首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
Fourteen typically developing children from 7.9-11.3 years in age were studied with functional magnetic resonance imaging to identify the cerebral loci involved in performance of paced finger tapping by children. Each child performed two bimanual alternating paced finger-tapping tasks. In the first, paced finger tapping was conducted to external 3-Hz pacing provided by a metronome. In the second, the metronome was turned off and finger tapping continued while each child tried to maintain the 3-Hz rhythm by self pacing. Individual and group data were analyzed with statistical parametric mapping techniques that resulted in activation maps for the two tasks. Metronome tapping produced activation of the posterior regions of both superior temporal gyri, both primary sensorimotor cortices, anterodorsomedial cerebellum and supplementary motor area. Self-tapping resulted in recruitment of pre-supplementary motor area and cerebellum in addition to bilateral supplementary motor area and primary sensorimotor cortical activation. Bimanual alternating paced finger tapping performed by children activates a neural network involving primary motor cortex, supplementary motor area, and cerebellum. Posterior superior temporal gyrus may be important for encoding auditory information, and presupplementary motor area and midline cerebellum play an important role in self-paced finger tapping.  相似文献   

2.
Functional brain imaging studies have provided insights into the processes related to motor recovery after stroke. The comparative value of different motor activation tasks for probing these processes has received limited study. We hypothesized that different hand motor tasks would activate the brain differently in controls, and that this would affect control-patient comparisons. Functional magnetic resonance imaging (MRI) was used to evaluate nine control subjects and seven patients with good recovery after a left hemisphere hemiparetic stroke. The volume of activated brain in bilateral sensorimotor cortex and four other motor regions was compared during each of three tasks performed by the right hand: index-finger tapping, four-finger tapping, and squeezing. In control subjects, activation in left sensorimotor cortex was found to be significantly larger during squeezing as compared with index-finger tapping. When comparing control subjects with stroke patients, patients showed a larger volume of activation in right sensorimotor cortex during index-finger tapping but not with four-finger tapping or squeezing. In addition, patients also showed a trend toward larger activation volume than controls within left supplementary motor area during index-finger tapping but not during the other tasks. Motion artifact was more common with squeezing than with the tapping tasks. The choice of hand motor tasks used during brain mapping can influence findings in control subjects as well as the differences identified between controls and stroke patients. The results may be useful for future studies of motor recovery after stroke.  相似文献   

3.
The neural (blood oxygenation level dependent) correlates of executed and imagined finger sequences, both unimanual and bimanual, were studied in adult right-handed volunteers using functional magnetic resonance imaging (fMRI) of the entire brain. The finger to thumb opposition tasks each consisted of three conditions, two unimanual and one bimanual. Each experimental condition consisted of overt movement of the fingers in a prescribed sequence and imagery of the same task. An intricate network consisting of sensorimotor cortex, supplementary motor area (SMA), superior parietal lobule and cerebellum was identified when the tasks involved both planning and execution. During imagery alone, however, cerebellar activity was largely absent. This apparent decoupling of sensorimotor cortical and cerebellar areas during imagined movement sequences, suggests that cortico-cerebellar loops are engaged only when action sequences are both intended and realized. In line with recent models of motor control, the cerebellum may monitor cortical output and feed back corrective information to the motor cortex primarily during actual, not imagined, movements. Although parietal cortex activation occurred during both execution and imagery tasks, it was most consistently present during bimanual action sequences. The engagement of the superior parietal lobule appears to be related to the increased attention and memory resources associated, in the present instance, with coordinating difficult bimanual sequences.  相似文献   

4.
The aim of this study was to compare the areas of brain activation between complex and simple exercises in a unimanual hand and to assess the possibility of an exercise task for paretic hands following stroke. The subjects included 11 healthy right-handed volunteers. The complex exercise was a wooden ball rotation task with the unimanual hand and the simple exercise was a hand grasp task performed during a functional MRI scan. Stronger activation of the left primary sensorimotor cortex, the left premotor area, and the ipsilateral cerebellum emerged when the complex movement was performed. Ipsilateral activity was located in the primary sensory cortex and premotor area, and contralateral activity was shown in the left cerebellum. These results suggest that a unimanual ball rotation task may be appropriate for rehabilitation of a movable paretic hand in an early stage of stroke recovery, which should provide motor and sensory input using external stimuli, while the simple motor task may appropriate in a compensatory stage, and should inhibit the ipsilateral activity due to maladaptive plasticity.  相似文献   

5.
It has been suggested that bimanual coordination is associated with stronger activation of the left motor cortex in right-handers. The aim of the present study was to investigate whether left motor cortex dominance constitutes a fundamental feature of bimanual coordination. We investigated neuromagnetic responses while subjects performed a bimanual tapping task using a 122-channel whole-head neuromagnetometer. Three neuromagnetic sources localized in the primary sensorimotor cortex of each hemisphere were found. Sources represent neuromagnetic correlates of the motor command and of somatosensory feedback. Since we found no differences of amplitudes or latencies of corresponding sources of both hemispheres, our data suggest that dominance of the left motor cortex is not a fundamental characteristic for bimanual coordination.  相似文献   

6.
This study compared brain activation during unpaced rhythmic finger tapping in 12-year-old children with that of adults. Subjects pressed a button at a pace initially indicated by a metronome (12 consecutive tones), and then continued for 16 seconds of unpaced tapping to provide an assessment of their ability to maintain a steady rhythm. These analyses focused on the superior vermis of the cerebellum, which is known to play a key role in timing. Twelve adults and 12 children performed this rhythmic finger tapping task in a 3 T scanner. Whole-brain analyses were performed in Brain Voyager, with a random-effects analysis of variance using a general linear model. A dedicated cerebellar atlas was used to localize cerebellar activations. As in adults, unpaced rhythmic finger tapping in children demonstrated activations in the primary motor cortex, premotor cortex, and cerebellum. However, overall activation was different, in that adults demonstrated much more deactivation in response to the task, particularly in the occipital and frontal cortices. The other main differences involved the additional recruitment of motor and premotor areas in children compared with adults, and increased activity in the vermal region of the cerebellum. These findings suggest that the timing component of the unpaced rhythmic finger tapping task is less efficient and automatic in children, who need to recruit the superior vermis more intensively to maintain the rhythm, although they performed somewhat more poorly than adults.  相似文献   

7.
Repetitive passive movements are part of most rehabilitation procedures, especially in patients with stroke and motor deficit. However, little is known about the consequences of repeated proprioceptive stimulations on the intracerebral sensorimotor network in humans. Twelve healthy subjects were enrolled, and all underwent two functional magnetic resonance imaging (fMRI) sessions separated by a 1-month interval. Passive daily movement training was performed in six subjects during the time between the two fMRI sessions. The other six subjects had no training and were considered as the control group. The task used during fMRI was calibrated repetitive passive flexion-extension of the wrist similar to those performed during training. The control task was rest. The data were analyzed with SPM96 software. Images were realigned, smoothed, and put into Talairach's neuroanatomical space. The time effect from the repetition of the task was assessed in the control group by comparing activation versus rest in the second session with activation versus rest in the first session. This time effect then was used as null hypothesis to assess the training effect alone in our trained group. Passive movements compared with rest showed activation of most of the cortical areas involved in motor control (i.e., contralateral primary sensorimotor cortex, supplementary motor area [SMA], cingulum, Brodmann area 40, ipsilateral cerebellum). Time effect comparison showed a decreased activity of the primary sensorimotor cortex and SMA and an increased activity of ipsilateral cerebellar hemisphere, compatible with a habituation effect. Training brought about an increased activity of contralateral primary sensorimotor cortex and SMA. A redistribution of SMA activity was observed. The authors demonstrated that passive training with repeated proprioceptive stimulation induces a reorganization of sensorimotor representation in healthy subjects. These changes take place in cortical areas involved in motor preparation and motor execution and represent the neural basis of proprioceptive training, which might benefit patients undergoing rehabilitative procedures.  相似文献   

8.
《Neurological research》2013,35(8):811-814
Abstract

Some treatments under development to improve motor outcome after stroke require information about organization of individual subject's brain. The current study aimed to characterize normal inter-subject differences in localization of motor functions, and to consider these findings in relation to a potential treatment of motor deficits after stroke. Functional MRI (fMRI) scanning in 14 subjects examined right index finger tapping, shoulder rotation, or facial movement. The largest activation cluster in left sensorimotor cortex was identified for each task, and its center expressed in Talairach stereotaxic coordinates. Across subjects, each task showed considerable variability in activation site coordinates. For example, during finger tapping, the range for center of activation was 7 mm in the x-axis, 19 mm in the y-axis, and 11 mm in the z-axis. The mean value for center of activation was significantly different for all three coordinates for all pairwise task comparisons. However, the distribution of activation site centers for the finger task overlapped with the other two tasks in the x- and y-axes, and with the shoulder task in the z-axis. On average, the center of activation for the three motor tasks were spatially separated and somatotopically distributed. However, across the population, there was considerable overlap in the center of activation site, especially for finger and shoulder movements. Restorative therapies that aim to target specific body segments, such as the hand, in the post-stroke motor system may need to map the individual brain rather than rely on population averages. Initial details are presented of a study using this approach to evaluate such a therapy.  相似文献   

9.
Some treatments under development to improve motor outcome after stroke require information about organization of individual subject's brain. The current study aimed to characterize normal inter-subject differences in localization of motor functions, and to consider these findings in relation to a potential treatment of motor deficits after stroke. Functional MRI (fMRI) scanning in 14 subjects examined right index finger tapping, shoulder rotation, or facial movement. The largest activation cluster in left sensorimotor cortex was identified for each task, and its center expressed in Talairach stereotaxic coordinates. Across subjects, each task showed considerable variability in activation site coordinates. For example, during finger tapping, the range for center of activation was 7 mm in the x-axis, 19 mm in the y-axis, and 11 mm in the z-axis. The mean value for center of activation was significantly different for all three coordinates for all pairwise task comparisons. However, the distribution of activation site centers for the finger task overlapped with the other two tasks in the x- and y-axes, and with the shoulder task in the z-axis. On average, the center of activation for the three motor tasks were spatially separated and somatotopically distributed. However, across the population, there was considerable overlap in the center of activation site, especially for finger and shoulder movements. Restorative therapies that aim to target specific body segments, such as the hand, in the post-stroke motor system may need to map the individual brain rather than rely on population averages. Initial details are presented of a study using this approach to evaluate such a therapy.  相似文献   

10.
Friedreich's ataxia (FRDA) is associated with a distributed pattern of neurodegeneration in the spinal cord and the brain secondary to selective neuronal loss. We used functional MR Imaging (fMRI) to explore brain activation in FRDA patients during two motor-sensory tasks of different complexity, i.e. continuous hand tapping and writing of "8" figure, with the right dominant hand and without visual feedback. Seventeen FRDA patients and two groups of age-matched healthy controls were recruited. Task execution was monitored and recorded using MR-compatible devices. Hand tapping was correctly performed by 11 (65%) patients and writing of the "8" by 7 (41%) patients. After correction for behavioral variables, FRDA patients showed in both tasks areas of significantly lower activation in the left primary sensory-motor cortex and right cerebellum. Also left thalamus and right dorsolateral prefrontal cortex showed hypo-activation during hand tapping. During writing of the "8" task FRDA patients showed areas of higher activation in the right parietal and precentral cortex, globus pallidus, and putamen. Activation of right parietal cortex, anterior cingulum, globus pallidus, and putamen during writing of the "8" increased with severity of the neurological deficit. In conclusion fMRI demonstrates in FRDA a mixed pattern constituted by areas of decreased activation and areas of increased activation. The decreased activation in the primary motor cortex and cerebellum presumably reflects a regional neuronal damage, the decreased activation of the left thalamus and primary sensory cortex could be secondary to deafferentation phenomena, and the increased activation of right parietal cortex and striatum might have a possible compensatory significance.  相似文献   

11.
Somatosensory discrimination training may modulate cognitive processes, such as movement planning and monitoring, which can be useful during active movements. The aim of the study was to assess the effect of somatosensory discrimination training on brain functional activity using functional magnetic resonance imaging (fMRI) during motor and sensory tasks in healthy subjects. Thirty-nine healthy young subjects were randomized into two groups: the experimental group underwent somatosensory discrimination training consisting of shape, surface and two-point distance discrimination; and the control group performed a simple object manipulation. At baseline and after 2 weeks of training, subjects underwent sensorimotor evaluations and fMRI tasks consisting of right-hand tactile stimulation, manipulation of a simple object, and complex right-hand motor sequence execution. Right-hand dexterity improved in both groups, but only the experimental group showed improvements in all manual dexterity tests. After training, the experimental group showed: decreased activation of the ipsilateral sensorimotor areas during the tactile stimulation task; increased activation of the contralateral postcentral gyrus and thalamus bilaterally during the manipulation task; and a reduced recruitment of the ipsilateral pre/postcentral gyri and an increased activation of the basal ganglia and cerebellum contralaterally during the complex right-hand motor task. In healthy subjects, sensory discrimination training was associated with lateralization of brain activity in sensorimotor areas during sensory and motor tasks. Further studies are needed to investigate the usefulness of this training in motor rehabilitation of patients with focal lesions in the central nervous system.  相似文献   

12.
Musician’s dystonia is a type of task specific dystonia for which the pathophysiology is not clear. In this study, we performed functional magnetic resonance imaging to investigate the motor-related brain activity associated with musician’s dystonia. We compared brain activities measured from subjects with focal hand dystonia and normal (control) musicians during right-hand, left-hand, and both-hands tapping tasks. We found activations in the thalamus and the basal ganglia during the tapping tasks in the control group but not in the dystonia group. For both groups, we detected significant activations in the contralateral sensorimotor areas, including the premotor area and cerebellum, during each tapping task. Moreover, direct comparison between the dystonia and control groups showed that the dystonia group had greater activity in the ipsilateral premotor area during the right-hand tapping task and less activity in the left cerebellum during the both-hands tapping task. Thus, the dystonic musicians showed irregular activation patterns in the motor-association system. We suggest that irregular neural activity patterns in dystonic subjects reflect dystonic neural malfunction and consequent compensatory activity to maintain appropriate voluntary movements.  相似文献   

13.
Functional MRI cerebral activation and deactivation during finger movement   总被引:30,自引:0,他引:30  
OBJECTIVE: To examine interhemispheric interactions of motor processes by using functional MRI (fMRI). BACKGROUND: Despite evidence of interhemispheric inhibition from animal, clinical, and transcranial magnetic stimulation (TMS) studies, fMRI has not been used to explore activation and deactivation during unilateral motor tasks. fMRI changes associated with motor activity have traditionally been described by comparing cerebral activation during motor tasks relative to a "resting state." In addition to this standard comparison, we examined fMRI changes in the resting state relative to a motor task. METHODS: Thirteen healthy volunteers performed self-paced sequential finger/thumb tapping for each hand. During fMRI data acquisition, four epochs were obtained; each comprised of 30 seconds of rest, 30 seconds of right hand activity, and 30 seconds of left hand activity. Resultant echoplanar images were spatially normalized and spatially and temporally smoothed. RESULTS: As expected, hand movements produced activation in the contralateral sensorimotor cortex and adjacent subcortical regions and, when present, the ipsilateral cerebellum. However, hand movement also produced a significant deactivation (i.e., decreased blood flow) in the ipsilateral sensorimotor cortex and subcortical regions, and when present, the contralateral cerebellum. Conjunction analysis demonstrated regions that are activated by one hand and deactivated by the contralateral hand. CONCLUSION: Unilateral hand movements are associated with contralateral cerebral activation and ipsilateral cerebral deactivation, which we hypothesize result from transcallosal inhibition.  相似文献   

14.
Lewis PA  Miall RC 《Neuroreport》2002,13(14):1731-1735
It has been suggested that the different patterns of brain activity observed during paced finger tapping and non-movement related timing tasks, with medial premotor cortex (supplementary motor cortex, pre and proper) and ipsilateral cerebellum dominating the former, and dorsolateral prefrontal cortex (DLPFC) the latter, might be related to differing motor demands. Since paced finger tapping often consists of automatic movement (requiring little overt attention), while non-motor timing is attentionally modulated, the difference could also be related to attentional processing. Here, we observed timing related activity in both medial premotor cortex and DLPFC, with non-timing related activity in other areas, including ipsilateral cerebellum, when subjects performed non-automatic motor timing. This result shows that, in time measurement, medial premotor activation is not specific to automatic movement, and DLPFC activity is not specific to non-motor tasks.  相似文献   

15.
Wang  Ling  Li  Xuejing  Zheng  Weimin  Chen  Xin  Chen  Qian  Hu  Yongsheng  Cao  Lei  Ren  Jian  Qin  Wen  Lu  Jie  Chen  Nan 《Brain imaging and behavior》2022,16(5):2049-2060

The objective of this study was to investigate the alterations of brain activation and effective connectivity during motor imagery (MI) in complete spinal cord injury (CSCI) patients and to reveal a potential mechanism of MI in motor rehabilitation of CSCI patients. Fifteen CSCI patients and twenty healthy controls underwent the MI task-related fMRI scan, and the motor execution (ME) task only for healthy controls. The brain activation patterns of the two groups during MI, and CSCI patients during the MI task and healthy controls during the ME task were compared. Then the significantly changed brain activation areas in CSCI patients during the MI task were used as regions of interest for effective connectivity analysis, using a voxel-wise granger causality analysis (GCA) method. Compared with healthy controls, increased activations in left primary sensorimotor cortex and bilateral cerebellar lobules IV-VI were detected in CSCI patients during the MI task, and the activation level of these areas even equaled that of healthy controls during the ME task. Furthermore, GCA revealed decreased effective connectivity from sensorimotor related areas (primary sensorimotor cortex and cerebellar lobules IV-VI) to cognitive related areas (prefrontal cortex, precuneus, middle temporal gyrus, and inferior temporal gyrus) in CSCI patients. Our findings demonstrated that motor related brain areas can be functionally preserved and activated through MI after CSCI, it maybe the potential mechanism of MI in the motor rehabilitation of CSCI patients. In addition, Sensorimotor related brain regions have less influence on the cognitive related regions in CSCI patients during MI (The trial registration number: ChiCTR2000032793).

  相似文献   

16.
Background – Hereditary spastic paraparesis (HSP) is a heterogeneous group of disorders characterized by progressive bilateral lower limb spasticity. Functional imaging studies in patients with corticospinal tract involvement have shown reorganization of motor circuitry. Our study investigates functional changes in sensorimotor brain areas in patients with HSP. Methods – Twelve subjects with HSP and 12 healthy subjects were studied. Functional magnetic resonance imaging (fMRI) was used to measure brain activation during right‐hand finger tapping. Image analysis was performed using general linear model and regions of interest (ROI)‐based approach. Weighted laterality indices (wLI) and anterior/posterior indicies (wAI and wPI) were calculated for predefined ROIs. Results and discussion – Comparing patients and controls at the same finger‐tapping rate (1.8 Hz), there was increased fMRI activation in patients’ bilateral posterior parietal cortex and left primary sensorimotor cortex. No differences were found when comparing patients and controls at 80% of their individual maximum tapping rates. wLI of the primary sensorimotor cortex was significantly lower in patients. Subjects with HSP also showed a relative increase in the activation of the posterior parietal and premotor areas compared with that of the primary sensorimotor cortex. Our findings demonstrate an altered pattern of cortical activation in subjects with HSP during motor task. The increased activation probably reflects reorganization of the cortical motor system.  相似文献   

17.
INTRODUCTION: The growing mastery of motor tasks is one of the most visible changes in the developing child. The cortex is known to play a central role in learning, planning, and performance of motor tasks. We investigated the age dependency of motor cortex activation using functional magnetic resonance imaging (fMRI). METHODS: Thirty-two right-handed subjects were studied: 11 children (median age 9 years, range 6 - 10 years), 10 adolescents (median age 13 years, range 11 - 15 years), and 11 adults (median age 27 years, range 23 - 42 years). The subjects performed a simple, paced unilateral motor task (repetitive squeezing of a ball with the right hand). Also, we set up a control experiment (visual stimulation using an alternating checkerboard pattern) in which no age-related differences were expected. RESULTS: Compared to children, adults showed significantly increased activation of the bilateral sensorimotor cortex, parietal areas, the supplementary motor area, and the cerebellum. In the visual stimulation experiment there were no age-related differences. CONCLUSION: Children show a significant difference in the degree of cortical activation compared to adults when performing a simple motor task. The change in fMRI activation patterns may reflect a maturation process of primary and secondary motor areas.  相似文献   

18.
fMRI study of bimanual coordination   总被引:9,自引:0,他引:9  
Eleven right-handed subjects performed uni- and bimanual tapping tasks. Hemodynamic responses as measured with functional magnetic resonance imaging (fMRI) in the primary somato-motor cortex (SMC) showed that during bimanual activity the SMC contralateral to the hand taking the faster rate was more strongly activated than the SMC contralateral to hand taking the slower rate. There were no asymmetries, left SMC activation during the right fast/left slow tapping condition was comparable to the right SMC activation during the left fast/right slow condition. A given SMC showed similar activation levels for bimanual and unimanual activity (i.e. left SMC activation for right fast/left slow was similar to left SMC activation for the right fast unimanual condition). In contrast, a given supplementary motor area (SMA) showed significantly more activation for the bimanual than for the unimanual activity. In addition, an asymmetry was observed during bimanual activities: during the right fast/left slow activity, the left SMA showed more activation than the right SMA, but during the left fast/right slow activity, the right SMA was not significantly more activated than the left SMA. For unimanual activities, a clear rate effect (greater activation for faster rate) was seen in the SMC but not in the SMA.  相似文献   

19.
The aim of this study was to analyze how functional activation in the supplementary motor area (SMA) and sensorimotor cortex (SMC) is related to bimanual coordination using functional magnetic resonance imaging. Subjects included 24 healthy volunteers, 15 of whom were right-handed and 9 left-handed. Three kinds of activation tasks, all of which required the repetitive closing and opening of a fist, were performed: unimanual movement of the nonpreferred hand (task A); simultaneous, agonistic movement of both hands (task B); simultaneous, antagonistic movement of both hands (task C). The SMA activation during task C was more pronounced than that during the other two tasks for right and left handers. The results suggested that the activation of the SMA, at least during a simple motion used in the present study, was little influenced by whether the motion was unimanual or bimanual but instead how the bimanual motion was composed of the motion element of a single hand. The SMC activation during task C was significantly larger than that during task B, whereas hemispheric differences in the activation were not found. This indicated that the complexity of the bimanual movement also affected the SMC activation.  相似文献   

20.
Bimanual synchronization relies on the precisely coordinated interplay of both hands. It is assumed that during temporal bimanual coordination, timing signals controlling each hand might be integrated. Although a specific role of the cerebellum for this integration process has been suggested, its neural foundations are still poorly understood. Since dynamic interactions between spatially distributed neural activity are reflected in oscillatory neural coupling, the aim of the present study was to characterize the dynamic interplay between participating brain structures. More specifically, the study aimed at investigating whether any evidence for the integration of bilateral cerebellar hemispheres could be found. Seven right-handed subjects synchronized bimanual index finger-taps to a regular pacing signal. We recorded continuous neuromagnetic activity using a 122-channel whole-head neuromagnetometer and surface EMGs of the first dorsal interosseus (FDI) muscle of both hands. Coherence analysis revealed that an oscillatory network coupling at 8-12 Hz subserves task execution. The constituents are bilateral primary sensorimotor and premotor areas, posterior-parietal and primary auditory cortex, thalamus and cerebellum. Coupling occurred at different cortical and subcortical levels within and between both hemispheres. Coupling between primary sensorimotor and premotor areas was observed directly and indirectly via the thalamus. Coupling direction suggests that information was integrated within the left premotor cortex corroborating a specific role of the left premotor cortex for motor control in right-handers. Most importantly, our data indicate strong coupling between both cerebellar hemispheres substantiating the hypothesis that cerebellar signals might be integrated during task execution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号