首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we investigate the structural and photoluminescence properties of aqueous solution-processed ZnO/GaAs and ZnO/porous GaAs films. According to X-ray diffraction (XRD) analysis, a ZnO film deposited on porous GaAs shows a monocrystalline structure with a-axis orientation, which is desirable for light emitting applications. The results obtained from atomic force microscopy (AFM) data confirm that a porous GaAs substrate is beneficial to deposit a uniform array of ZnO nanostructures with sizes down to 12 nm and a relatively low surface roughness (2.6 nm). Under excitation wavelength λexc = 375 nm, ZnO/GaAs and ZnO/porous GaAs films showed emissions in most of the visible spectral region (450–750 nm). Our study reveals that changing the wavelength of the excitation UV radiation makes it possible to control the photoluminescence (PL) properties of ZnO films. Enhancement of the PL intensity was noticed in the UV and visible spectral regions when ZnO is deposited on porous GaAs, which is promising for optoelectronic device applications.

In this paper, we investigate the structural and photoluminescence properties of aqueous solution-processed ZnO/GaAs and ZnO/porous GaAs films.  相似文献   

2.
Photocatalysts based on zinc hydroxide and a solid solution of CdS and ZnS were prepared via the precipitation method and used for photocatalytic hydrogen production from aqueous solutions of inorganic (Na2S/Na2SO3) and organic (ethanol) sacrificial agents. The photocatalysts were tested in cyclic experiments for hydrogen evolution and studied using X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy, high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) techniques. Different transformations of the β-Zn(OH)2 co-catalyst were observed in the presence of inorganic and organic sacrificial agents; namely, ZnS was formed in Na2S/Na2SO3 solution, whereas the formation of ε-Zn(OH)2 was detected in solution with ethanol. The composite Zn(OH)2/Cd1−xZnxS photocatalysts have great potential in various photocatalysis processes (e.g., hydrogen production, CO2 reduction, and the oxidation of organic contaminants) under visible light.

The nature of the sacrificial agent affects the transformations of a Zn(OH)2 co-catalyst during photocatalytic hydrogen production.  相似文献   

3.
To compare extra-renal 1,25(OH)2D3 production in different types of granulomatous disease, and to identify the cell types responsible, we have evaluated the conversion of 25(OH)D3 in 1,25(OH)2D3 by uncultured cells recovered by bronchoalveolar lavage and blood mononuclear cells from normocalcemic patients with sarcoidosis and tuberculosis. 1,25(OH)2D3 was produced both by lavage cells (12/12 tuberculosis patients, 2/6 sarcoidosis patients) and blood mononuclear cells (3/5 tuberculosis patients, 0/3 sarcoidosis patients) from patients but not controls, but significantly greater amounts were produced by lavage cells from tuberculosis patients than those of sarcoidosis patients (P less than 0.001). 1,25(OH)2D3 production by lavage cells from tuberculosis patients correlated with the number of CD8+ T lymphocytes present but not other cell types. T lymphocytes appeared to be an important source of 1,25(OH)2D3 production, since purified T lymphocytes from all patients with tuberculosis produced 1,25(OH)2D3, and 1,25(OH)2D3 production by these cells correlated closely with that produced by unseparated lavage cells. Because 1,25(OH)2D3 can improve the capacity of macrophages to kill mycobacteria, our results support the conclusion that macrophage-lymphocyte interactions, mediated at least in part by 1,25(OH)2D3, may be an important component of a successful antituberculous immune response.  相似文献   

4.
Mercury (Hg) contamination of wastewater streams as a result of anthropogenic activities is a great threat to living organisms due to its acute toxicity. Therefore, current research is focused on the development of effective remediation technologies to protect human health and the environment. In this study, a novel chemical modification route was applied for the multi-functionalization of biochar in order to make it more efficient and selective for Hg(ii) removal from aqueous solution. The amino-grafted modified biochar (AMBC) having multifunctional groups on its surface was successfully synthesized through the activation of excessively available carboxylic groups (–COOH) on pre-oxidized biochar (BC–COOH). The maximum Hg(ii) adsorption capacity for the optimized amino-BC2 sample was 14.1 mg g−1, which was almost twice as that for pristine biochar (BC, 7.1 mg g−1). SEM, FTIR, and XPS techniques were applied for the confirmation of chemically grafted amino groups as well as the presence of residual –COOH groups on the biochar surface. Based on the batch adsorption data, adsorption kinetics and isotherms as well as XPS results, it was concluded that the Hg(ii) removal mechanism was purely driven by chemisorption such as electrostatic interaction, surface complexation, ion exchange with no precipitation and crystalline material being adsorbed on the adsorbent surface. These research findings not only provide a suitable adsorbent for decontamination of Hg(ii) from aqueous solution but also offer a new route for the multi-functionalization of biochar in order to make environment-friendly and inexpensive adsorbents.

Mercury (Hg) contamination of wastewater streams as a result of anthropogenic activities is a great threat to living organisms due to its acute toxicity.  相似文献   

5.
In order to remove hexavalent chromium (Cr(vi)) efficiently and simplify the adsorbent preparation process, we employed a single step method to prepare a new biochar supported manganese sulfide material. The nanoscale MnS particles were highly soldered on the biochar support surface, and this adsorbent displayed the effective removal of Cr(vi) (98.15 mg L−1) via synergistic effect between adsorption and reduction/precipitation under weak acid conditions (pH = 5.0–6.0). The adsorption kinetic data were described well by the pseudo second-order kinetic model, suggesting that the reaction process was a chemisorption process. The adsorption isotherm data were described well by the Redlich–Peterson model, further suggesting that this reaction was a hybrid chemical reaction-sorption process. In addition, the Dubinin–Radushkevich isotherm model with 8.28, 8.57, and 12.91 kJ mol−1 adsorption energy also suggests that it was a chemisorption process. The simple and eco-friendly preparation process, low-cost, and the high removal efficiency could make it a promising material for the purification of Cr(vi)-contaminated wastewater.

In order to remove hexavalent chromium (Cr(vi)) efficiently and simplify the adsorbent preparation process, we employed a single step method to prepare a new biochar supported manganese sulfide material.  相似文献   

6.
Recent advancements in electrode design are substantially linked to state-of-the-art nanomaterial fabrications. Herein, we report a simple one-pot hydrothermal synthesis of Cd(OH)2 with a platelet-like morphology, which was subsequently annealed at relatively high temperatures to produce a CdO/Cd(OH)2 nanocomposite for the first time. It was found that the control of thermal treatment allowed tunable charge transport across the nanometre scale due to the presence of CdO and Cd(OH)2 mixed nanocrystals. The CdO/Cd(OH)2 nanocrystals offer interesting prospects for the electrocatalytic oxidation of nitrite ions and for supercapacitor applications. The CdO/Cd(OH)2 nanocomposite was blended with a trace amount of gold NPs for enhancing the electrochemical conductivity and electrocatalytic capability for nitrite oxidation with a sensitivity of 32.9 μA mM−1. It afforded a promising electrocatalyst in a wide concentration range up to 10 mM with a low detection limit of 0.87 μM. Furthermore, the CdO/Cd(OH)2 nanocomposite electrode was showed to be a highly active and stable supercapacitor, achieving a high specific capacitance in an alkaline medium of about 145 F g−1 at a discharge current of 2.0 A g−1. These results have revealed that the presence of mixed oxide/hydroxide nanocrystals in nanoscale dimensions will be very interesting for various electrochemical applications and provide for a new class of nanodevices based on electrochemistry with unique capabilities.

A simple fabrication of CdO/Cd(OH)2 nanocomposites was developed and explored for electrochemical-based devices. The nanocomposite is shown to be a sensitive electrode material for nitrite determination in water samples as well as a promising supercapacitor.  相似文献   

7.
Oxidation of As(iii) to As(v) is an effective way to improve the performance of most arsenic removal technologies. In this study, a new alternative biosorbent, TiO2-loaded biochar prepared by waste Chinese traditional medicine dregs (TBC) was applied in remediation for As(iii) from aqueous solution. Compared with unmodified biochar, the specific surface areas and total pore volumes of TBC increased while the average aperture decreased due to the loading of nano-TiO2. The X-ray diffraction (XRD) of TBC confirmed that the precipitated titanium oxide was primarily anatase. pH did not have a significant effect on the adsorption capacity at 10 mg L−1 As(iii) in suspension with a pH ranging from 2 to 10. Adsorption kinetics data were best fitted by the pseudo-second-order model (R2 > 0.999). The Sips maximum adsorption capacity was 58.456 mg g−1 at 25 °C, which is comparable with other adsorbents reported in previous literature. The Gibbs free energy (ΔG) of As(iii) adsorption was negative, indicating the spontaneous nature of adsorption. The results of free radical scavenging and N2 purging experiments indicated that O2 acted as an electron accepter and O2˙ dominated the oxidation of As(iii). The oxidation of As(iii) obviously affected the adsorption capacity for As(iii) by TBC. X-ray photoelectron spectroscopy (XPS) studies showed that As(iii) and As(v) existed on the surface of TBC, suggesting that the oxidation of As(iii) occurred. TBC played multiple roles for As(iii), including direct adsorption and photocatalytic oxidation adsorption. Regeneration and stability experiments showed that TBC was an environment-friendly and efficient adsorbent for As(iii) removal.

TiO2-loaded biochar prepared by waste Chinese traditional medicine dregs (TBC) was applied in remediation for As(iii) from aqueous solution.  相似文献   

8.
Polydopamine/zirconium(iv) iodate was prepared by incorporating polydopamine into zirconium iodate gel and studied as an effective adsorbent for ampicillin. In order to characterize the prepared composite, FTIR, XRD, TGA-DTA, SEM and TEM were used. The effects of experimental variables on ampicillin removal were examined using response surface methodology. The optimum conditions for ampicillin removal were 7, 130 min, 20 mg/20 mL and 50 mg L−1 for pH, contact time, adsorbent dose and initial ampicillin concentration, respectively. Under the optimum conditions, the maximum ampicillin removal percentage was found to be 99.12%. The Langmuir isotherm and pseudo-second-order kinetic models explained the removal process more appropriately. The maximum adsorption capacity at 303 K was 100.0 mg g−1. Thermodynamic study revealed that the ampicillin adsorption was spontaneous and endothermic in nature. The reusability of the prepared material was also explored.

Polydopamine/zirconium(iv) iodate was prepared by incorporating polydopamine into zirconium iodate gel and studied as an effective adsorbent for ampicillin.  相似文献   

9.
Phosphate-modified baker''s yeast (PMBY) was prepared, and used as a novel bio-sorbent for the adsorption of Pb2+ from aqueous solution. The influencing factors, absorption isotherms, kinetics, and mechanism were investigated. The scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) characterization and elemental analysis of PMBY showed that phosphate groups were successfully grafted onto the surface of yeast. The kinetic studies suggested that the adsorption process followed a pseudo-second-order chemisorption. The adsorption process of Pb2+ using PMBY was spontaneous and endothermic. Furthermore, the adsorption of Pb2+ on PMBY can rapidly achieve adsorption equilibrium (in just 3 min), and the maximum adsorption capacity of Pb2+ on PMBY was found to be 92 mg g−1 at 30 °C, which was about 3 times that of the pristine baker''s yeast. The suggested mechanism for Pb2+ adsorption on PMBY was based upon ion-exchange, electrostatic interaction and chelation between the phosphate groups and Pb2+. However, compared with the pristine baker''s yeast, the higher capacity and rapid adsorption of PMBY for Pb2+ was mainly due to the chelation and electrostatic interactions between the phosphate groups and Pb2+. In addition, the regeneration experiments indicated that the PMBY was easily recovered through desorption in 0.01 M HCl, and that PMBY still exhibited 90.77% of the original adsorption capacity for Pb2+ after five regeneration cycles. These results showed the excellent regeneration capability of PMBY for Pb2+ adsorption. PMBY has shown significant potential for the removal of heavy metals from aqueous solution due to its rapid adsorption, high-capacity and facile preparation.

Phosphate-modified baker''s yeast (PMBY) was used as a novel bio-sorbent for the adsorption of Pb2+ from aqueous solution.  相似文献   

10.
Ethylene vinyl alcohol (EVOH) nanofiber membranes were prepared by melt-blending extrusion with cellulose acetate butyrate ester (CAB) as the matrix and a high-speed flow deposition process. Then, aminated-EVOH (l-Lys/EVOH, Cy/l-Lys/EVOH and DETA/EVOH) nanofiber membranes were prepared for hexavalent chromium [Cr(vi)] removal by facile chemical modification on the surface of EVOH nanofiber membranes. Scanning electron microscopy (SEM), Fourier transform-infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were carried out to test the morphology and structure of aminated-EVOH nanofiber membranes. Adsorption experiments suggested that amination was beneficial to adsorption, and the optimal pH for prepared membranes to Cr removal was 2.0. Adsorption kinetics analysis revealed that the adsorption process was successfully fitted with a Pseudo-second-order model. The Freundlich isothermal model well described the adsorption isotherm data. A thermodynamic study suggested that the adsorption process was endothermic and spontaneous. Aminated-EVOH nanofiber membranes exhibited excellent reusability for Cr removal. The Cr adsorption efficiency of DETA/EVOH nanofiber membranes retained up to 98.73% of the initial adsorption after 6 successive adsorption–desorption cycles.

Aminated-ethylene vinyl alcohol (l-Lys/EVOH, Cy/l-Lys/EVOH and DETA/EVOH) nanofiber membranes were prepared for hexavalent chromium [Cr(vi)] removal by facile chemical modification on the surface of EVOH nanofiber membranes.  相似文献   

11.
Physical hydrogels prepared from partially deacetylated chitin nanofibers/nanowhiskers (DEChNs) were prepared and evaluated as a new adsorbent for Reactive Blue 19 (RB19) solutions. The effects of pH, initial dye concentration, contact time and temperature were investigated. The optimum pH value for the adsorption experiments was found to be 1.0; as pH increases, the dye adsorption capacity decreases gradually. The adsorption of RB19 onto partially deacetylated chitin nanofiber-/nanowhisker-based hydrogels (DEChNs-Gels) was relatively fast, as the equilibrium could be reached in almost 20 min. The maximum adsorption capacity was found to be 1331 mg g−1 at pH = 1 (degree of deacetylation (DDA) = 23%, dye concentration = 1000 mg L−1), considering the practical applications, the adsorption capacity in pH = 5 (838 mg g−1) was believed to have more practical significance. A pseudo-second-order kinetics model agreed very well with the experimental results. Equilibrium data also fitted well to the Freundlich adsorption isotherm model in this study. The DEChNs-Gels exhibited a high efficiency for removing RB19 from aqueous solutions as a result of their nanofibrillar network and excellent pore structure accompanied by the presence of amino groups. Even when the DDA was lowered to 15%, the adsorption capacity reached 940 mg g−1 due to its nanostructural assembly of nanofibers/nanowhiskers, which showed great advantages compared to highly deacetylated chitosan-based adsorbents (DDA > 70%). Considering the issue of environmental protection and adsorption efficiency, DEChNs-Gels have become a potential substitute for chitosan-based adsorbents due to the milder deacetylation process and superior performance, making this material an attractive adsorbent for textile dyes.

Physical hydrogels prepared from partially deacetylated chitin nanofibers/nanowhiskers (DEChNs) were prepared and evaluated as a new adsorbent for Reactive Blue 19 (RB19) solutions.  相似文献   

12.
The effective and selective removal of heavy metal ions from sewage is a major challenge and is of great significance to the treatment and recovery of metal waste. Herein, a novel magnetic lignin-based adsorbent L@MNP was synthesized by a thiol–ene click reaction under ultraviolet (UV) light irradiation. Multiple characterization techniques, including Fourier transform infrared (FT-IR) spectrometry, X-ray diffraction (XRD), elemental analysis, vibrating sample magnetometry (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), confirmed the formed nano-morphology and structure of L@MNP. The effects of pH, contact time, initial metal concentration and temperature on the batch adsorption of Pb(ii) by L@MNP were investigated. Due to the existence of sulfur and oxygen-containing sites, the maximum adsorption capacity of L@MNP for Pb(ii) could reach 97.38 mg g−1, while the adsorption equilibrium was achieved within 30 min. The adsorption kinetics and isotherms were well described by the pseudo-second-order model and Langmuir model, respectively, suggesting a chemical and monolayer adsorption process. In addition, L@MNP showed a high adsorption selectivity (kPb = 0.903) toward Pb(ii) in the presence of other co-existing metal ions. The experimental results also revealed that L@MNP displayed structural stability, ease of recovery under an external magnetic field, and acceptable recyclability after the fifth cycle. Considering its facile preparation, low cost and high adsorption efficiency, the developed L@MNP adsorbent demonstrated great potential in removing heavy metal ions from wastewater.

The effective and selective removal of heavy metal ions from sewage is a major challenge and is of great significance to the treatment and recovery of metal waste.  相似文献   

13.
The structural evolution of a sodium carbonate activated slag cement blended with varying quantities of Mg(OH)2 was assessed. The main reaction products of these blended cements were a calcium-sodium aluminosilicate hydrate type gel, an Mg-Al layered double hydroxide with a hydrotalcite type structure, calcite, and a hydrous calcium aluminate phase (tentatively identified as a carbonate-containing AFm structure), in proportions which varied with Na2O/slag ratios. Particles of Mg(OH)2 do not chemically react within these cements. Instead, Mg(OH)2 acts as a filler accelerating the hardening of sodium carbonate activated slags. Although increased Mg(OH)2 replacement reduced the compressive strength of these cements, pastes with 50 wt% Mg(OH)2 still reached strengths of ∼21 MPa. The chemical and mechanical characteristics of sodium carbonate activated slag/Mg(OH)2 cements makes them a potentially suitable matrix for encapsulation of high loadings of Mg(OH)2-bearing wastes such as Magnox sludge.

Novel cements can contain up to 50 wt% Mg(OH)2, offering a new route to immobilisation of this nuclear waste constituent.  相似文献   

14.
A La-based adsorbent was prepared with La(NO3)3·6H2O, 2-methylimidazole and DMF via amide-hydrolysis and used for fluoride decontamination from aqueous water. The obtained adsorbent was lanthanum methanoate (La(COOH)3). The effects of pH value, initial F concentration and interfering ions on defluoridation properties of as-prepared La(COOH)3 were assessed through batch adsorption tests. The adsorption kinetics, isotherm models and thermodynamics were employed to verify the order, nature and feasibility of La(COOH)3 towards fluoride removal. The results imply that La(COOH)3 is preferable for defluoridation over a wide pH range of 2 to 9 without interference. Simultaneously, the defluoridation process of La(HCOO)3 accords to the pseudo-second order model and Langmuir isotherm, revealing chemical adsorption is the main control step. The maximum fluoride capture capacities of La(COOH)3 at 30, 40 and 50 °C are 245.02, 260.40 and 268.99 mg g−1, respectively. The mechanism for defluoridation by La(COOH)3 was revealed by PXRD and XPS. To summarize, the as-synthesized La based adsorbent could serve as a promising adsorbent for defluoridation from complex fluoride-rich water.

A La-based adsorbent was prepared with La(NO3)3·6H2O, 2-methylimidazole and DMF via amide-hydrolysis and used for fluoride decontamination from aqueous water.  相似文献   

15.
16.
Spores of Aspergillus niger (denoted as A. niger) were used as a novel biosorbent to remove hexavalent chromium from aqueous solution. The effects of biosorbent dosage, pH, contact time, temperature and initial concentration of Cr(vi) on its adsorption removal were examined in batch mode. The Cr(vi) uptake capacity increased with an increase in Cr(vi) concentration until saturation, which was found to be about 97.1 mg g−1 at pH 2.0, temperature of 40 °C, adsorbent dose of 2.0 g L−1 and initial concentration of 300 mg L−1. Scanning electron microscopy, energy dispersive X-ray spectroscopy, field-emission transmission electron microscopy (FETEM), XPS and Fourier-transform infrared spectroscopy were applied to study the microstructure, composition and chemical bonding states of the biomass adsorbent before and after spore adsorption. The mechanisms of chromate anion removal from aqueous solution by the spores of A. niger were proposed, which included adsorption of Cr(vi) onto the spores followed by its reduction to Cr(iii). The reduced Cr(iii) was rebound to the biomass mainly through complexation mechanisms, redox reaction and electrostatic attraction. The removal of Cr(vi) by spores of A. niger followed pseudo-second-order adsorption kinetics. Monolayer adsorption of Cr(vi) was revealed by the better fitting of the Langmuir model isotherm rather than multilayer adsorption for the Freundlich model. The results indicated that A. niger spores can be used as a highly efficient biosorbent to remove Cr(vi) from contaminated water.

Spores of Aspergillus niger (denoted as A. niger) were used as a novel biosorbent to remove hexavalent chromium from aqueous solution.  相似文献   

17.
This research article explains the effects of pH and metal composition on the selective calcium extraction from steel slag. The operating parameters including extraction solvent type, solvent concentration, metal composition of steel slag, substance type and pH were investigated. HCl, NH4Cl, NH4OH and NaOH were employed as solvents to extract Ca from steel slag. It has been shown that hydrochloric acid effectively extracts Ca. The high metal content in steel slag reacted sensitively to the solvent concentration, and a specific concentration was derived to selectively extract Ca. The optimal solvent for calcium extraction was 2 M HCl, which induced the extraction of 97% of Ca; 46% of Mg; 35% of Al; and 1% of Si from the steel slag. In order to separate Ca in the leaching solution from other metal ions, various acidic/basic substances were added to regulate the pH. The optimal pH level for removing the impurities without calcium was found to be 9.5. The precipitated impurities were removed by filtration, and the pH was adjusted to 13 or higher for Ca(OH)2(s) production. In conclusion, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) revealed that the Ca content produced through the process was more than 99%. It is expected that high-purity Precipitated Calcium Carbonate (PCC) will be achieved when the generated Ca(OH)2 is used as a source of calcium for mineral carbonation.

This research article explains the effects of pH and metal composition on the selective calcium extraction from steel slag.  相似文献   

18.
Nowadays, the glucose electro-oxidation reaction (GOR) is considered one of the most important solutions for environmental pollution. The GOR is the anodic reaction in direct glucose fuel cells and hybrid water electrolysis. In this study, the GOR is boosted using a carbon support modified with Ni(OH)2 as a non-precious catalyst. The carbon support, with in situ generated graphene nanosheets having a large surface area, grooves, and surface functional groups, is prepared via a simple electrochemical treatment of the carbon rods of an exhausted zinc-carbon battery. Ni(OH)2 is electrodeposited on the surface of the functionalized exfoliated graphite rod (FEGR) via the dynamic hydrogen bubbling technique (DHBT) and tested for GOR. The thus-prepared Ni(OH)2/FEGR electrode is characterized by SEM, mapping EDX, HR-TEM, XRD, and XPS characterization tools. Ni(OH)2/FEGR displays an onset potential of 1.23 V vs. the reversible hydrogen electrode (RHE) and attains high current densities at lower potentials. Additionally, Ni(OH)2/FEGR showed prolonged stability toward GOR by supporting a constant current over a long electrolysis time. The enhanced catalytic performance is attributed to the superb ionic and electronic conductivity of the catalyst. Importantly, ionic conductivity increased, due to (i) a large surface area of in situ generated graphene layers, (ii) enhanced distribution of active material during deposition using DHBT, and (iii) increased hydrophilicity of the underlying substrate. Therefore, the Ni(OH)2/FEGR electrode can be used efficiently for GOR as a low-cost catalyst, achieving low onset potential and high current densities at low potentials.

Functionalized exfoliated graphite rods are a promising catalyst support for Ni(OH)2 nanoparticles, enhancing the electrocatalytic activity and stability towards glycerol oxidation reaction.  相似文献   

19.
LiNi1−xCoxO2 cathode materials were successfully synthesized from coated (1−x)Ni(OH)2@xCo(OH)2 and doped Ni1−xCox(OH)2 precursors, and the effects of the Co site and content in the precursor and final cathode material on the structure, morphology, and electrochemical performance of the cathodes were investigated using X-ray diffraction, scanning electron microscopy, and charge–discharge tests. The electrochemical performance of the materials prepared from the coated precursor was generally better than that of the materials prepared from the doped precursor. However, with increasing Co content, the performance difference gradually decreased. Among the as-prepared samples, the sample coated with 12 mol% Co delivered an excellent reversible capacity of 213.8 mA h g−1 at 0.1C and the highest capacity retention of 88.5% after 100 cycles at 0.2C in the voltage range of 2.75–4.3 V. High-performance LiNi1−xCoxO2 materials were successfully synthesized, and our findings clearly reveal the differences in the electrochemical properties of the materials prepared from the two different precursors with increasing Co content, thereby providing a valuable reference for the synthesis of high-performance Ni-rich layered cathode materials for Li-ion batteries.

The effects of Co site and content on electrochemical performance of LiNi1−xCoxO2 cathodes materials were investigated.  相似文献   

20.
Cu/ZnO-based catalysts for methanol synthesis by COx hydrogenation are widely prepared via co-precipitation of sodium carbonates and nitrate salts, which eventually produces a large amount of wastewater from the washing step to remove sodium (Na+) and/or nitrate (NO3) residues. The step is inevitable since the remaining Na+ acts as a catalyst poison whereas leftover NO3 induces metal agglomeration during the calcination. In this study, sodium- and nitrate-free hydroxy-carbonate precursors were prepared via urea hydrolysis co-precipitation of acetate salt and compared with the case using nitrate salts. The Cu/ZnO catalysts derived from calcination of the washed and unwashed precursors show catalytic performance comparable to the commercial Cu/ZnO/Al2O3 catalyst in CO2 hydrogenation at 240–280 °C and 331 bar. By the combination of urea hydrolysis and the nitrate-free precipitants, the catalyst preparation is simpler with fewer steps, even without the need for a washing step and pH control, rendering the synthesis more sustainable.

Sodium- and nitrate-free hydroxy-carbonate precursors were prepared via urea hydrolysis co-precipitation of acetate salt, which is simpler with fewer steps, even without the need for a washing and pH control, rendering the synthesis more sustainable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号