首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renal fibrosis is the principal process underlying the progression of chronic kidney disease to end-stage renal disease. It is a relatively uniform response involving glomerulosclerosis, tubulointerstitial fibrosis and changes in renal vasculature. A considerable number of studies have confirmed that inducible nitric oxide synthase (iNOS) was highly expressed in renal interstitial fibrosis and the overexpression of iNOS played a negative role in kidney disease progression. In our previous study, SKLB023 as a novel small-molecule inhibitor of iNOS, blocked joint inflammation and cartilage destruction in arthritis. However, the pharmacological role and function of SKLB023 in renal fibrosis remained poorly understood. In the study, oral administration of SKLB023 (25 and 50 mg per kg per day) for 7 day exhibited potent anti-fibrotic effects against the model UUO using the pathological assessment of H & E and Masson''s trichrome staining. SKLB023 inhibited the expression of α-SMA, col I, col IV, fibronectin and further decreased iNOS expression as well as TGF-β1/Smad3 phosphorylation in the injured kidney tissues of UUO mice. Similarly, SKLB023 suppressed in vitro features of fibrosis in TGF-β1-induced NRK-49F by the inhibition of the corresponding fibrotic protein expression. These findings confirmed that SKLB023 hindered renal interstitial fibrosis by interfering with TGF-β1/Smad3 signaling, highlighting that SKLB023 has potential in therapeutic strategies.

The novel small-molecule inhibitor of iNOS (SKLB023) hindered renal interstitial fibrosis in vivo and in vitro by interfering with TGF-β1/Smad3 signaling, highlighting that SKLB023 has potential in the therapeutic strategy for renal fibrosis.  相似文献   

2.
In human breast cancer, loss of carcinoma cell–specific response to TGF-β signaling has been linked to poor patient prognosis. However, the mechanisms through which TGF-β regulates these processes remain largely unknown. In an effort to address this issue, we have now identified gene expression signatures associated with the TGF-β signaling pathway in human mammary carcinoma cells. The results strongly suggest that TGF-β signaling mediates intrinsic, stromal-epithelial, and host-tumor interactions during breast cancer progression, at least in part, by regulating basal and oncostatin M–induced CXCL1, CXCL5, and CCL20 chemokine expression. To determine the clinical relevance of our results, we queried our TGF-β–associated gene expression signatures in 4 human breast cancer data sets containing a total of 1,319 gene expression profiles and associated clinical outcome data. The signature representing complete abrogation of TGF-β signaling correlated with reduced relapse-free survival in all patients; however, the strongest association was observed in patients with estrogen receptor–positive (ER-positive) tumors, specifically within the luminal A subtype. Together, the results suggest that assessment of TGF-β signaling pathway status may further stratify the prognosis of ER-positive patients and provide novel therapeutic approaches in the management of breast cancer.  相似文献   

3.
miR-425 is a potential tumor suppressor in cancer, but its role in melanoma is still unknown. We aim to investigate miR-425 expression in melanoma tissues and cell lines. Next, cell proliferation, cell cycle, apoptosis and metastasis will be studied using lentivirus-mediated gain-of-function studies. The predicted results are stable miR-425 inhibits cell proliferation and metastasis and induced cell apoptosis. It is predicted that IGF-1 is a potential target gene of miR-495 by bioinformatics analysis. Then luciferase assay analysis identifies IGF-1 as a new direct target gene of miR-425 and miR-425 inhibits melanoma cancer progression via IGF-1. Collectively, our findings suggested that miR-425 may function as a tumor suppressor in melanoma by targeting IGF-1.  相似文献   

4.
Pulmonary fibrosis is a chronic and progressive lung disease which results in a loss of pulmonary function and eventually respiratory failure. Inflammation and epithelial mesenchymal transition (EMT) play important roles in the pathogenesis of pulmonary fibrosis. This study aimed to investigate the therapeutic effect of polydatin (PD) in bleomycin-induced pulmonary fibrosis. A bleomycin-induced pulmonary fibrosis animal model used SD rats. Morphological changes were analyzed by hematoxylin-eosin staining. RT-qPCR and western blot were used for the detection of the expression of TGF-β1, collagen I, collagen III, E-cadherin, fibronectin and the ratios of p-Smad2/Smad2, p-Smad3/Smad3. The concentrations of PICP, PIIINP, TNF-α, IL-1β, IL-6 and IL-17 were measured by enzyme linked immunosorbent assay (Elisa) assay. Results showed that PD attenuated bleomycin-induced pulmonary fibrosis. The beneficial effect of PD was possibly related to the inhibition of inflammation and EMT through suppressing the TGF-β/Smad signaling pathway. Our findings suggested that PD might be a potential therapeutic candidate in the treatment of pulmonary fibrosis.

Pulmonary fibrosis is a chronic and progressive lung disease which results in a loss of pulmonary function and eventually respiratory failure.  相似文献   

5.
6.
目的 研究microRNA-10b(miR-10b)在三阴性乳腺癌(triple-negative breast cancer,TNBC)组织中的表达,评估miR-10b判断TNBC预后的价值.方法 采用免疫组化SP法检测ER、PR和HER-2的表达,实时荧光定量RT-PCR检测miR-10b的表达,Kaplan-meier法分析miR-10b对TNBC生存时间的影响.结果 TNBC的发生率约为14.45%,miR-10b在有转移的TNBC组织中呈更高的表达,miR-10b的表达差异影响生存率高低.结论 miR-10b与TNBC转移有关,miR-10b可作为判断TNBC预后的新指标.  相似文献   

7.
Rab10, a member of the Rab family, is localized to endocytic compartments and serves as a regulator of intracellular vesicle trafficking. Previous studies mainly paid attention to the role of Rab10 in transport. Recently, Rab10 has been reported to be involved in the progression of various cancers. However, the biological functions of Rab10 in thyroid cancer remain unknown. In this study, we demonstrated that Rab10 was highly expressed in thyroid cancer tissues and cell lines. Down-regulation of Rab10 inhibited hypoxia-induced migration, invasion and epithelial–mesenchymal transition (EMT) of thyroid cancer cells. Moreover, HIF-1α and the PI3K/Akt pathway were involved in the inhibitory effect of Rab10 down-regulation on thyroid cancer cell invasion and EMT induced by hypoxia. Taken together, our study provided further evidence to support the role of Rab10 as a therapeutic target for thyroid cancer.

Rab10, a member of the Rab family, is localized to endocytic compartments and serves as a regulator of intracellular vesicle trafficking.  相似文献   

8.
The absence of IFN-γ receptor (IFN-γR) or STAT1 signaling in donor cells has been shown to result in reduced induction of acute graft-versus-host disease (GVHD). In this study, we unexpectedly observed increased activation and expansion of donor lymphocytes in both lymphohematopoietic organs and GVHD target tissues of IFN-γR/STAT1–deficient recipient mice, leading to rapid mortality following the induction of GVHD. LPS-matured, BM-derived Ifngr1–/– Stat1–/– DCs (BMDCs) were more potent allogeneic stimulators and expressed increased levels of MHC II and costimulatory molecules. Similar effects were observed in human antigen-presenting cells (APCs) with knockdown of Stat1 by CRISPR/Cas9 and treatment with a JAK1/2 inhibitor. Furthermore, we demonstrated that the absence of IFN-γR/STAT1 signaling in hematopoietic APCs impaired the presentation of exogenous antigens, while promoting the presentation of endogenous antigens. Thus, the indirect presentation of host antigens to donor lymphocytes was defective in IFN-γR/STAT1–deficient, donor-derived APCs in fully donor chimeric mice. The differential effects of IFN-γR/STAT1 signaling on endogenous and exogenous antigen presentation could provide further insight into the roles of the IFN-γ/STAT1 signaling pathway in the pathogenesis of GVHD, organ rejection, and autoimmune diseases.  相似文献   

9.
The TGF-β1/Smad signaling pathway has been linked to hepatic fibrosis. Previous studies have shown that yellow polysaccharide can prevent the development of hepatic fibrosis. However, it is unclear whether the polysaccharide affects the TGF-β1/Smad signaling pathway. In this experiment, 50 experimental rats were randomly divided into a normal control group, model group, low GFP dose group (50 mg kg−1), medium GFP dose group (100 mg kg−1), and high GFP dose group (200 mg kg−1). A cirrhotic portal hypertension rat model was established by a CCl4 compound method. After 12 weeks of intragastric administration, the liver index of the medium dose and high dose group was significantly lower than that of the model group. The hepatic fibrosis lesions of rats in each dose group were improved to different extents, and the effect was most significant in the high dose group. The contents of ALT, AST, TBIL and CIV, PCIII, LN and HA in serum were significantly decreased. The activity of SOD and GSH-Px in the liver tissue of GFP medium and high dose groups was significantly increased and the content of MDA was significantly decreased. The contents of TNF-α, IL-1β and IL-6 were significantly decreased. The western blot results showed that the expressions of p-Smad 2/3, Smad4, PAI-1, Imp7 and Imp8 in medium dose and high dose groups were significantly lower than those in the model group, while the expression of Smad7 was significantly higher than that of the model group. The GFP-treated group was able to reduce the expression level of mi R-154 in liver tissue and increase the expression level of miR-146a. GFP has a significant intervention effect on rat hepatic fibrosis, and its mechanism may inhibit the progression of hepatic fibrosis by inhibiting oxidative stress and inflammatory response and regulating TGF-β1/Smad signaling pathway and mi RNA expression.

The TGF-β1/Smad signaling pathway has been linked to hepatic fibrosis.  相似文献   

10.
Familial exudative vitreoretinopathy (FEVR) is a severe retinal vascular disease that causes blindness. FEVR has been linked to mutations in several genes associated with inactivation of the Norrin/β-catenin signaling pathway, but these account for only approximately 50% of cases. We report that mutations in α-catenin (CTNNA1) cause FEVR by overactivating the β-catenin pathway and disrupting cell adherens junctions. We identified 3 heterozygous mutations in CTNNA1 (p.F72S, p.R376Cfs*27, and p.P893L) by exome sequencing and further demonstrated that FEVR-associated mutations led to overactivation of Norrin/β-catenin signaling as a result of impaired protein interactions within the cadherin-catenin complex. The clinical features of FEVR were reproduced in mice lacking Ctnna1 in vascular endothelial cells (ECs) or with overactivated β-catenin signaling by an EC-specific gain-of-function allele of Ctnnb1. In isolated mouse lung ECs, both CTNNA1-P893L and F72S mutants failed to rescue either the disrupted F-actin arrangement or the VE-cadherin and CTNNB1 distribution. Moreover, we discovered that compound heterozygous Ctnna1 F72S and a deletion allele could cause a similar phenotype. Furthermore, in a FEVR family, we identified a mutation of LRP5, which activates Norrin/β-catenin signaling, and the corresponding knockin mice exhibited a partial FEVR-like phenotype. Our study demonstrates that the precise regulation of β-catenin activation is critical for retinal vascular development and provides new insights into the pathogenesis of FEVR.  相似文献   

11.
A study was made of the cellular origin of human immunoglobulins (γ2, γ1M, γ1A). The results indicated that two closely related families of cells form immunoglobulins in human lymphoid tissue: germinal (reticular) centers and plasma cells. Thus their cellular origin in addition to their known antigenic relations further justifies placing the immunoglobulins in one family of proteins. Immunoglobulins were also formed to a small extent in primitive reticular cells which resembled those of germinal centers but were separated from them. Possibly such cells were undergoing transition to the much more numerous plasma cells with which they were commonly associated. The mantles of small lymphocytes which surrounded germinal centers did not contain detectable quantities of immunoglobulins. While in general only one type of immunoglobulin was present in an individual cell or germinal center, γ2- and γ1M-globulin were identified on occasion in the same plasma cell and germinal center. A peculiarity of the fetal thymus gland was the presence of immunoglobulin, mainly γ1M, in a small number of cells of small and intermediate size and primitive reticular appearance and in Hassall's corpuscles.  相似文献   

12.
Atrial fibrosis is an essential contributor to atrial fibrillation (AF). It remains unclear whether atrial endocardial endothelial cells (AEECs) that undergo endothelial-mesenchymal transition (EndMT) are among the sources of atrial fibroblasts. We studied human atria, TGF-β–treated human AEECs, cardiac-specific TGF-β–transgenic mice, and heart failure rabbits to identify the underlying mechanism of EndMT in atrial fibrosis. Using isolated AEECs, we found that miR-181b was induced in TGF-β–treated AEECs, which decreased semaphorin 3A (Sema3A) and increased EndMT markers, and these effects could be reversed by a miR-181b antagomir. Experiments in which Sema3A was increased by a peptide or decreased by a siRNA in AEECs revealed a mechanistic link between Sema3A and LIM-kinase 1/phosphorylated cofilin (LIMK/p-cofilin) signaling and suggested that Sema3A is upstream of LIMK in regulating actin remodeling through p-cofilin. Administration of the miR-181b antagomir or recombinant Sema3A to TGF-β–transgenic mice evoked increased Sema3A, reduced EndMT markers, and significantly decreased atrial fibrosis and AF vulnerability. Our study provides a mechanistic link between the induction of EndMT by TGF-β via miR-181b/Sema3A/LIMK/p-cofilin signaling to atrial fibrosis. Blocking miR-181b and increasing Sema3A are potential strategies for AF therapeutic intervention.  相似文献   

13.
The oxygen equilibrium characteristics of four structural variants of hemoglobin A were correlated with their amino acid substitutions.Hemoglobin Dhofar, in which the proline at E2(58)beta is replaced by arginine, had normal oxygen equilibrium characteristics.Hemoglobin L Ferrara. in which the aspartic acid at CD5(47)alpha is replaced by glycine, and hemoglobin Broussais, in which the lysine at FG2(90)alpha is replaced by asparagine, both showed a slightly elevated oxygen affinity; nevertheless both demonstrated a normal heme-heme interaction and a normal Bohr effect.Hemoglobin Hirose, in which the tryptophan at C3 (37)beta is replaced by serine, showed abnormalities of all oxygen equilibrium characteristics; i.e., increased oxygen affinity, diminished heme-heme interaction, and reduced Bohr effect.These results suggest that aspartic acid at CD5(47)alpha and lysine at FG2(90)alpha are involved in the function of the hemoglobin molecule, despite the fact that these positions are not located directly in the heme or the alpha-beta-contact regions.Tryptophan at C3(37)beta is located at contact between alpha(1)- and beta(2)-subunits. It is suggested that the substitution by serine might disturb the quarternary structure of the mutant hemoglobin molecule during transition from oxy-form to deoxy-form resulting in an alteration of the heme function.  相似文献   

14.
The susceptibility of the gastrointestinal tract to the toxic effects of chemotherapeutic drugs remains a complication in chemotherapy. Recent studies have suggested that transforming growth factor-β1 (TGF-β1) can be used as a cytoprotectant against cell cycle specific drugs. This work describes the use of alginate beads as a potential oral delivery system for TGF-β1 designed to release the drug in the lumen of the small intestine. TGF-β1 encapsulation and extent of release from alginate beads approached 100% as determined by 125I-labelled TGF-β1. However, when assayed by ELISA and a growth inhibition assay, nearly all immunoreactivity and bioactivity was lost, apparently due to a very high affinity of the alginate for TGF-β1. This limitation was overcome by two novel methods: (1) incorporation of selected polyanions within the alginate beads to ‘shield’ TGF-β1 from interaction with alginate and (2) exposure of the alginate beads containing TGF-β1 to 0.1 N HCl (acid treatment) to simultaneously reduce the molecular weight of the alginate and its ability to interact with TGF- β1. If the beads were only acid treated, just 8% of the immunoreactivity ofTGF-β1 was retained. If polyacrylic acid (90 kDa) was added to the beads, 50% of the immunoreactivity of TGF-β1 was retained. However, when TGF-β1 was released from acid-treated beads also containing polyacrylic acid, more than 80% of the TGF-β1 remained immunoreactive and bioactive. The retained TGF-β1 activity after release from the beads was found to continue to increase with increasing concentrations of polyacrylic acid, until a concentration was reached where beads would not form. The dramatic increase in retained TGF-β1 activity is attributed to the ability of polyacrylic acid to shield TGF-β1 from interaction with lower molecular fragments of alginate.  相似文献   

15.
Glioblastoma multiforme (GBM), the most aggressive brain cancer, recurs because glioblastoma stem cells (GSCs) are resistant to all standard therapies. We showed that GSCs, but not normal astrocytes, are sensitive to lysis by healthy allogeneic natural killer (NK) cells in vitro. Mass cytometry and single-cell RNA sequencing of primary tumor samples revealed that GBM tumor–infiltrating NK cells acquired an altered phenotype associated with impaired lytic function relative to matched peripheral blood NK cells from patients with GBM or healthy donors. We attributed this immune evasion tactic to direct cell-to-cell contact between GSCs and NK cells via αv integrin–mediated TGF-β activation. Treatment of GSC-engrafted mice with allogeneic NK cells in combination with inhibitors of integrin or TGF-β signaling or with TGFBR2 gene–edited allogeneic NK cells prevented GSC-induced NK cell dysfunction and tumor growth. These findings reveal an important mechanism of NK cell immune evasion by GSCs and suggest the αv integrin/TGF-β axis as a potentially useful therapeutic target in GBM.  相似文献   

16.
目的 分析高糖状态对结肠肿瘤细胞增殖的影响,并探讨Wnt抑制因子1(WIF1)通过Wnt/β-连环蛋白(β-catenin)通路影响高糖状态下结肠肿瘤细胞增殖的机制。方法 用不同浓度的D-葡萄糖处理结肠肿瘤细胞株SW620细胞,通过实时荧光定量PCR(qPCR)和蛋白免疫印迹法测定增殖相关基因的表达,行细胞增殖活性检测、细胞计数实验,用细胞平板克隆形成实验检测细胞增殖情况,采用qPCR和蛋白免疫印迹法测定WIF1和β-catenin的表达。转染siRNA和过表达质粒调控WIF1的表达后,检测WIF1对SW620细胞增殖能力和β-catenin表达水平的影响。结果 随着糖浓度的增加,SW620细胞的增殖能力增强(P均< 0.05),WIF1的表达下降而β-catenin的表达增高(P均< 0.05)。下调WIF1的表达,SW620细胞的增殖能力增强且β-catenin的表达增高(P均< 0.05),而过表达WIF1后,SW620细胞的增殖能力受到抑制且β-catenin的表达下降(P均< 0.05)。结论 高糖状态下WIF1表达的下降,可能通过活化Wnt/β-catenin通路促进高糖状态下结肠肿瘤细胞的增殖。  相似文献   

17.
Chromosome translocation to generate the TEL-AML1 (also known as ETV6-RUNX1) chimeric fusion gene is a frequent and early or initiating event in childhood acute lymphoblastic leukemia (ALL). Our starting hypothesis was that the TEL-AML1 protein generates and maintains preleukemic clones and that conversion to overt disease requires secondary genetic changes, possibly in the context of abnormal immune responses. Here, we show that a murine B cell progenitor cell line expressing inducible TEL-AML1 proliferates at a slower rate than parent cells but is more resistant to further inhibition of proliferation by TGF-β. This facilitates the competitive expansion of TEL-AML1–expressing cells in the presence of TGF-β. Further analysis indicated that TEL-AML1 binds to a principal TGF-β signaling target, Smad3, and compromises its ability to activate target promoters. In mice expressing a TEL-AML1 transgene, early, pre-pro-B cells were increased in number and also showed reduced sensitivity to TGF-β–mediated inhibition of proliferation. Moreover, expression of TEL-AML1 in human cord blood progenitor cells led to the expansion of a candidate preleukemic stem cell population that had an early B lineage phenotype (CD34+CD38CD19+) and a marked growth advantage in the presence of TGF-β. Collectively, these data suggest a plausible mechanism by which dysregulated immune responses to infection might promote the malignant evolution of TEL-AML1–expressing preleukemic clones.  相似文献   

18.
19.
Myeloproliferative neoplasms (MPNs) are associated with significant alterations in the bone marrow microenvironment that include decreased expression of key niche factors and myelofibrosis. Here, we explored the contribution of TGF-β to these alterations by abrogating TGF-β signaling in bone marrow mesenchymal stromal cells. Loss of TGF-β signaling in Osx-Cre–targeted MSCs prevented the development of myelofibrosis in both MPLW515L and Jak2V617F models of MPNs. In contrast, despite the absence of myelofibrosis, loss of TGF-β signaling in mesenchymal stromal cells did not rescue the defective hematopoietic niche induced by MPLW515L, as evidenced by decreased bone marrow cellularity, hematopoietic stem/progenitor cell number, and Cxcl12 and Kitlg expression, and the presence of splenic extramedullary hematopoiesis. Induction of myelofibrosis by MPLW515L was intact in Osx-Cre Smad4fl/fl recipients, demonstrating that SMAD4-independent TGF-β signaling mediates the myelofibrosis phenotype. Indeed, treatment with a c-Jun N-terminal kinase (JNK) inhibitor prevented the development of myelofibrosis induced by MPLW515L. Together, these data show that JNK-dependent TGF-β signaling in mesenchymal stromal cells is responsible for the development of myelofibrosis but not hematopoietic niche disruption in MPNs, suggesting that the signals that regulate niche gene expression in bone marrow mesenchymal stromal cells are distinct from those that induce a fibrogenic program.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号