共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
T S Lin Z Y Shen E M August V Brankovan H Yang I Ghazzouli W H Prusoff 《Journal of medicinal chemistry》1989,32(8):1891-1895
Several 2,5'-anhydro analogues of 3'-azido-3'-deoxythymidine (AZT), 3'-azido-2'3'-dideoxyuridine (AZU), 3'-azido-2'3'-dideoxy-5-bromouridine, 3'-azido-2',3'-dideoxy-5-iodouridine, and 3'-deoxythymidine and the 3'-azido derivative of 5-methyl-2'-deoxyisocytidine have been synthesized for evaluation as potential anti-HIV (human immunodeficiency virus) agents. These 2,5'-anhydro derivatives, compounds 13-17, demonstrated significant anti-HIV-1 activity with IC50 values of 0.56, 4.95, 26.5, 27.1, and 48 microM, respectively. Compared to that of the parent compounds AZT and AZU, the respective 2,5'-anhydro analogues, compounds 13 and 14, were somewhat less active. Whereas AZT was cytotoxic with a TCID50 of 29 microM, the toxicity of the 2,5'-anhydro derivative of AZT, compound 13, was reduced considerably to a TCID50 value of greater than 100 microM. The 2,5'-anhydro analogue of 5-methyl-2'-deoxyisocytidine also demonstrated anti-HIV-1 activity with an IC50 value of 12 microM. These compounds were also evaluated against Rauscher-Murine leukemia virus (R-MuLV) in cell culture. Among them, AZT, 3'-azido-2',3'-dideoxy-5-iodouridine, 3'-azido-2',3'-dideoxy-5-bromouridine, and 2,5'-anhydro-3'-azido-3'-deoxythymidine (13) were found to be most active, with IC50 values of 0.023, 0.21, 0.23, and 0.27 microM, respectively. 相似文献
3.
The 5'-azidonucleosides 3 and 4 were obtained by treating thymidine and 2'-deoxyuridine with TPP/DEAD/HN3. The 3'-O-silylated 5'-azido-5'-deoxythymidine 5 and the corresponding 2'-deoxyuridine derivative 6 were transformed to the formamides (7 and 8, respectively) and dehydrated to the protected 5'-isocyano derivatives 9 and 10; deblocking gave 5'-isocyano-5'-deoxythymidine (11) and 5'-isocyano-2',5'-dideoxyuridine (12). 2,3'-Anhydro-5'-formamido derivatives of thymidine and 2'-deoxyuridine (19 and 20, respectively) were prepared by three different ways. In the most direct synthesis 3 and 4 were transformed to the 2,3'-anhydro-5'- azidonucleosides 17 and 18 by using TPP/DEAD; following the reaction with TPP/HCO2COCH3 gave 19 and 20. Nucleophilic opening reaction with LiN3 yielded the 3'-azido-5'-formylamino derivatives 21 and 22. Dehydration to 3'-azido-5'-isocyano-3',5'-dideoxythymidine (23) and 3'-azido-5'-isocyano-2',3',5'-trideoxyuridine (24) was achieved with tosyl chloride/pyridine. In contrast with 3'-azido-3'-deoxythymidine, compounds 11, 12, 23, and 24 were devoid of any marked inhibitory effect against DNA and RNA viruses including human immunodeficiency virus type I (HIV). 相似文献
4.
C K Chu V S Bhadti K J Doshi J T Etse J M Gallo F D Boudinot R F Schinazi 《Journal of medicinal chemistry》1990,33(8):2188-2192
A significant number of patients with AIDS and AIDS-related complex develop neurological complications. Therefore, it is critical that anti-HIV agents penetrate the blood-brain barrier and suppress viral replication in the brain. In an effort to increase the brain delivery of anti-HIV nucleosides, in vitro and in vivo pharmacokinetics of dihydropyridine derivatives of 3'-azido-2',3'-dideoxyuridine (AzddU, AZDU, or CS-87) and 3'-azido-3'-deoxythymidine (AZT, Zidovudine) have been studied. In vitro studies of the prodrugs (AzddU-DHP and AZT-DHP) in human serum, mouse serum, and mouse brain homogenate indicated that the rates of serum conversion from prodrugs to parent drugs are species dependent: mouse brain homogenate greater than mouse serum greater than human serum. Half-lives in human serum, mouse serum, and mouse brain homogenate are 4.33, 0.56, 0.17 h, respectively, for AzddU and 7.70, 1.40, and 0.18 h, respectively, for AZT. In vivo studies of AzddU-DHP and AZT-DHP showed that the prodrugs have areas under the serum concentration-time curves (AUC) similar to those of the parent drugs. The AUC in serum for AzddU following prodrug administration is 25.79 micrograms h/mL, which is similar to the value of 25.83 micrograms h/mL when AzddU was administered. Analogously, the serum AUCs for AZT when AZT-DHP and AZT were administered are 25.38 and 26.64 micrograms h/mL, respectively. However, the brain AUCs for both AzddU and AZT derived from prodrugs, being 11.43 and 11.28 micrograms h/mL, respectively, are greater than the brain AUCs for AzddU (2.09 micrograms h/mL) and AZT (1.21 micrograms h/mL) when the parent drugs were administered. Thus, the relative brain exposure (re) for AzddU (5.47) and AZT (9.32) indicate a significant increase in exposure to the anti-HIV nucleosides following prodrug administrations. The results of extended half-lives of the synthesized prodrugs in human serum along with the higher re values in vivo warrant studies in larger animals to determine the potential usefulness of the prodrugs in humans. 相似文献
5.
Conflicting data have been reported on ability of 3'-azido-3'-deoxythymidine (AZT) to protect mononuclear phagocytes from HIV-1 infection. We compared the antiviral potency of AZT in three types of primary human mononuclear phagocytes: peripheral blood monocytes, monocyte-derived macrophages (in vitro differentiated) and alveolar macrophages (in vivo differentiated). To establish highly-productive virus infection, purified cells (greater than 99%) from healthy donors were challenged with the macrophage-tropic HTLV-IIIBa-L strain at input multiplicities ranging from 0.05 to 20 TCID50 per cell. AZT (0.1 nM-10 microM) was added immediately after infection and either continued for the duration of the experiment or stopped 1-7 days after infection. The kinetics of HIV-1Ba-L replication were assessed by measuring p24 antigen production on days 4-28 post-infection. Continuous treatment with AZT reproducibly inhibited viral replication in a concentration-dependent manner in all three cell types. The IC90 of AZT was 0.04 microM in blood monocytes, 0.009 microM in monocyte-derived macrophages, and 0.0001 microM in alveolar macrophages (mean of 3-4 donors for each cell type). AZT was not cytotoxic at less than 10 microM as assessed by cell viability, cell protein, and interferon-gamma-activated H2O2-release. In experiments in which AZT treatment was stopped after infection, viral replication resumed after a lag of 7-14 days and increased exponentially toward control levels. This occurred despite initial inhibition of virus production to below the limit of p24 detection (approximately 50 pg/ml). These results indicate that AZT is a potent inhibitor of HIV-1 replication in primary mononuclear phagocytes regardless of the stage of cell differentiation, and that AZT is most active in tissue (alveolar) macrophages. AZT does not irreversibly block infection of mononuclear phagocytes, however, as viral replication resumes after removal of AZT. 相似文献
6.
3'-azido-3'-deoxythymidine (AZT) induces apoptosis and alters metabolic enzyme activity in human placenta 总被引:1,自引:0,他引:1
Collier AC Helliwell RJ Keelan JA Paxton JW Mitchell MD Tingle MD 《Toxicology and applied pharmacology》2003,192(2):164-173
The anti-HIV drug 3'-azido-3'-deoxythymidine (AZT) is the drug of choice for preventing maternal-fetal HIV transmission during pregnancy. Our aim was to assess the cytotoxic effects of AZT on human placenta in vitro. The mechanisms of AZT-induced effects were investigated using JEG-3 choriocarcinoma cells and primary explant cultures from term and first-trimester human placentas. Cytotoxicity measures included trypan blue exclusion, MTT, and reactive oxygen species (ROS) assays. Apoptosis was measured with an antibody specific to cleaved caspase-3 and by rescue of cells by the general caspase inhibitor Boc-D-FMK. The effect of AZT on the activities of glutathione-S-transferase, beta-glucuronidase, UDP-glucuronosyl transferase, cytochrome P450 (CYP) 1A, and CYP reductase (CYPR) in the placenta was assessed using biochemical assays and immunoblotting. AZT increased ROS levels, decreased cellular proliferation rates, was toxic to mitochondria, and initiated cell death by a caspase-dependent mechanism in the human placenta in vitro. In the absence of serum, the effects of AZT were amplified in all the models used. AZT also increased the amounts of activity of GST, beta-glucuronidase, and CYP1A, whereas UGT and CYPR were decreased. We conclude that AZT causes apoptosis in the placenta and alters metabolizing enzymes in human placental cells. These findings have implications for the safe administration of AZT in pregnancy with respect to the maintenance of integrity of the maternal-fetal barrier. 相似文献
7.
8.
K A Watanabe K Harada J Zeidler J Matulic-Adamic K Takahashi W Y Ren L C Cheng J J Fox T C Chou Q Y Zhu 《Journal of medicinal chemistry》1990,33(8):2145-2150
1-(3-Azido-2,3-dideoxy-2-fluoro-beta-D-arabinofuranosyl)thymine (6, F-AZT) and 1-(2,3-dideoxy-2-fluoro-beta-D-threopentofuranosyl)cytosine (12, F-DDC) were synthesized from the potent antiherpes virus nucleosides 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)thymine (1, FMAU) and 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-iodocytosine (FIAC) in the hope that introduction of a 2-"up"-fluoro substituent might potentiate the anti-HIV activity of AZT and DDC. FMAU (1) was converted in three steps into 2,3'-anhydro-1-(2-fluoro-2-deoxy-5-O-trityl-beta-D-lyxofuranosyl)thymine (4), which when treated with NaN3 followed by detritylation afforded 6. F-DDC was prepared by two methods. Tritylation of FIAC followed by treatment of the product with thiocarbonyldimidazole afforded the 5'-O-trityl-3'-O-(imidazolyl)thiocarbonyl nucleoside 9. Upon radical reduction of 9 with Bu3SnH and AIBN, 5'-O-trityl-DDC 10 was obtained. Compound 10 was detritylated to give 12, which (when obtained by this procedure) resisted crystallization, but the diacetate 12' was obtained in crystalline form. Alternatively, FAC (14) was converted into N4,O5'-dibenzoyl derivative 15, which was treated with thiocarbonyldiimidazole. Reduction of 16 with Bu3SnH/AIBN followed by debenzoylation afforded 12, which was obtained in crystalline form. F-AZT did not exhibit any significant activity against the human immunodeficiency virus (HIV) in vitro. F-DDC, however, showed activity against HIV-1, but the therapeutic index is much inferior to that of AZT. 相似文献
9.
E M Cretton M Y Xie N M Goudgaon R F Schinazi C K Chu J P Sommadossi 《Biochemical pharmacology》1992,44(5):973-980
3'-Azido-2',3'-dideoxyuridine (AzddU, CS-87) is a potent inhibitor of human immunodeficiency virus replication in vitro with low bone marrow toxicity. Although AzddU is currently being evaluated in clinical trials, its catabolic disposition is unknown. Pharmacokinetic studies in rhesus monkeys have demonstrated that a 5'-O-glucuronide is excreted in urine. The present study examined the catabolic disposition of AzddU is isolated rat hepatocytes, a model for the study at the cellular level of biosynthetic, catabolic and transport phenomena in the liver. Following exposure of cells to 10 microM [3H]AzddU, low intracellular levels of two catabolites, identified as 3'-azido-2',3'-dideoxy-5'-beta-D-glucopyranosyluridine (GAzddU) and 3'-amino-2',3'-dideoxyuridine (AMddU), were detected. Studies using rat microsomes demonstrated that GAzddU formation was only detected in the presence of uridine 5'-diphosphoglucuronic acid, and that the rate of AMddU formation increased significantly in the presence of NADPH. Under similar conditions, reduction of the 3'-azido function was also demonstrated herein with 3'-azido-2',3'-dideoxycytidine (AzddC), 3'-azido-2',3'-dideoxy-5-methylcytidine (AzddMeC) and 3'-azido-2',3'-dideoxyguanine (AzddG), suggesting that enzymatic reduction to a 3'-amino derivative is a general catabolic pathway of 3'-azido-2',3'-dideoxynucleosides at the hepatic site. 相似文献
10.
The silylated AzddThd 5 and AzddUrd 6 prepared from 2,3'-anhydronucleoside derivatives 3 and 4 were transformed to formamides 7 and 8 by using the sequence RN3----RN = P(C6H5)----RNHCHO. Formamides 7 and 8 were dehydrated to the protected 3'-isocyano derivatives 9 and 10; deblocking gave 11 and 12. Neither 3'-isocyano-3'-deoxythymidine (11) nor 3'-isocyano-2',3'-dideoxyuridine (12) showed anti-HIV activity at noncytotoxic concentrations. ddThd derivative 11 was considerably more toxic to MT-4 cells than ddUrd derivative 12; it also had a much greater affinity (Ki) for MT-4 cell dThd kinase than ddUrd derivative 12. Both compounds appear to be linear mixed-type inhibitors of MT-4 cell dThd kinase. 相似文献
11.
Skoblov Y Karpenko I Shirokova E Popov K Andronova V Galegov G Kukhanova M 《Antiviral research》2004,63(2):107-113
5'-Hydrogenphosphonate of 3'-azido-2',3'-dideoxythymidine (HpAZT), a novel anti-HIV drug approved for the treatment of HIV-infected patients in Russia, displays some clinical advantages over azidothymidine (AZT). Metabolism in the HL-60 cell culture and pharmacokinetics in mice of [6-3H]-HpAZT (in comparison with [6-3H-AZT) were studied to elucidate the metabolic basis of its lower clinical toxicity. Accumulation of [6-3H]-HpAZT-derived products in cells with time, distribution of its radioactive metabolites among blood and different mouse organs and dependence of drug accumulation on the route of administration were investigated. The rate of accumulation of [3H]-HpAZT metabolites in cells was slower than the rate of accumulation of [3H]-AZT metabolites. [3H]-AZTMP was the dominating metabolite at all time points, achieving the level of 15 +/- 3 pmol/10(6) cells after 25 h incubation. After oral or intravenous administrations of [3H]-HpAZT, the (radioactive) metabolites were rapidly distributed among blood, stomach, intestine and liver and were not found in brain, muscles and spleen. [3H]-HpAZT underwent rapid and extensive metabolism, [3H]-AZT being the dominating product at all time points. Administration of 180 nmol of [3H]-HpAZT resulted in an AZT concentration in blood of 1-3 microM after 5 min, which remained practically constant during the next 25 min and did not depend on the route of administration. 相似文献
12.
Synthesis and biological evaluation of dinucleoside methylphosphonates of 3'-azido-3'-deoxythymidine and 2', 3'-dideoxycytidine 总被引:1,自引:0,他引:1
F Puech G Gosselin J Balzarini S S Good J L Rideout E De Clercq J L Imbach 《Antiviral research》1990,14(1):11-23
The 5'----5' dinucleoside methylphosphonates of 3'-azido-3'-deoxythymidine (AZT) and 2',3'-dideoxycytidine (DDC) were prepared and evaluated for their inhibitory properties against different viruses, including human immunodeficiency virus (HIV). The synthesis of the compounds was achieved by reaction of AZT or N4-(4-monomethoxytrityl)-2',3'-dideoxycytidine with in situ prepared methylphosphonic bis (triazolide), followed in the latter case by an acidic treatment. The two title compounds showed in vitro anti-HIV activity, that was 200- to 450-fold less pronounced that that shown by the corresponding monomeric nucleosides AZT and DDC. The decreased antiviral activity may be ascribed to nuclease resistance of the methylphosphonate linkage. 相似文献
13.
5-Trifluoromethyl-2'-deoxyuridine (1) was tosylated with p-toluenesulfonyl chloride in dry pyridine at 3 degrees to give 5-trifluoromethyl-5'-O-(p-tolylsulfonyl)-2'-deoxyuridine (2), which was converted to 5-trifluoromethyl-5'-azido-2',5'-dideoxyuridine (3) by reacting with lithium azide in N,N-dimethylformamide at 85-90 degrees for 2 h. Compound 3 was then hydrogenated in ethanol-water (1:1, v/v) at room temperature and 35 psi of hydrogen pressure, using 10% palladium on charcoal as cstalyst, to yield 5-trifluoromethyl-5'-amino-2',5'-dideoxyuridine (4). Compound 4 is about fourfold less potent than compound 1 as an antiviral agent but is about 40-fold less toxic to the host Vero cells. Thus the therapeutic index of compound 1 has been improved by a factor of 10 by replacement of the 5'-hydroxyl with an amino group. Compound 1, however, is more than 100-fold more inhibitory to Sarcoma 180 cells in culture relative to compound 4. Compound 3 is markedly less potent than compound 1 or 4 as either an antiviral or an antineoplastic compound. 相似文献
14.
Diwan BA Riggs CW Logsdon D Haines DC Olivero OA Rice JM Yuspa SH Poirier MC Anderson LM 《Toxicology and applied pharmacology》1999,161(1):82-99
The anti-HIV drug 3'-azido-3'-deoxythymidine (AZT) is used successfully for reduction of perinatal viral transmission. However toxic side effects including carcinogenesis are possible. To test this, pregnant CD-1 Swiss mice were given 25.0 or 12.5 mg AZT on gestation days 12-18. Previously we reported an increase in lung, liver, and female reproductive system tumors in offspring euthanized at 1 year (Olivero et al., J. Natl. Cancer Inst. 89, 1602-1608, 1997). Findings for all remaining offspring up to 2 years old are reported here. AZT effects were most prominent in female offspring, with a significant threefold increase in lung tumors, a reduction in lymphoblastic and follicle center cell lymphomas, and a significant increase in histiocytic sarcomas (0 in controls, 3% after low-dose AZT, and 8% after high-dose AZT, p = 0.022). Dose-dependent incidences of mammary gland, ovarian, and seminal vesicle tumors were low but significant: 0/106 controls, 3/105 low-dose, and 8/105 high-dose mice presented one of these neoplasms (p = 0.0025). Incidences of females showing any clearly AZT-related neoplasm, in lung, liver, ovary, or mammary gland or histiocytic sarcoma, in the second year, were 12/32 after the low dose and 14/27 after the high dose vs 3/23 controls (p = 0.0045). Also, the sensitivity of neonatal mice was assessed by administration of 25, 50, 100, or 200 mg/kg AZT on postnatal days 1 through 8. The effects at 2 years were similar to those seen after transplacental exposure, with significant increases in lung, liver, and mammary tumors in females. The results confirm that AZT is a moderately effective perinatal carcinogen in mice, targeting several tissue types. 相似文献
15.
Balzarini J Naesens L Aquaro S Knispel T Perno C De Clercq E Meier C 《Molecular pharmacology》1999,56(6):1354-1361
The administration of CycloSaligenyl 3'-azido-2',3'-dideoxythymidine monophosphate (CycloSal-AZTMP) to CEM cells resulted in a concentration- and time-dependent conversion to the 5'-monophosphate (AZTMP), 5'-diphosphate (AZTDP), and 5'-triphosphate (AZTTP) derivatives. High ratios of AZTMP/AZTTP were found in the CEM cell cultures treated with CycloSal-AZTMP. The intracellular T(1/2) of AZTTP in CEM cell cultures treated with either AZT and CycloSal-AZTMP was approximately 3 h. A variety of human T- and B-lymphocyte cell lines efficiently converted the prodrug to the AZT metabolites, whereas peripheral blood lymphocytes and primary monocyte/macrophages showed at least 10-fold lower metabolic conversion of the prodrug. CycloSal-AZTMP failed to generate marked levels of AZT metabolites in thymidine kinase-deficient CEM/TK(-) cells, an observation that is in agreement with the substantial loss of antiviral activity of CycloSal-AZTMP in CEM/TK(-) cells. The inability of CycloSal-AZTMP to generate AZTMP in CEM/TK(-) cells is presumably due to a relatively high hydrolysis rate of AZTMP to the parent nucleoside AZT, combined with the inability of CEM/TK(-) cells to phosphorylate AZT to AZTMP through the cytosolic salvage enzyme thymidine kinase. 相似文献
16.
Starting from 3-O-mesyl-1,2-O-isopropylidene-alpha-D-allofuranose (9) the anomeric mixtures of the requisite carbohydrates 1,2-di-O-acetyl-6-O-benzoyl-5-deoxy-3-O-mesyl-D-allofuranoses++ + 17A alpha/beta, 1,2-di-O-acetyl-5,6-di-O-benzoyl-3-O-mesyl-D-allofuranoses 17B alpha/beta, and 1,2-di-O-acetyl-5,6-di-O-benzoyl-3-O-mesyl-L-talofuranoses 17C alpha/beta were synthesized. 1,2-Di-O-acetyl-5-O-benzoyl-6-deoxy-3-O-mesyl-D-allofuranoses++ + 17D alpha/beta and the corresponding L-talofuranoses 17E alpha/beta were obtained from 6-deoxy-3,5-di-O-benzoyl-1,2-O-isopropylidene-alpha-D- allofuranose (12) and the corresponding beta-L-talofuranose 13. Coupling of these sugar derivatives with thymine gave the beta-nucleoside derivatives 18A-E. Treatment of compounds 18A-E with DBU produced the corresponding 2,3'-anhydro nucleosides 19A-E with a free 2'-OH group. After deoxygenation of 2'-O-[[(4-methylphenyl)oxy]thiocarbonyl] compounds 20A-E with tributyltin hydride the 2,3'-anhydro bridge of the 2'-deoxynucleosides 21A-E was opened with LiN3 to produce the protected 3'-azido-2,3'-dideoxynucleoside derivatives 22A-G. Saponification with NaOCH3 gave 1-(3'-azido-2',3',5'-trideoxy-beta-D-allofuranosyl)thymine (2; homo-AZT), the 5'-C-(hydroxymethyl) derivatives of AZT 1-(3'-azido-2',3'- dideoxy-beta-D-allofuranosyl)thymine (3) and 1-(3'-azido-2',3'-dideoxy-alpha-L-talofuranosyl)thymine (4), and the 5'-C-methyl derivatives of AZT 1-(3'-azido-2',3',6'-trideoxy-beta-D-allofuranosyl)thymine (5) and 1-(3'-azido-2',3',6'-trideoxy-alpha-L-talofuranosyl)thymine (6). Compounds 2-6 were evaluated for their inhibitory effect on human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) replication in MT-4 cells and found inactive at subtoxic concentrations. Compounds 2-4 and 6 are not effective against herpes simplex virus type 1 (HSV-1) and type 2 (HIV-2), vaccinia virus (VV), and vesicular stomatitis virus (VSV) at 400 micrograms/mL. 5 is slightly active against HSV-1, HSV-2 and VV at 150, 300, and 300 micrograms/mL, respectively. 相似文献
17.
Iyer VV Griesgraber GW Radmer MR McIntee EJ Wagner CR 《Journal of medicinal chemistry》2000,43(11):2266-2274
We report the synthesis and anticancer activity of a series of AZT phosphoramidate monoesters containing amino acid methyl ester (3a-11a) and N-alkyl amide (3b-11b, 9c-9f) moieties. The aromatic amino acid methyl esters were found to be more cytotoxic than the aliphatic analogues toward MCF-7 cells (human pleural effusion breast adenocarcinoma cell line). A marked stereochemical preference for the L-amino acid stereochemistry was also observed in MCF-7 cells. There was no consistent enhancement of cytotoxicity of the methyl amides over the corresponding methyl esters. AZT and the two AZT aromatic amino acid methyl ester phosphoramidates 8a and 9a were found to be more cytotoxic toward MCF-7 cells than to CEM cells (human T-cell lymphoblastic leukemia). The selective cytotoxicity toward MCF-7 cells may be associated with greater intracellular levels of phosphoramidate monoester and/or phosphorylated AZT. 相似文献
18.
2',3'-Dideoxycytidine toxicity in cultured human CEM T lymphoblasts: effects of combination with 3'-azido-3'-deoxythymidine and thymidine 总被引:1,自引:0,他引:1
2',3'-Dideoxycytidine (ddCyd), a potent inhibitor of human immunodeficiency virus DNA replication, requires phosphorylation by cellular nucleoside kinases for antiviral activity. Deoxycytidine kinase (NTP:deoxycytidine 5'-phosphotransferase, EC 2.7.1.74) is responsible for the formation of dideoxycytidine monophosphate and this enzyme is controlled by feedback regulation by the natural endproduct, dCTP. We have examined whether a decrease in intracellular dCTP levels affects the growth inhibition caused by ddCyd, as well as the capacity to accumulate dideoxycytidine triphosphate (ddCTP), using human T lymphoblast (CEM) cells in culture. Subtoxic concentrations of thymidine were used to decrease the dCTP pool. The effects of 3'-azido-3'-deoxythymidine (AZT), alone or in combination with ddCyd, on cell growth, DNA precursor pools, and accumulation of ddCTP were also studied. The combination of ddCyd and thymidine led to growth inhibition of CEM cells that was twice what would be expected from addition, whereas the combination of AZT and ddCyd showed an additive effect. CEM cells accumulated ddCTP efficiently, so that with 10 microM ddCyd (corresponding to the EC50 value) and a 6-hr incubation the ddCTP pool was 3-fold higher than the dCTP pool. Simultaneous addition of thymidine (10 microM) increased the dTTP pool 2-fold and gave a 50% reduction in the dCTP level but only a 10% increase in ddCTP accumulation. The presence of AZT (300 microM, corresponding to the EC50 value) led, in contrast, to an elevation of dCTP and no significant change in the other DNA precursor pools. With this high concentration of AZT, the accumulation of ddCTP decreased 42%. It was also found that ddCyd is metabolized into two additional compounds, besides the dideoxycytidine mono-, di-, and triphosphate, i.e., the liponucleotides dideoxycytidine diphosphate-ethanolamine and dideoxycytidine diphosphate-choline, constituting 45 and 6% of the total phosphorylated ddCyd metabolites, respectively, whereas the mono-, di-, and triphosphate corresponded to 3, 21, and 25% of the phosphorylated dideoxynucleotides. These results indicate that the formation of dideoxycytidine monophosphate is not rate limiting in the synthesis of ddCTP in human lymphoblasts, which clearly differs from what was observed earlier in mouse cells (Mol Pharmacol 32:798-806 1988). Furthermore, growth inhibition by ddCyd seems to be related to the ratio between dCTP and ddCTP. There was no direct interference between ddCyd and AZT metabolism in clinically relevant concentrations, which may encourage the use of combination of these compounds for anti-human immunodeficiency virus treatment. 相似文献
19.
Phosphate triester derivatives of AZT have been prepared as membrane-soluble pro-drugs of the bio-active nucleotides, and have been evaluated against HIV-1 in vitro. In particular, the phosphorus centre carries a trichloro- or trifluoroethyl group and a carboxyl-protected, amino-linked amino acid. The compounds are prepared using phosphorochloridate chemistry, and are characterized by a range of techniques. They display potent anti-HIV activity and low host toxicity, but surprisingly this activity does not increase on the introduction of the haloalkyl moiety. The trichloroethyl methoxyalaninyl compound is exceptional: here the activity is enhanced 50-fold by the introduction of the trichloroethyl group. 相似文献