron transport chain. These electrons are derived from reducing equivalents, generated in the Krebs cycle and transferred from cytosol by the shuttles. Here, roles of the determinants of mitochondrial ATP production in impaired glucose-induced insulin secretion are discussed. Cytosolic alkalization, H(+) leak in the inner membrane by uncoupler (e.g. free fatty acid exposure), decrease in the supply of electron donors including NADH and FADH(2) to the respiratory chain, and endogenous mitochondrial ROS (e.g. Na(+)/K(+)-ATPase inhibition) all reduce hyperpolarlization of DeltaPsi(m) and ATP production, causing decresed glucose-induced insulin release. The decrease in the supply of NADH and FADH(2) to the respiratory chain derives from impairments in glucose metabolism including glycolysis (e.g. MODY2 and exposure to NO) and the shuttles (e.g. diabetic state and exposure to ketone body).  相似文献   

13.
Modest cardiac-overexpression of constitutively active PKCepsilon (aPKCepsilon) in transgenic mice evokes cardioprotection against ischemia. As aPKCepsilon interacts with mitochondrial respiratory-chain proteins we hypothesized that aPKCepsilon modulates respiration to induce cardioprotection. Using isolated cardiac mitochondria wild-type and aPKCepsilon mice display similar basal mitochondrial respiration, rate of ATP synthesis and adenosine nucleotide translocase (ANT) functional content. Conversely, the aPKCepsilon mitochondria exhibit modest hyperpolarization of their inner mitochondrial membrane potential (DeltaPsi(m)) compared to wild-type mitochondrial by flow cytometry. To assess whether this hyperpolarization engenders resilience to simulated ischemia, anoxia-reoxygenation experiments were performed. Mitochondria were exposed to 45 min anoxia followed by reoxygenation. At reoxygenation, aPKCepsilon mitochondria recovered ADP-dependent respiration to 44 +/- 3% of baseline compared to 28 +/- 2% in WT controls (P = 0.03) in parallel with enhanced ATP synthesis. This preservation in oxidative phosphorylation is coupled to greater ANT functional content [42% > concentration of atractyloside for inhibition in the aPKCepsilon mitochondria vs. WT control (P < 0.0001)], retention of mitochondrial cytochrome c and conservation of DeltaPsi(m). These data demonstrate that mitochondria from PKCepsilon activated mice are intrinsically resilient to anoxia-reoxygenation compared to WT controls. This resilience is in part due to enhanced recovery of oxidative phosphorylation coupled to maintained ANT activity. As maintenance of ATP is a prerequisite for cellular viability we conclude that PKCepsilon activation augmented mitochondrial respiratory capacity in response to anoxia-reoxygenation may contribute to the PKCepsilon cardioprotective program.  相似文献   

14.
Thyroid hormone administered in vivo increased carrier-mediated (atractyloside-sensitive) ADP uptake by rat liver mitochondria. 3 Days after a single large dose of triiodothyronine (20 mug/100 g of body weight), mitochondrial uptake of ADP measured at 6 degrees was 2.35 +/- 0.17 nmol/min per mg of protein, compared with an uptake of 1.81 +/- 0.19 nmol/min per mg of protein in mitochondria from untreated rats (P < 0.025). Cyanide (1.33 mM) had no effect on ADP uptake by mitochondria from either untreated or triiodothyronine-treated animals. Uptake of ADP by mitochondria from thyroidectomized rats treated with thyroxine for 7 days was 2.89 +/- 0.40 nmol/min per mg in mitochondria from thyrotoxic rats (20 mug of thyroxine per 100 g per day) and 1.98 +/- 0.22 nmol/min per mg in mitochondria from euthyroid rats (2 mug of thyroxine per 100 g per day) (P < 0.025). Mitochondria from both untreated and thyroid hormone-treated rats displayed a highly significant linear correlation between ADP uptake and ADP-dependent (i.e., state 3 minus state 4) oxygen consumption. There was, however, no difference in respiratory control ratios between mitochondria from euthyroid and thyrotoxic animals. Administration of dinitrophenol (2 mg/100 g) also stimulated carrier-mediated ADP uptake, but respiratory control of mitochondria from dinitrophenol-treated animals was virtually abolished. Triiodothyronine in vitro, at concentrations of 100 and 0.1 nM, appeared to inhibit rather than stimulate the uptake of mitochondrial ADP. The relationship between these observations and the clinical manifestations of thyrotoxicosis is discussed from the point of view of the possible effects of increased mitochondrial ADP transport on oxidative phosphorylation and adenosyl nucleotide metabolism.  相似文献   

15.
OBJECTIVE: Mitochondrial calcium-activated K(+) (mitoK(Ca)) channels have been described as channels that are activated by Ca(2+), inner mitochondrial membrane depolarization and drugs such as NS-1619. NS-1619 is cardioprotective, leading to the assumption that this effect is related to the opening of mitoK(Ca) channels. Here, we show several weaknesses in this hypothesis. METHODS: Isolated mitochondria from rat hearts were tested for evidence of mitoK(Ca) activity by analyzing functional parameters in K(+)-rich and K(+)-free media. RESULTS: NS-1619 promoted mitochondrial depolarization both in K(+)-rich and K(+)-free media. Respiratory rate increments were also seen in the presence of NS-1619 for both media. In parallel, NS-1619 promoted respiratory inhibition, as evidenced by respiratory measurements in state 3. Mitochondrial volume measurements conducted using light scattering showed that NS-1619 led to swelling, in a manner unaltered by inhibitors of mitoK(Ca) channels, antagonists of adenosine triphosphate-sensitive potassium channels or inhibitors of the permeability transition. Swelling was also maintained when K(+) in the media was substituted with tetraethylammonium (TEA(+)), which is not transported by any known K(+) carrier. Electron microscopy experiments gave support to the idea that NS-1619-induced mitochondrial swelling took place in the absence of K(+). In addition to testing the pharmacological effects of NS-1619, we attempted, unsuccessfully, to promote mitoK(Ca) activity by altering Ca(2+) concentrations in the medium and inducing mitochondrial uncoupling. CONCLUSION: Our data indicate that NS-1619 promotes non-selective permeabilization of the inner mitochondrial membrane to ions, in addition to partial respiratory inhibition. Furthermore, we found no specific K(+) transport in isolated heart mitochondria compatible with mitoK(Ca) opening, whether by pharmacological or physiological stimuli. Our results indicate that NS-1619 has extensive mitochondrial effects unrelated to mitoK(Ca) and suggest that tissue protection mediated by NS-1619 may occur through mechanisms other than activation of these channels.  相似文献   

16.
It has recently been proposed that the Ca(2+) uptake by the SR is inhibited by blocking Cl(-) and/or K(+) movements across this intracellular membrane. We have characterised the functional and pharmacological profile of the SR K(+) channel derived from human and sheep atrial cells. Mammalian atrial SR preparations were subjected to [(3)H]-ryanodine binding assays, SDS-PAGE analysis and channel protein reconstitution into planar lipid bilayers. Assessment of [(3)H]-ryanodine binding on the SR Ca(2+) release channel revealed that it was inhibited by both Ruthenium Red and Mg(2+) with IC(50) values of 4.11 microM and 9.12 m M, respectively. In crude populations as well as in all SR-enriched fractions, activity of K(+) selective channels was recorded. This channel displayed a high conductance value of 193 and 185 pS for human and sheep preparations respectively. Gating and conducting behaviours of this channel were unaffected by the addition of up to 5m M 4-Aminopyridine (4-AP), 100 n M Iberiotoxin (IbTX), 10 microM E-4031 and 30 microM amiodarone. However, 100n M Dendrotoxin (gamma-DTX) largely increase the occurrence of the SR K(+) channel subconducting states without an effect on the main unitary conductance. These results demonstrate that the SR K(+) channel, present in all mammalian atrial SR membranes tested (as assessed by [(3)H]-ryanodine binding and its typical inhibition by ruthenium red and the magnesium), displays different properties than those classically described for cardiac sarcolemmal K(+) channels. Despite the fact that the biophysical properties of the SR K(+) channel are well known, its molecular identity remains to be ascertained.  相似文献   

17.
Potassium (K+)-induced norepinephrine (NE) release was examined in preparations of cardiac synaptosomes and sliced atria from 6-, 24-, and 26-mo-old male F344 rats. Cardiac synaptosomes were prepared from rat hearts by collagenase digestion followed by homogenization in 0.32 M sucrose and centrifugation. The synaptosome preparations and the sliced atria were labeled with 3H-NE and then placed in a superfusion system. K(+)-induced net fractional release of NE from synaptosomes prepared from 24- and 26-mo-old rats (4.3% and 3.0%, respectively) was significantly reduced when compared to NE release from synaptosomes from 6-mo-old rats (5.2%). K(+)-induced NE release from sliced atria from 24-mo-old rats (4.7%) was also significantly reduced when compared to NE release from atria from 6-mo-old rats (6.3%). Perfusion of cardiac synaptosomes with buffer prepared without calcium (CA++free, < 5 microM) reduced K(+)-induced release by 50% in all age groups studied. Perfusion with tyramine induced identical rates of NE release from cardiac synaptosomes prepared from 6- and 24-mo-old rats. These results confirm that depolarization-induced NE release from cardiac sympathetic nerves is reduced in the old male F344 rat.  相似文献   

18.
The mitochondrial F1-ATPase consists of five nonidentical subunits that are synthesized outside the mitochondria and imported across both mitochondrial membranes to the matrix side of the inner membrane. In order to study the mechanism of this import, we synthesized the F1-ATPase subunits of yeast either in vitro (in a reticulocyte lysate programmed with yeast RNA) or in vivo (in pulsed and pulsed-chased yeast spheroplasts). Both in vitro and in vivo, each of the three largest ATPase subunits was synthesized as a larger precursor. When the precursors that had been synthesized in vitro were incubated with isolated yeast mitochondria, they were converted to "mature" subunits that were no longer susceptible to externally added proteases. The uptake of the subunit into the mitochondria was thus accompanied by conversion of the precursor. Since uptake of precursors into mitochondria was independent of protein synthesis and since the precursors could also be detected in vivo, the transfer of proteins from the cytosol across both mitochondrial membranes does not occur by vectorial translation. Instead, the proteins destined for import are first made outside the mitochondria as precursors and only subsequently transported into the mitochondria. This step is accompanied by proteolytic conversion of the mature subunit.  相似文献   

19.
L-2-Hydroxyglutaric acid (LGA) accumulates and is the biochemical hallmark of the neurometabolic disorder L-2-hydroxyglutaric aciduria (LHGA). Although this disease is predominantly characterized by severe neurological findings and pronounced cerebral atrophy, the pathomechanisms of brain injury are virtually unknown. In the present study, we investigated the effect of LGA (0.1–1 mM) on various parameters of the glutamatergic system, namely the basal and potassium-induced release of L-[3H]glutamate by synaptosomal preparations, Na+-dependent L-[3H]glutamate uptake by synaptosomal preparations and Na+-independent L-[3H]glutamate uptake by synaptic vesicles, as well as of L-[3H]glutamate binding to synaptic plasma membranes from cerebral cortex of male adult Wistar rats. We observed that LGA significantly increased L-[3H]glutamate uptake into synaptosomes and synaptic vesicles, without altering synaptosomal glutamate release and glutamate binding to synaptic plasma membranes. Although more comprehensive studies are necessary to evaluate the exact role of LGA on neurotransmission, our findings do not support a direct excitotoxic action for LGA. Therefore, other abnormalities should be searched for to explain neurodegeneration of LHGA.  相似文献   

20.
Many classes of CNS-acting drugs have been suggested to act at least partially via inhibition of adenosine uptake. Synaptosomal uptake of [3H]adenosine and the effect of acute ethanol on it were studied in a rat brain area known to be involved in the coordination and modulation of normal motor activity, the cerebellum. Uptake of [3H]adenosine was found to be linear with time (about 40 sec) and increasing concentrations (up to 1.5 microM) of adenosine. The uptake of [3H]adenosine was inhibited by dilazep (IC50 = 2.5 x 10(-7) M) in a dose-dependent manner. Pharmacologically and/or toxicologically relevant concentrations of ethanol (2.5 to 100 mM) significantly inhibited the uptake of [3H]adenosine between 12 and 15%. Lineweaver-Burk plots indicated that both in vitro (25 mM) and in vivo (1.5 g/kg i.p.; 30 mM blood level) ethanol lowered Km as well as Vmax values for adenosine uptake to nearly the same extent. In the case of in vivo ethanol, no ethanol was present during the assay since synaptosome preparation would wash out residual ethanol. The results of the present study indicate possible membranal alterations by in vivo ethanol. It is concluded that the uptake of [3H]adenosine is inhibited by intoxicating concentrations of ethanol in vitro and by acute ethanol (1.5 g/kg) in vivo. This may partially explain the modulatory role of endogenous adenosine in ethanol-induced motor disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号