首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of the polymer micelle carrier system for doxorubicin.   总被引:15,自引:0,他引:15  
We show the result of pre-clinical study of NK911, a polymeric micelle carrier system for doxorubicin (DOX). The NK911 micelle carrier consists of polyethyleneglycol and conjugated doxorubicin-polyaspartic acid. It has high hydrophobic inner core, and therefore can entrap the sufficient amount of DOX. NK911 has a small particle size of about 40 nm in diameter that accumulates in tumor tissue by EPR effect showing much stronger activity than the free DOX. We plan to perform a clinical trial at National Cancer Center Hospital, Japan from 2001.  相似文献   

2.
An anticancer drug adriamycin (ADR) was incorporated into polymeric micelles forming from poly(ethylene glycol)-poly(aspartic acid) block copolymer by chemical conjugation and physical entrapment. Structural stability of the polymeric micelles was found to be dependent on both the contents of chemically conjugated and physically entrapped ADR. The polymeric micelle with high contents of the chemically conjugated ADR and the physically entrapped ADR expressed very high in vivo antitumor activity against murine C 26 tumor, while the polymeric micelle with only the chemically conjugated ADR showed negligible in vivo activity. This indicates that the physically entrapped ADR played a major role in antitumor activity in vivo. For the polymeric micelle with the high ADR contents, it was found that a dimer of adriamycin molecules formed and that this dimer was physically entrapped in the inner core of the micelle as well as intact ADR.  相似文献   

3.
This study primarily focused on the anti-metastatic activity of doxorubicin (DOX) loaded in a pH-sensitive mixed polymeric micelle formed from two block polymers: poly(l-lactide) (PLLA) (Mn 3000)-b-poly(ethylene glycol) (PEG) (Mn 2000)-folate and poly(l-histidine) (PHis) (Mn 4700)-b-PEG (Mn 2000). Tumor formation and metastasis in mice were examined using a murine mammary carcinoma cell of 4T1 which is one of the most aggressive metastatic cancer cell lines. The efficacy was evaluated by tumor size, body weight change, survival rate, dorsal skin fold window chamber model, and histological observation of the lung, heart, liver and spleen after treatment with various DOX formulations. When the tumor reached 50-100 mm3 in size, the mice were treated 4 times at a 3-day interval at a dose of 10 mg DOX/kg. The mixed micelle formulation resulted in retarded tumor growth, no weight loss, and no death for 4-5 weeks. In another set of the in vivo test for histological evaluation of the organs, the mice were similarly treated but the formulations were injected one day after 4T1 cell inoculation. The treatment by DOX loaded mixed micelle showed no apparent metastasis till 28 days. However, significant metastasis to the lung and heart was observed on Day 28 when the mice were treated with DOX carried by PBS, PLLA-b-PEG micelle and PHis-b-PEG micelle.  相似文献   

4.
In this work, core–shell supramolecular assembly polymeric nano-architectures containing hydrophilic and hydrophobic segments were synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization. Herein, polyethylene glycol methyl ether methacrylate (PEGMA), and stearic acid were used to synthesize the poly(PEGMA) homopolymer and stearyl ethyl methacrylate (SEMA), respectively. Then, PEGMA and SEMA were polymerized through controlled RAFT polymerization to obtain the final diblock copolymer, poly(PEGMA-co-SEMA) (BCP). Model anticancer drug, doxorubicin (DOX) was loaded on BCPs. Interestingly, efficient DOX release was observed at acidic pH, similar to the cancerous environment pH level. Significant cellular uptake of DOX loaded BCP50 (BCP50-DOX) was observed in MDA-MB-231 triple negative breast cancer cells and resulted in a 35 fold increase in anticancer activity against MDA MB-231 cells compared to free DOX. Scanning electron microscopy (SEM) imaging confirmed the apoptosis mediated cellular death. These core–shell supramolecular assembly polymeric nano-architectures may be an efficient anti-cancer drug delivery system in the future.

In this work, core–shell supramolecular assembly polymeric nano-architectures containing hydrophilic and hydrophobic segments were synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization.  相似文献   

5.
In this work, the effect of environment and additives on the self-assembly and delivery of doxorubicin (DOX) have been studied. A microfluidic system with better control over molecular interactions and high surface to volume ratio has superior performance in comparison to the bulk system. Moreover, carbon nanotube (CNT) and CNT-doped structures have a high surface area to incorporate the DOX molecules into a polymer and the presence of functional groups can influence the polymer–drug interactions. In this work, the interactions of DOX with both the polymeric complex and the nanotube structure have been investigated. For quantification of the interactions, H-bonding, gyration radius, root-mean-square deviation (RMSD), Gibbs free energy, radial distribution function (RDF), energy, and Solvent Accessible Surface Area (SASA) analyses have been performed. The most stable micelle–DOX interaction is attributed to the presence of BCN in the microfluidic system according to the gyration radius and RMSD. Meanwhile, for DOX-doped CNT interaction the phosphorus-doped CNT in the microfluidic system is more stable. The highest electrostatic interaction can be seen between polymeric micelles and DOX in the presence of BCN. For nanotube–drug interaction, phosphorus-doped carbon nanotubes in the microfluidic system have the largest electrostatic interaction with the DOX. RDF results show that in the microfluidic system, nanotube–DOX affinity is larger than that of nanotube–micelle.

In this work, the effect of environment and additives on the self-assembly and delivery of doxorubicin (DOX) have been studied.  相似文献   

6.
7.
Biodegradable polymeric micelles containing doxorubicin in the core region were prepared from a di-block copolymer composed of doxorubicin-conjugated poly(DL-lactic-co-glycolic acid) (PLGA) and polyethyleneglycol (PEG). The di-block copolymer of PLGA-PEG was first synthesized and the primary amino group of doxorubicin was then conjugated to the terminal hydroxyl group of PLGA, which had been pre-activated using p-nitrophenyl chloroformate. The resulting polymeric micelles in aqueous solution were characterized by measurement of size, drug loading, and critical micelle concentration. The micelles containing chemically-conjugated doxorubicin exhibited a more sustained release profile than PEG-PLGA micelles containing physically-entrapped doxorubicin. The cytotoxic activity of the micelles against HepG2 cells was greater than free doxorubicin, suggesting that the micelles containing conjugated doxorubicin were more effectively taken up cellularly, by an endocytosis mechanism rather than by passive diffusion. Confocal microscopic observation and flow cytometry analysis supported the enhanced cellular uptake of the micelles.  相似文献   

8.
Long-term administration of chemotherapeutic agents often leads to multiple drug resistance (MDR), which greatly impairs the treatment outcome. To overcome this problem, a biodegradable nanocarrier based on an acid-sensitive calcium phosphate/silica dioxide (CAP/SiO2) composite was constructed for the codelivery of drug and siRNA. Anticancer drug doxorubicin (DOX) was encapsulated into the composite scaffold by interacting with the exposed Ca2+ of CAP/SiO2 to achieve high drug loading (180 μg mg−1). With further decoration of siRNA, the nanocarrier was applied to enhance the therapeutic efficacy by silencing MDR-relevant genes (P-gp) of DOX-resistance K562/ADR cancer cells. Benefiting from the intrinsic acid degradability of CAP/SiO2, the nanocomposite demonstrated pH-responsive release behavior, favoring drug/siRNA release within acidic endo-/lysosomes. Consequently, due to the drug and gene effects, this biodegradable nanomedicine demonstrated enhanced therapeutic efficiency, providing a novel strategy for cancer therapy.

CAP/SiO2 composite with good biocompatibility and acid biodegradability has been prepared. The proposed drug and gene codelivery system based on it demonstrated enhanced therapeutic efficacy for multiple drug resistance cells.  相似文献   

9.
Folate receptor targeted biodegradable polymeric doxorubicin micelles.   总被引:24,自引:0,他引:24  
Biodegradable polymeric micelles, self-assembled from a di-block copolymer of poly(D,L-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG), were prepared to achieve folate receptor targeted delivery of doxorubicin (DOX). In the di-block copolymer structure of PLGA-b-PEG, DOX was chemically conjugated to a terminal end of PLGA to produce DOX-PLGA-mPEG, and folate was separately conjugated to a terminal end of PEG to produce PLGA-PEG-FOL. The two di-block copolymers with different functional moieties at their chains ends were physically mixed with free base DOX in an aqueous solution to form mixed micelles. It was expected that folate moieties were exposed on the micellar surface, while DOX was physically and chemically entrapped in the core of micelles. Flow cytometry and confocal image analysis revealed that folate conjugated mixed micelles exhibited far greater extent of cellular uptake than folate unconjugated micelles against KB cells over-expressing folate receptors on the surface. They also showed higher cytotoxicity than DOX, suggesting that folate receptor medicated endocytosis of the micelles played an important role in transporting an increased amount of DOX within cells. In vivo animal experiments, using a nude mice xenograft model, demonstrated that when systemically administered, tumor volume was significantly regressed. Biodistribution studies also indicated that an increased amount of DOX was accumulated in the tumor tissue.  相似文献   

10.
11.
Integrin αvβ3 is a promising target for integrin-rich tumor and neovascular. In the present study, we prepared a doxorubicin (DOX)-loaded liposome of which the surface was decorated with PEG and a novel αvβ3 targeting peptide of P1c. The in vitro targeting efficiency was evaluated in αvβ3-positive (U87MG) and -negative (MCF-7) tumor cells by flow cytometry and laser confocal scanning microscopy. The in vivo therapeutic effects were evaluated in the glioblastoma U87MG-tumor bearing mouse model. The results indicated that the prepared liposomes showed mean sizes of 131.2 and 128.4 nm in diameter for P1c-modified targeting liposomes (P1c-DOXL) and non-targeting liposomes (DOXL), respectively. The DOX encapsulation efficiencies were more than 95% in both types of liposomes. The conjugation ratio for P1c decoration was 66.8%. The flow cytometry and confocal laser-scanning microscopy experiments consistently showed that the intracellular fluorescence intensity of the P1c-modified targeted liposome group was stronger than that of the non-targeted liposome group (P < 0.05) in U87MG cells. In vivo results revealed that compared with DOX or DOXL treatment, P1c-DOXL dramatically reduced tumor growth (P < 0.05) and tumor angiogenesis while much lower hepatotoxicity was observed. P1c-modified targeting liposome exhibited sustained release, enhancing the antitumor effect of DOX through targeting tumor cells and neovascular where integrin αvβ3 was overexpressed. The results indicated that P1c might be promising for active targeting delivery in cancer therapy.

A novel peptide of P1c decorated liposomes targets an integrin αvβ3 expressed tumor.  相似文献   

12.
Natural polymers provide a better alternative to synthetic polymers in the domain of drug delivery systems (DDSs) because of their renewability, biocompatibility, and low immunogenicity; therefore, they are being studied for the development of bulk/nanoformulations. Likewise, current methods for engineering natural polymers into micelles are in their infancy, and in-depth studies are required using natural polymers as controlled DDSs. Accordingly, in our present study, a new micellar DDS was synthesized using ethyl cellulose (EC) grafted with polyethylene glycol (PEG); it was characterized, its properties, cell toxicity, and hemocompatibility were evaluated, and its drug release kinetics were demonstrated using doxorubicin (DOX) as a model drug. Briefly, EC was grafted with PEG to form the amphiphilic copolymers EC-PEG1 and EC-PEG2 with varying PEG concentrations, and nano-micelles were prepared with and without the drug (DOX) via a dialysis method; the critical micelle concentrations (CMCs) were recorded to be 0.03 mg mL−1 and 0.00193 mg mL−1 for EC-PEG1 and EC-PEG2, respectively. The physicochemical properties of the respective nano-micelles were evaluated via various characterization techniques. The morphologies of the nano-micelles were analyzed via transmission electron microscopy (TEM), and the average size of the nano-micelles was recorded to be ∼80 nm. In vitro, drug release studies were done for 48 h, where 100% DOX release was recorded at pH 5.5 and 52% DOX release was recorded at pH 7.4 from the micelles. In addition, cytotoxicity studies suggested that DOX-loaded micelles were potent in killing MDA-MB-231 and MCF-7 cancer cells, and the blank micelles were non-toxic toward cancerous and normal cells. A cellular uptake study via fluorescence microscopy indicated the internalization of DOX-loaded micelles by cancer cells, delivering the DOX into the cellular compartments. Based on these studies, we concluded that the developed material should be studied further via in vivo studies to understand its potential as a controlled DDS to treat cancer.

Ethyl cellulose was developed as an amphiphilic polymer by PEGylation and fabricated as nanomicelles for delivery of active molecules. This polymeric system can be used as next generation nano drug delivery system (nanoDDS) for cancer therapy.  相似文献   

13.
The aim of the study described here was to investigate whether ultrasound-mediated microbubble destruction (UTMD) of targeted microbubbles conjugated with an anti-vascular endothelial growth factor receptor 2 (anti-VEGFR2) antibody can enhance the therapeutic effect of doxorubicin (DOX) on a mouse hepatocellular carcinoma (HCC) model bearing HEP-G2-RFP tumors. The growth of liver tumors in mice was inhibited by using Visistar VEGFR2 plus ultrasound irradiation and by DOX alone. DOX plus UTMD had an inhibitory effect on tumor growth beginning on the seventh day of treatment, while Visistar VEGFR2 alone and DOX alone had inhibitory effects beginning on the 11th day. DOX + UTMD significantly decreased tumor volume and tumor weight compared with DOX alone (p < 0.05) and Visistar VEGFR2 alone (p < 0.05). Compared with DOX alone and Visistar VEGFR2 alone, DOX + UTMD had the highest inhibitory effect on tumor angiogenesis and the highest apoptosis index. UTMD-targeted microbubbles can significantly enhance the antitumor effect of DOX on a mouse HCC model, inhibit angiogenesis and induce apoptosis in tumor cells.  相似文献   

14.
The results of a comprehensive in vivo study of a novel tumor-targeting modality are reported. The technique utilized in this study is based on the encapsulation of the chemotherapeutic agent within polymeric micelles in combination with a local ultrasonic irradiation of the tumor. A doxorubicin (DOX) biodistribution, a yield of the internal tumors and a growth rate of the subcutaneous (s.c.) tumors was compared for molecularly dissolved and micellar-encapsulated DOX. This was done with and without tumor sonication, using an ovarian carcinoma tumor model in nu/nu mice. Pure and mixed Pluronic P-105, PEG2000-diacylphospholipid, and poly(ethylene glycol)-co-poly(beta-benzyl-L-aspartate) micelles were used as drug carriers. DOX intracellular uptake was characterized by flow cytometry. A local ultrasonic irradiation of the tumor resulted in a substantially increased drug accumulation in the tumor cells. The effect of the ultrasound was dependent on the time between ultrasound application and drug injection. Ultrasound did not enhance micelle extravasation; the ultrasonic enhancement of drug internalization by the tumor cells required a preliminary passive drug accumulation in the tumor interstitium. Due to the ultrasound-enhanced drug intracellular uptake and cell killing, the yield of intraperitoneal (i.p.) ovarian carcinoma tumors decreased from 70% for DOX dissolved in PBS (positive control) to 36% for the same concentration of DOX encapsulated in Pluronic micelles combined with a 30-s sonication of the abdominal region of a mouse (3 mg/kg DOX, i.p. injection 1 day after inoculation, n>or=10). For s.c. tumors, micellar delivery combined with localized ultrasonic tumor irradiation resulted in a substantial decrease of the tumor growth rates compared to a positive control (3 mg/kg DOX, i.v. injections, n=7, p<0.05). Possible mechanisms of the ultrasound bioeffects on in vivo drug targeting are discussed.  相似文献   

15.
To obtain an efficient dual-drug release and enhance therapeutic efficiency for combination chemotherapy, a glutathione (GSH)-responsive therapeutic amphiphilic polyprodrug copolymer (mPEG-b-PCPT) is synthesized to load doxorubicin (DOX) via hydrophobic and π–π stacking interaction. In this nanomedicine system (mPEG-b-PCPT/DOX), the ratio of the two drugs can be easily modulated by changing the loading content of DOX. The in vitro drug release curves and laser confocal images suggested that the release of CPT and DOX is induced through a “release promotes release strategy”: after internalization into tumor cells, the disulfide bonds in the nanomedicine are cleaved by glutathione (GSH) in the cytoplasm and then lead to the release of CPT. Meanwhile, the disassembly of nanomedicine immediately promotes the co-release of DOX. The optimum dose ratio of CPT and DOX is evaluated via the combination index (CI) value using HepG-2 cells. The results of cell apoptosis and cell viability prove the better synergistic efficiency of the nanomedicine than free drugs at the optimum dose ratio of 1. Consequently, this stimuli-responsive synergistic chemotherapy system provides a direction for the fabrication of nanomedicines possessing promising potential in clinical trials.

In the GSH-responsive doxorubicin loading camptothecin prodrug nanomedicine, easy modulation of the dose ratio and controlled co-release were achieved, and the synergistic effect was significantly improved.  相似文献   

16.
Liquid metals (LMs) have recently emerged as a new class of promising multifunctional materials with attractive properties. They have excellent photothermal conversion efficiency, generating heat under near-infrared (NIR) laser irradiation. This work reports encapsulating LM droplets into poly(NIPAm-co-MBA) hydrogels (PNM) to achieve nanodispersed liquid metals in bulk polymeric hydrogels for NIR laser-responsive materials. LM droplets (∼530 nm) are produced by dispersing an alloy of gallium and indium (EGaIn) into glycerol. The LM-loaded PNM hydrogels (PNM/LM) exhibited excellent thermal-/NIR laser-responsive ability. In a water bath, the weight of the PNM/LM can decrease 92% at 50 °C. And the volume of PNM/LM can decrease 62% under NIR laser irradiation for 12 min. Because of its thermal-/NIR laser-responsive ability and porous three-dimensional (3D) networks, PNM/LM is very suitable for use as a drug carrier. We also prepared doxorubicin (DOX)-loaded PNM/LM hydrogels (PNM/LM/DOX) and demonstrated that the PNM/LM/DOX hydrogel can generate heat and raise its temperature under NIR laser irradiation. When the temperature becomes higher than the lower critical solution temperature (LCST), such a hydrogel would shrink immediately and extrude the DOX encapsulated in its networks simultaneously, then complete the controlled release of the pre-loaded drug. Further, an in vitro cytotoxicity test indicated the biocompatibility and feasibility as a chemophotothermal synergistic therapeutic of the present hydrogel. This NIR laser-responsive hydrogel fully exhibits its superiority as a drug carrier which promises great potential in future targeted controlled drug release.

NIR laser-responsive liquid metal-loaded polymeric hydrogel exhibits its superiority in drug carrier of controlled release.  相似文献   

17.
The effect of high-frequency ultrasound on doxorubicin (DOX) release from Pluronic micelles and intracellular DOX uptake was studied for promyelocytic leukemia HL-60 cells, ovarian carcinoma drug-sensitive and multidrug-resistant (MDR) cells (A2780 and A2780/ADR, respectively), and breast cancer MCF-7 cells. Cavitation events initiated by high-frequency ultrasound were recorded by radical trapping. The onset of transient cavitation and DOX release from micelles were observed at much higher power densities than at low-frequency ultrasound (20-100 kHz). Even a short (15-30 s) exposure to high-frequency ultrasound significantly enhanced the intracellular DOX uptake from PBS, RPMI 1640, and Pluronic micelles. The mechanisms of the observed effects are discussed.  相似文献   

18.
The blood-brain barrier (BBB) inhibits the entry of the majority of chemotherapeutic agents into the brain. Previous studies have illustrated the feasibility of drug delivery across the BBB using focused ultrasound (FUS) and microbubbles. Here, we investigated the effect of FUS-enhanced delivery of doxorubicin on survival in rats with and 9L gliosarcoma cells inoculated in the brain. Each rat received either: (1) no treatment (control; N = 11), (2) FUS only (N = 9), (3) IV liposomal doxorubicin (DOX only; N = 17), or (4) FUS with concurrent IV injections of liposomal doxorubicin (FUS+DOX; N = 20). Post-treatment by magnetic resonance imaging (MRI) showed that FUS+DOX reduced tumor growth compared with DOX only. Further, we observed a modest but significant increase in median survival time after a single treatment FUS+DOX treatment (p = 0.0007), whereas neither DOX nor FUS had any significant impact on survival on its own. These results suggest that combined ultrasound-mediated BBB disruption may significantly increase the antineoplastic efficacy of liposomal doxorubicin in the brain.  相似文献   

19.
For the efficient and well-controlled incorporation of the anti cancer drug adriamycin (ADR) into the inner core of a thermo-responsive polymeric micelle carrier system, we have analyzed and optimized the incorporation procedure in this paper. A dialysis method was used for preparing the micelle solution and ADR incorporation simultaneously. Quantities of ADR and triethylamine (TEA) were varied and the effects of their quantities were analyzed. Solvent composition at the starting time of dialysis was also varied. The initial dialysis condition, solvent with 40% water, brought about the largest amount and yield of ADR incorporation. With the initial 40% water content, it was considered that the block polymers formed a micelle-like association with a swollen hydrophobic core. This swollen core may be suitable for a large amount of ADR incorporation, since this core, swollen by an organic solvent-water mixture, is expected to show a liquid-state character to allow ADR molecules entry into the cores. By starting the dialysis procedure at this 40% water content, this swollen core suitable for the ADR incorporation is considered to be maintained for a much longer period than a case starting with a polymer-ADR solution in a solvent with a water content of less than 40%, and, therefore, ADR is expected to be incorporated efficiently. Preparation temperature of 20-25 degrees C was found to provide the most effective ADR incorporation in this thermo-responsive polymeric micelle system. These results indicate that the efficient incorporation of ADR can be achieved in consideration of the dynamic micelle formation and drug incorporation processes.  相似文献   

20.
Overexpression of IL17RB is associated with poor prognosis and short survival of the breast cancer patients.IL17RB/IL17B signaling triggers a substantial increase in the cell growth, proliferation and migration through the activation of NF-κB as well as the up-regulation of the Bcl-2. In this study we designed carboxymethyl dextran (CMD) Chitosan nanoparticles (ChNPs) to encapsulated IL17RB siRNA and doxorubicin (DOX) as an anticancer drug. Then we investigated the efficiency of the simultaneous delivery of drug/siRNA on viability and gene expression of MDA-MB361 cell lines. Furthermore the efficacy of dual agent nanoparticles to induce apoptosis and inhibit migration of breast cancer cells was assessed by Annexin-V and wound healing assays respectively. Our results showed that DOX-siRNA-CMD-ChNPs had about 114 nm size; with polydispersity index and zeta potential about 0.3 and 10.1 mV respectively. Fourier transform infrared spectroscopy (FTIR) confirmed the formation of DOX-siRNA-CMD-ChNPs complex. In addition IL17RB siRNA had significant effect on DOX-induced cytotoxicity in MDA-MB361 cells. Furthermore treatment with dual agent nanoparticles resulted in a significant silencing of NF-κB and Bcl-2 relative gene expression, apoptosis induction and migration inhibition in MDA-MB361 cells. In conclusion, co-delivery of IL17RB siRNA and DOX can be considered as an effective system for the treatment of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号