首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AMP-activated protein kinase (AMPK) is regulated by various cellular stresses. Vascular endothelial growth factor (VEGF), a key regulator of angiogenesis, is also upregulated by several stress-inducible factors such as hypoxia and stimulation by cytokines and growth factors. Here, we investigated whether AMPK signaling in muscle has a role in regulating VEGF-mediated angiogenic processes. AICAR stimulated VEGF mRNA and protein levels in C2C12 myotube cultures. Transduction with dominant-negative AMPK abolished AICAR-induced VEGF expression at both steady state mRNA and protein levels. AICAR increased VEGF mRNA stability without affecting VEGF promoter activity. AICAR also stimulated p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation. Activation of p38 MAPK was suppressed by transduction with dominant-negative AMPK, suggesting that AMPK is upstream of p38 MAPK. The p38 MAPK inhibitor SB203580 blocked AICAR-induced increase in VEGF mRNA and protein levels, indicating that AICAR-mediated VEGF induction is dependent on p38 MAPK signaling. AICAR treatment increased VEGF expression and accelerated angiogenic repair of ischemic hindlimbs in mice in an AMPK-dependent manner. These data indicate that AMPK-p38 MAPK signaling cascade can increase VEGF production in muscle and promote angiogenesis in response to ischemic injury.  相似文献   

2.
The existing literature indicates a crucial role of p38 MAP (mitogen-activated protein) kinase (p38MAPK) and its downstream target MAPKAP kinase 2 (MK2) in ischemic preconditioning (IPC). Accordingly, deletion of MK2 gene should abolish the cardioprotective ability of IPC. Interestingly, we were able to partially precondition the hearts from MK2(-/-) knockout mice suggesting the existence of an as yet unknown alternative downstream target of p38MAPK. A recent study from our laboratory also determined a crucial role of CREB (cyclic AMP response element binding protein) in IPC. Since CREB is a downstream target of MSK-1 (mitogen- and stress-activated protein kinase-1) situated at the crossroad of ERK (extracellular receptor kinase) and p38MAPK signaling pathways, we reasoned that MSK-1 could be a downstream molecular target for p38MAPK and ERK signaling in the IPC hearts. To test this hypothesis, the rat hearts were subjected to IPC by four cyclic episodes of 5 min ischemia and 10 min reperfusion. As expected, IPC induced the activation of ERK1/2, p38MAPK, MK2 and HSP (heat shock protein) 27 as evidenced by their increased phosphorylation; and the inhibition of p38MAPK with SB203580 almost completely, and the inhibition of ERK1/2 with PD098059 partially, abolished cardioprotective effects of IPC. Inhibition of MSK-1 with short hairpin RNA (shRNA) also abolished the IPC-induced cardioprotection. SB203580 partially blocked the effects of MSK-1 suggesting that MSK-1 sits downstream of p38MAPK. shRNA-MSK-1 blocked the contribution of both p38MAPK and ERK1/2 as it is uniquely situated at the downstream crossroad of both of these MAP kinases. Although MSK-1 sits downstream of both ERK1/2 and p38MAPK, ERK1/2 activation appears to play less significant role compared to p38MAPK, since its inhibition blocked MSK activation only partially. Consistent with these results, shRNA-MSK-1 blocked the partial PC in MK2(-/-) hearts, and in combination with SB203580, completely abolished the PC effects in the wild-type hearts. The IPC-induced survival signaling was almost completely inhibited with SB203580, and only partially with PD 098059 as evidenced from the inhibition patterns of IPC induced activation of CREB, Akt and Bcl-2. Again SB203580 alone or in combination with shRNA-MSK-1 inhibited IPC induced survival signal comparatively, suggesting that MSK-1 exists downstream of p38MAPK. Taken together, these results indicate for the first time MSK-1 as an alternative (other than MK2) downstream target for p38MAPK, which also transmits survival signal through the activation of CREB.  相似文献   

3.
4.
We investigated the mechanism underlying vascular endothelial growth factor (VEGF) synthesis stimulated by prostaglandin E1 (PGE1) in osteoblast-like MC3T3-E1 cells. PGE1 induced the phosphorylation of both p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase. SB203580, a specific inhibitor of p38 MAP kinase, inhibited the PGE1-stimulated VEGF synthesis as well as PGE1-induced phosphorylation of p38 MAP kinase. PD98059, an inhibitor of the upstream kinase that activates p44/p42 MAP kinase, which reduced the PGE1-induced phosphorylation of p44/p42 MAP kinase, had little effect on the VEGF synthesis stimulated by PGE1. AH-6809, an antagonist of the subtypes of the PGE receptor, EP1 and EP2, or SC-19220, an antagonist of EP1 receptor, did not inhibit the PGE1-induced VEGF synthesis. H-89, an inhibitor of cAMP-dependent protein kinase, and SQ22536, an inhibitor of adenylate cyclase, reduced the VEGF synthesis induced by PGE1. Cholera toxin, an activator of G(s), and forskolin, an activator of adenylate cyclase, induced VEGF synthesis. SB203580 and PD169316, another specific inhibitor of p38 MAP kinase, reduced the cholera toxin-, forskolin- or 8bromo-cAMP-stimulated VEGF synthesis. However, PD98059 failed to affect the VEGF synthesis stimulated by cholera toxin, forskolin or 8-bromoadenosine-3',5'-cyclic monophosphate (8bromo-cAMP). SB203580 reduced the phosphorylation of p38 MAP kinase induced by forskolin or 8bromo-cAMP. These results strongly suggest that p44/p42 MAP kinase activation is not involved in the PGE1-stimulated VEGF synthesis in osteoblasts but that p38 MAP kinase activation is involved.  相似文献   

5.
The rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons are located, is a central site via which angiotensin II (Ang II) elicits its pressor effect. We tested the hypothesis that NADPH oxidase-derived superoxide anion (O2*-) in the RVLM mediates Ang II-induced pressor response via activation of mitogen-activated protein kinase (MAPK) signaling pathways. Bilateral microinjection of Ang II into the RVLM resulted in an angiotensin subtype 1 (AT1) receptor-dependent phosphorylation of p38 MAPK and extracellular signal-regulated protein kinase (ERK)1/2, but not stress-activated protein kinase/Jun N-terminal kinase (SAPK/JNK), in the ventrolateral medulla. The Ang II-induced p38 MAPK or ERK1/2 phosphorylation was attenuated by application into the RVLM of a NADPH oxidase inhibitor, diphenyleneiodonium chloride (DPI), an antisense oligonucleotide that targets against p22phox or p47phox subunit of NADPH oxidase mRNA, or the superoxide dismutase mimetic tempol. DPI or antisense p22phox or p47phox oligonucleotide treatment also attenuated the AT1 receptor-dependent increase in O2*- production in the ventrolateral medulla elicited by Ang II at the RVLM. Functionally, Ang II-elicited pressor response in the RVLM was attenuated by DPI, tempol, or a p38 MAPK inhibitor, SB203580. The AT1 receptor-mediated enhancement of the frequency of glutamate-sensitive spontaneous excitatory postsynaptic currents induced by Ang II in RVLM neurons was also abolished by SB203580. These results suggest that NADPH oxidase-derived O2*- underlies the activation of p38 MAPK or ERK1/2 by Ang II in the ventrolateral medulla. Furthermore, the p38 MAPK signaling pathway may mediate Ang II-induced pressor response via enhancement of presynaptic release of glutamate to RVLM neurons.  相似文献   

6.
目的:探讨表皮生长因子(epidermal growth factor,EGF)对人食管腺癌SEG-1细胞尿激酶型纤溶酶原激活物(urokinase-type plasminogen activator,u-PA)mRNA和蛋白表达的影响及p38MAPK信号转导通路在其中的作用.方法:以相同浓度的EGF(100g/L)按时间梯度刺激SEG-1细胞,应用Western blot法测定各时间点总p38MAPK蛋白、磷酸化p38MAPK蛋白、u-PA蛋白表达,并应用RT-PCR方法检测各时间点u-PAmRNA表达.用p38MAPK特异抑制剂SB203580预处理细胞后,观察上述指标变化.结果:EGF可明显增强SEG-1细胞(u-PA)mRNA和蛋白的表达,并可激活p38MAPK蛋白的磷酸化,具有时间依赖性.SB203580能明显抑制EGF诱导的p38MAPK蛋白的磷酸化,用其阻断p38MAPK信号转导通路后,EGF对u-PAmRNA和蛋白表达的诱导作用受到显著抑制,并且具有剂量依赖性.结论:EGF可通过p38MAPK信号转导通路诱导SEG-1细胞表达u-PA.  相似文献   

7.
8.
OBJECTIVE: We have previously shown that p38 mitogen-activated protein kinase (MAPK) regulates, at least in part, hyperosmolarity induced interleukin (IL)-8 expression in human bronchial epithelial cells (BEC). In the previous study, hyperosmolarity also activated c-Jun-NH2-terminal kinase (JNK); however, the role of the JNK signalling pathway has not been determined. In the present study, we examined the role of the JNK signalling pathway in hyperosmolarity induced IL-8 and RANTES production by BEC using the novel inhibitor of the JNK signalling pathway CEP 11004 in order to clarify these issues. METHODS: Bronchial epithelial cells that had been pre-incubated with SB 203580, CEP 11004 or a combination of these were exposed to a hyperosmolar medium and then the p38 MAPK and JNK phosphorylation activity in these cells and IL-8 and RANTES concentrations in the culture supernatants were determined. RESULTS: The results showed that: (i) hyperosmolarity induced the threonine and tyrosine phosphorylation of p38 MAPK and JNK; (ii) SB 203580, as the specific inhibitor of p38 MAPK activity, and CEP 11004 attenuated hyperosmolarity induced p38 MAPK and JNK activity, respectively; (iii) SB 203580 and CEP 11004, but not PD 98059, partially attenuated IL-8 and RANTES production; and (iv) a combination of SB 203580 and CEP 11004 attenuated IL-8 and RANTES production in an additive fashion. CONCLUSION: These results indicate that p38 MAPK and the JNK pathway regulate hyperosmolarity induced IL-8 and RANTES production by BEC.  相似文献   

9.
The objective of the study was to identify the functional outcome of intracellular versus extracellular angiotensin II-AT(1) receptor interactions in vascular cells. Rat vascular smooth muscle cell line A10 was transfected, independently and concurrently, with plasmids encoding fluorescent fusion proteins of rat angiotensin II (pECFP/AII, encodes AII fused downstream of enhanced cyan fluorescent protein) and the rat AT(1a) receptor (pAT(1)R/EYFP, encodes the rat AT(1a) receptor fused upstream of enhanced yellow fluorescent protein). The AII fluorescent fusion protein possesses no secretory signal peptide and deconvolution microscopy established that is maintained within these cells predominantly in the nucleus. AT(1)R/EYFP was absent from the nucleus when expressed exclusively or in untreated cells but accumulated in the nucleus following exogenous AII treatment or when co-expressed with ECFP/AII. Furthermore, expression of ECFP/AII stimulated proliferation of A10 vascular smooth muscle cells (VSMCs) 1.6-fold (P < 0.05). Transfection of a control, pECFP/AII(C) (which encodes a scrambled AII peptide fused to ECFP) had no growth effect. In light of the intracellular growth effects of ECFP/AII, we sought to elucidate the underlying signaling pathways. We found that extracellular AII treatment of A10 cells activated cAMP response element-binding protein (CREB) as determined by one-hybrid assays and immunoblots. Expression of intracellular ECFP/AII similarly activated CREB. However, intracellular and extracellular AII activated CREB through different phosphorylation pathways. Exogenous AII treatment of A10 cells activated p38MAPK and ERK1/2 phosphorylation as determined by Western blot analyses and one-hybrid assays. The p38MAPK inhibitor, SB203580, and the ERK kinase inhibitor, PD98059 each partially inhibited exogenous AII-conferred CREB activation confirming that p38MAPK and ERK1/2 mediate CREB phosphorylation in this system. In contrast, expression of ECFP/AII (intracellular AII) in A10 VSMCs activated p38MAPK but not ERK1/2; inhibition of p38MAPK by SB203580 inhibited intracellular AII-induced CREB phosphorylation. In summary, extracellular AII stimulates at least one pathway common to intracellular AII. This common pathway, in the case of exogenous AII, likely reflects intracellular signaling following internalization of receptor-ligand complex. Extracellular AII also stimulates a unique pathway, apparently reflecting interaction with plasma membrane-associated AT(1)R.  相似文献   

10.
We previously reported that prostaglandin E1 (PGE1) activates both p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase via cAMP-dependent protein kinase in osteoblast-like MC3T3-E1 cells, and that p38 MAP kinase but not p42/p44 MAP kinase is involved in PGE1-induced synthesis of vascular endothelial growth factor (VEGF). In the present study, we investigated the involvement of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in the PGE1-induced VEGF synthesis in MC3T3-E1 cells. PGE1 induced the phosphorylation of SAPK/JNK. SP600125, a specific inhibitor of SAPK/JNK, markedly reduced the PGE1-induced VEGF synthesis. Forskolin, a direct activator of adenylyl cyclase, elicited the phosphorylation of SAPK/JNK, and 8bromo-cAMP, a plasma membrane-permeable cAMP analogue-stimulated VEGF synthesis was significantly reduced by SP600125. SP600125 suppressed the PGE1-induced phosphorylation of SAPK/JNK without affecting the phosphorylation of p38 MAP kinase induced by PGE1. The phosphorylation of c-Jun induced by PGE1 was also inhibited by SP600125. SB203580, a p38 MAP kinase inhibitor, failed to reduce the PGE1 induced phosphorylation of SAPK/JNK. A combination of SP600125 and SB203580 suppressed the PGE1-stimulated VEGF synthesis in an additive manner. These results strongly suggest that PGE1 activates SAPK/JNK in osteoblasts, and that SAPK/JNK plays a part in PGE1-induced VEGF synthesis.  相似文献   

11.
BACKGROUND: Crohn's disease is characterised by a chronic relapsing inflammation of the bowel in which proinflammatory cytokines play an important perpetuating role. Mitogen activated protein kinase p38 (p38 MAPK) has been established as a major regulator of the inflammatory response, especially with regard to production of proinflammatory cytokines, but its role in inflammatory bowel disease is unexplored. In this paper we describe the effects of a specific p38 MAPK inhibitor, SB 203580, in trinitrobenzene sulphonic acid (TNBS) induced colitis in mice. RESULTS: SB 203580 had a dichotomal effect in TNBS mice. Weight loss of TNBS mice treated with SB 203580 was significantly worse and colon weight on sacrifice was significantly increased in MAPK inhibitor treated TNBS mice (229.2 mg and 289.1 mg, respectively). However, the total number of cells in the caudal lymph node decreased to 188.8 x 10(4) cells in SB 203580 treated TNBS mice compared with 334 x 10(4) cells in vehicle treated mice. CD3/CD28 double stimulated caudal lymph node cells of SB 203580 treated mice showed decreased interferon gamma production but increased tumour necrosis factor alpha production. The concentration of interleukin 12p70 in colon homogenates was significantly decreased in SB 203580 treated mice whereas concentrations of interleukin 12p40, tumour necrosis factor alpha, and interleukin 10 were similar in vehicle and SB 203580 treated TNBS mice. CONCLUSION: Our results reveal a dichotomy in p38 MAPK action during experimental colitis.  相似文献   

12.
OBJECTIVE: Our goal was to determine the role of p38 mitogen-activated protein kinase (MAPK) signaling in fetal hemoglobin (HbF) induction. Two histone deacetylase inhibitors (HDAIs), sodium butyrate (NB), and trichostatin (TSA) and hemin were analyzed. In addition, the effect of direct activation of p38 MAPK on gamma-globin gene activity was studied. METHOD: Primary erythroid progenitors derived from peripheral blood mononuclear cell and K562 erythroleukemia cells were analyzed. Cells were grown in NB, TSA, hemin, or anisomycin either alone or in the presence of the p38 MAPK inhibitor SB203580. The effects of the various treatments on gamma-globin RNA, HbF, and phosphorylated p38 MAPK levels were measured by RNase protection assay, alkaline denaturation, and Western blot analysis, respectively. A K562 stable line overexpressing constitutively active p38 MAPK was established using MAPK kinase kinase 3 (MKK3) and MKK6, the immediate upstream activators of p38. The direct effect of p38 MAPK overexpression on gamma-globin mRNA synthesis was analyzed. RESULTS: NB and TSA activated p38 MAPK and increased gamma-globin mRNA levels in K562 cells and primary erythroid progenitors. Pretreatment with SB203580 blocked p38 MAPK and gamma-globin gene activation. In contrast, no change in p38 activity was observed with hemin inductions. Direct activation of p38 by anisomycin or constitutive overexpression also increased gamma-globin mRNA in the absence of HbF inducers in wild-type K562 cells and in the MKK stable lines. CONCLUSION: This study supports a novel role for p38 MAPK in gamma-globin regulation in human erythroid progenitors.  相似文献   

13.
Thrombin has been implicated in the development of atherosclerosis and restenosis, in which migration of vascular smooth muscle cells (VSMC) is a crucial event. Thrombin-stimulated VSMC migration is associated with increased generation of reactive oxygen species (ROS), activation of mitogen-activated protein kinases (MAPKs), and production of growth factors and chemoattractants. In this study, we examined the interrelation of these signals to determine the pathway controlling thrombin-directed migration of human VSMC. Our results show that thrombin stimulated the production of ROS and activation of p38 MAPK. ROS were required for thrombin-induced VSMC migration since both generation of ROS and cell migration were significantly attenuated by inhibitors of NAD(P)H oxidase, diphenyleneiodonium (DPI) and apocynin (Apo.), and by the hydrogen peroxide scavenger, catalase (Cat.). Activation of p38 MAPK by thrombin was inhibited by DPI, Apo. and Cat., indicating ROS are used as messengers for activating this kinase. p38 MAPK is an important step since SB 203580, a selective inhibitor of p38 MAPK, suppressed the cell migration induced by thrombin. Furthermore, thrombin increased the expression of vascular endothelial growth factor (VEGF), a chemoattractant for VSMC, and this expression was inhibited by DPI, Apo., Cat. and SB 203580. Addition of anti-VEGF antibody significantly attenuated thrombin-induced migration. Collectively, the data presented here show that thrombin has stimulated VSMC migration and VEGF expression through an ROS-sensitive p38 MAPK pathway. VEGF synthesized and released by the cell served as a secondary mediator in thrombin-directed migration.  相似文献   

14.
15.
The goal of this study was to evaluate the role of mitogen-activated protein kinase (MAPK) in cytochrome P4502E1 (CYP2E1) potentiation of lipopolysaccharide or tumor necrosis factor alpha (TNF-alpha)-induced liver injury. Treatment of C57/BL/6 mice with pyrazole (PY) plus lipopolysaccharide (LPS) induced liver injury compared with mice treated with PY or LPS alone. The c-Jun N-terminal kinase (JNK) inhibitor SP600125 or p38 MAPK inhibitor SB203580 prevented this liver injury. PY plus LPS treatment activated p38 MAPK and JNK but not extracellular signal-regulated kinase (ERK). PY plus LPS treatment triggered oxidative stress in the liver with increases in lipid peroxidation, decrease of glutathione (GSH) levels, and increased production of 3-nitrotyrosine adducts and protein carbonyl formation. This oxidative stress was blocked by SP600125 or SB203580. PY plus LPS treatment elevated TNF-alpha production, and this was blocked by SP600125 or SB203580. Neither SP600125 nor SB203580 affected CYP2E1 activity or protein levels. Treating C57/BL/6 mice with PY plus TNF-alpha also induced liver injury and increased lipid peroxidation and decreased GSH levels. Prolonged activation of JNK and p38 MAPK was observed. All of these effects were blocked by SP600125 or SB203580. In contrast to wild-type SV 129 mice, treating CYP2E1 knockout mice with PY plus TNF-alpha did not induce liver injury, thus validating the role of CYP21E1 in this potentiated liver injury. Liver mitochondria from PY plus LPS or PY plus TNF-alpha treated mice underwent calcium-dependent, cyclosporine A-sensitive swelling, which was prevented by SB203580 or SP600125. CONCLUSION: These results show that CYP2E1 sensitizes liver hepatocytes to LPS or TNF-alpha and that the CYP2E1-enhanced LPS or TNF-alpha injury, oxidant stress, and mitochondrial injury is JNK or p38 MAPK dependent.  相似文献   

16.
17.
18.
目的 观察p38丝裂原活化蛋白激酶(MAPK)抑制剂SB203580阻断p36 MAPK信号通路,减少脑死亡大鼠肝脏促炎细胞因子表达的作用.方法 雄性Wistar大鼠30只,体质量180~200 g,随机分3组,每组10只.脑死亡组:诱导大鼠及死亡;脑死亡+SB203580组:大鼠脑死亡诱导成功后,经阴茎背静脉注射SB203580(10 mg/kg);两组大鼠脑死亡诱导成功,行人工呼吸6 h后,若平均动脉压大于80 mm Hg(1 mm Hg=0.133 kPa),则为脑死亡供体,获取肝脏待检.对照组:正常大鼠麻醉后取肝脏待检.逆转录-聚合酶链反应检测肝脏肿瘤坏死因子(TNF)α和白细胞介素(IL)-1β的mRNA表达,Western blot检测肝脏TNF α和IL-1 β的蛋白质表达以及磷酸化p38 MAPK的表达.多个样本间比较行One-Way ANOVA分析,SNK法行两两样本间比较.结果 脑死亡组大鼠肝脏出现p38 MAPK磷酸化,磷酸化p38 MAPK的相对表达量比对照组明显增加(0.190±0.004比0.001±0.002),差异有统计学意义(q=172.53,P<0.01);肝脏TNF α的mRNA和蛋白质表达量分别为0.670±0.012和0.240±0.003,较对照组(分别为0.130±0.013和0.001±0.002)明显增加(q值分别为123.99和243.09,P值均<0.01);肝脏IL-1 β的mRNA和蛋白质表达量分别为0.560±0.009和0.190±0.003,较对照组(分别为0.160±0.010和0.001±0.002)明显增加(q值分别为135.35和192.23,P值均<0.01).脑死亡SB203580组大鼠肝脏p38 MAPK磷酸化下降,磷酸化p38 MAPK的表达量(0.120±0.004)比脑死亡组明显下降(q=63.90,P<0.05),但仍明显高于对照组(q=108.63,P<0.01);肝脏TNF α的mRNA和蛋白质表达量分别为0.430±0.016和0.180±0.004,较脑死亡组明显下降(q值分别为55.11和61.03,P值均<0.01),但仍高于对照组(q值分别为68.89和182.06,P值均<0.01);肝脏IL-1β的mRNA和蛋白质表达量分别为0.270±0.009和0.140±0.004,较脑死亡组明显下降(q值分别为98.13和50.85,P值均<0.01),但仍高于对照组(q值分别为37.22和141.38,P值均<0.01).结论 SB203580能抑制p38 MAPK的磷酸化,阻断p38 MAPK信号通路,减少脑死亡大鼠肝脏促炎细胞因子表达,降低肝脏免疫原性.  相似文献   

19.
Angiotensin-II (Ang-II) plays a key role in myocardial hypertrophy, remodeling and failure. We investigated whether Ang-II-induced cardiomyocyte hypertrophy is dependent on WNT1 inducible signaling pathway protein 1 (WISP1), a pro growth factor. Ang-II induced hypertrophy and WISP1 expression in neonatal rat cardiomyocytes (NRCM), effects that were significantly inhibited by pre-treatment with the AT1 antagonist losartan and by WISP1 knockdown. Further, Ang-II induced WISP1 was superoxide-dependent, and inhibited by DPI, an inhibitor of NADPH oxidases, and by knockdown of NOX2. AT1 was physically associated with NOX2 both in vitro and in vivo, and Ang-II increased this interaction in vivo. Ang-II induced WISP1 expression via superoxide/Akt/GSK3β/β-catenin/TCF/LEF and by Akt-dependent CREB activation. Further, Ang-II also activated CREB via superoxide-mediated p38 MAPK and ERK activation. Continuous infusion of Ang-II for 7 days induced myocardial hypertrophy in rats, and was associated with increased Akt, p-Akt, p-p38 MAPK, p-ERK1/2, and WISP1 expression. These results demonstrate that Ang-II induced cardiomyocyte hypertrophy is mediated through AT1, NOX2 and the induction of WISP1, and may involve the direct interaction of AT1 with NOX2. Thus targeting both WISP1 and NOX2 may have a therapeutic potential in improving cardiomyocyte survival and growth following myocardial injury and remodeling. This article is part of a Special Issue entitled ‘Possible Editorial’.  相似文献   

20.
OBJECTIVE: Thyrotropin activates the cAMP pathway in thyroid cells, and stimulates cell cycle progression in cooperation with insulin or insulin-like growth factor-I. Because p38 mitogen-activated protein kinases (p38 MAPKs) were stimulated by cAMP in the FRTL-5 rat thyroid cell line, we investigated (i) the effect of the specific inhibition of p38 MAPKs on FRTL-5 cell proliferation and (ii) the mechanism of action of p38 MAPKs on cell cycle control, by studying the expression and/or the activity of several cell cycle regulatory proteins in FRTL-5 cells. METHODS: DNA synthesis was monitored by incorporation of [(3)H]thymidine into DNA and the cell cycle distribution was assessed by fluorescence-activated cell sorter analysis. Expression of cell cycle regulatory proteins was determined by Western blot analysis. Cyclin-dependent kinase 2 (Cdk2) activity associated to cyclin E was immunoprecipitated and was measured by an in vitro kinase assay. RESULTS: SB203580, an inhibitor of alpha and beta isoforms of p38 MAPKs, but not its inactive analog SB202474, inhibited DNA synthesis and the G1-S transition induced by forskolin plus insulin. SB203580 inhibited specifically p38 MAPK activity but not other kinase activities such as Akt and p70-S6 kinase. Treatment of FRTL-5 cells with SB203580 decreased total and cyclin E-associated Cdk2 kinase activity stimulated with forskolin and insulin. However, inhibition of p38 MAPKs by SB203580 was without effect on total cyclin E and Cdk2 levels. The decrease in Cdk2 kinase activity caused by SB203580 treatment was not due to an increased expression of p21(Cip1) or p27(Kip1) inhibitory proteins. In addition, SB203580 affected neither Cdc25A phosphatase expression nor Cdk2 Tyr-15 phosphorylation. Inhibition of p38 MAPKs decreased Cdk2-cyclin E activation by regulating the subcellular localization of Cdk2 and its phosphorylation on Thr-160. CONCLUSIONS: These results indicate that p38 MAPK activity is involved in the regulation of cell cycle progression in FRTL-5 thyroid cells, at least in part by increasing nuclear Cdk2 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号