首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An anabolic-androgenic synthetic steroidal drug, methasterone (1) was transformed by two fungi, Cunninghamella blakesleeana and Macrophimina phaseclina. A total of six transformed products, 6β,7β,17β-trihydroxy-2α,17α-dimethyl-5α-androstane-3-one (2), 6β,7α,17β-trihydroxy-2α,17α-dimethyl-5α-androstane-3-one (3), 6α,17β-dihydroxy-2α,17α-dimethyl-5α-androstane-3,7-dione (4), 3β,6β,17β-trihydroxy-2α,17α-dimethyl-5α-androstane-7-one (5), 7α,17β-dihydroxy-2α,17α-dimethyl-5α-androstane-3-one (6), and 6β,9α,17β-trihydroxy-2α,17α-dimethyl-5α-androstane-3-one (7) were synthesized. Among those, compounds 2–5, and 7 were identified as new transformed products. MS, NMR, and other spectroscopic techniques were performed for the characterization of all compounds. Substrate 1 (IC50 = 23.9 ± 0.2 μg mL−1) showed a remarkable anti-inflammatory activity against nitric oxide (NO) production, in comparison to standard LNMMA (IC50 = 24.2 ± 0.8 μg mL−1). Whereas, its metabolites 2, and 7 showed moderate inhibition with IC50 values of 38.1 ± 0.5 μg mL−1, and 40.2 ± 3.3 μg mL−1, respectively. Moreover, substrate 1 was found to be cytotoxic for the human normal cell line (BJ) with an IC50 of 8.01 ± 0.52 μg mL−1, while metabolites 2–7 were identified as non-cytotoxic. Compounds 1–7 showed no cytotoxicity against MCF-7 (breast cancer), NCI-H460 (lung cancer), and HeLa (cervical cancer) cell lines.

Fungal transformation of methasterone resulted in six products (2–7). 2–5, and 7 were identified as new. Substrate 1 showed remarkable anti-inflammatory activity but was cytotoxic. Products 2 and 7 showed moderate activity but were non-cytotoxic.  相似文献   

2.
Fifteen derivatives were synthesized from olibergin A, a major isoflavonoid isolated from the stems of Dalbergia stipulacea Roxb. All compounds were evaluated for cytotoxicity against HCT-116, HT-29, MCF-7 and vero cell lines using MTT assay. Cytotoxicity results showed 5-hydroxy-7,2′,4′,5′-tetramethoxyisoflavone (5) was the most active with IC50 values of 19.03 ± 0.70, 10.83 ± 1.65, 12.53 ± 0.70 and 13.53 ± 0.84 μM against HCT-116, HT-29, MCF-7 and vero cell lines, respectively. It should be noted that 5-hydroxy-7,2′,4′,5′-tetramethoxyisoflavone (5) showed two times less toxicity against vero cells than the cisplatin standard (IC50 = 6.55 ± 0.81 μM) while 5 and cisplatin exhibited nearly equal cytotoxicity against the MCF-7 cell line. 5,7,2′,4′,5′-Pentamethoxyisoflavanone (10) showed an IC50 value of 30.34 ± 1.15 μM against the HCT-116 cell line and exhibited weak cytotoxicity against normal cells, the vero cell line. In addition, 5,7,4′-trihydroxy-2′,5′-dimethoxyisoflavan oxime (13) demonstrated cytotoxicity against HT-29 cells with an IC50 value of 31.41 ± 1.38 μM and displayed weak activity toward the vero cell line. The information revealed that these compounds were suitable for development to anticancer agents against HCT-116, HT-29 and MCF-7 cell lines.

Fifteen derivatives were synthesized from olibergin A, a major isoflavonoid isolated from the stems of Dalbergia stipulacea Roxb.  相似文献   

3.
Ten pentacyclic triterpenoids including a new multiflorane triterpene acid, 2α,3β,23-trihydroxymultiflor-7-en-28-oic acid (1), and a new lupane triterpene monoglucoside named akebiaoside C (2), were obtained from the leaves of Akebia trifoliata. Their structures were elucidated by extensive spectroscopic analysis, and they were all isolated from the leaves of A. trifoliata for the first time. These compounds, except 4 and 5, showed in vitro α-glucosidase inhibitory activity much stronger than acarbose. Especially, 2, 3, 6, 8 and 10 displayed in vitro α-glucosidase inhibitory activity with IC50 values from 0.004 to 0.081 mM, which were close or even more potent than corosolic acid (IC50 0.06 mM). Triterpenoids 1, 8 and 10 were further revealed to show moderate in vitro cytotoxic activity against human tumor A549, HeLa and HepG2 cell lines, with IC50 values ranging from 26.5 to 51.9 μM. Compound 9 selectively showed in vitro cytotoxicity toward HeLa and HepG2 cell lines, with IC50 values of 81.49 and 73.47 μM, respectively. These findings provided new data to support that the leaves of A. trifoliata are a rich source in bioactive triterpenoids highly valuable to be developed for medicinal usage.

Ten pentacyclic triterpenoids including a new multiflorane triterpene acid, 2α,3β,23-trihydroxymultiflor-7-en-28-oic acid (1), and a new lupane triterpene monoglucoside named akebiaoside C (2), were obtained from the leaves of Akebia trifoliata.  相似文献   

4.
Three new thymol derivatives, 7-formyl-9-isobutyryloxy-8-hydroxythymol (1), 7,9-di-isobutyryloxy-8,10-dehydrothymol (2) and 2α-methoxyl-3β-methyl-6-methylol-2,3-dihydrobenzofuran (3), along with five known ones (4–8), were isolated from the aerial parts of the invasive plant Ageratina adenophora. Their structures were elucidated by extensive spectroscopic analysis and they were all isolated from the aerial part of A. adenophora for the first time. These compounds, except 8, selectively showed in vitro antimicrobial activity against three Gram-(+) and two Gram-(−) bacterial strains. In particular, compounds 1 and 5 showed notable in vitro antimicrobial activity against all five bacterial strains with IC50 values ranging from 3.9 to 15.6 μg mL−1, as compared to reference compound kanamycin sulfate with a MIC value 1.9–3.9 μg mL−1. Compounds 1 and 5 were further revealed to show in vitro cytotoxic activity against three tested human tumor (MCF-7, NCI-H460 and HeLa) cell lines, with IC50 values ranging from 7.45 to 28.63 μM. Compounds 7 and 8 selectively showed slight but detectable in vitro cytotoxicity toward MCF-7 and NCI-H460 cell lines, with IC50 values 44.65–83.19 μM. No cytotoxic effects were detected in the bioassay of the other four thymol derivatives. The present results provide new data to support that the aerial parts of A. adenophora are a rich source of bioactive chemicals valuable in medicinal applications.

Eight thymol derivatives including three new ones (1–3) were obtained from the aerial parts of Ageratina adenophora, with most of them, in particular 1 and 5, showing notable in vitro antimicrobial and cytotoxic activity.  相似文献   

5.
A new triterpenoidal saponin identified as 3-O-[β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranosyl-(1 → 4)-β-d-xylopyranosyl]-2β,3β,16α-trihydroxyolean-12-en-23,28-dioic acid-28-O-α-l-rhamnopyranosyl-(1 → 4)-α-l-rhamnopyranosyl-(1 → 2)-β-d-glucopyranosyl-(1 → 2)-α-l-arabinopyranoside 1 together with a new oleanane triterpene identified as 2β,3β,13α,22α-tetrahydroxy olean-23,28-dioic acid 2 and 6 known compounds (3–8) have been isolated from Gladiolus segetum Ker-Gawl corms. The structural elucidation of the isolated compounds was confirmed using different chemical and spectroscopic methods, including 1D and 2D NMR experiments as well as HR-ESI-MS. Moreover, the in vitro cytotoxic activity of the fractions and that of the isolated compounds 1–8 were investigated against five human cancer cell lines (PC-3, A-549, HePG-2, MCF-7 and HCT-116) using doxorubicin as a reference drug. The results showed that the saponin fraction exhibited potent in vitro cytotoxic activity against the five human cancer cell lines, whereas the maximum activity was exhibited against the PC-3 and A-549 cell lines with the IC50 values of 1.13 and 1.98 μg mL−1, respectively. In addition, compound 1 exhibited potent activity against A-549 and PC-3 with the IC50 values of 2.41 μg mL−1 and 3.45 μg mL−1, respectively. Interestingly, compound 2 showed the maximum activity against PC-3 with an IC50 of 2.01 μg mL−1. These biological results were in harmony with that of the molecular modeling study, which showed that the cytotoxic activity of compound 2 might occur through the inhibition of the HER-2 enzyme.

A new triterpenoidal saponin 1, a new oleanane triterpene 2, and 6 known compounds (3–8) have been isolated from Gladiolus segetum Ker-Gawl corms.  相似文献   

6.
Antiherpetic activity of (1′S,2′R)-9-{[1′,2′-bis(hydroxymethyl)cycloprop-1′-yl]methyl}guanine (A-5021) was compared with those of acyclovir (ACV) and penciclovir (PCV) in cell cultures. In a plaque reduction assay using a selection of human cells, A-5021 showed the most potent activity in all cells. Against clinical isolates of herpes simplex virus type 1 (HSV-1, n = 5) and type 2 (HSV-2, n = 6), mean 50% inhibitory concentrations (IC50s) for A-5021 were 0.013 and 0.15 μg/ml, respectively, in MRC-5 cells. Corresponding IC50s for ACV were 0.22 and 0.30 μg/ml, and those for PCV were 0.84 and 1.5 μg/ml, respectively. Against clinical isolates of varicella-zoster virus (VZV, n = 5), mean IC50s for A-5021, ACV, and PCV were 0.77, 5.2, and 14 μg/ml, respectively, in human embryonic lung (HEL) cells. A-5021 showed considerably more prolonged antiviral activity than ACV when infected cells were treated for a short time. The selectivity index, the ratio of 50% cytotoxic concentration to IC50, of A-5021 was superior to those of ACV and PCV for HSV-1 and almost comparable for HSV-2 and VZV. In a growth inhibition assay of murine granulocyte-macrophage progenitor cells, A-5021 showed the least inhibitory effect of the three compounds. These results show that A-5021 is a potent and selective antiviral agent against HSV-1, HSV-2, and VZV.  相似文献   

7.
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) is one of the most important energetic materials. Investigations on its phase transitions and chemical reactions under extreme conditions are very important to understand the explosion process and design new energetic materials. By using a diamond anvil cell combined with in situ Raman, IR and X-ray diffraction techniques up to a pressure of ∼40 GPa, we found that β-HMX undergoes four reversible phase transitions without any chemical reaction under external pressure at room temperature. Isostructural phase transitions emerge around 5 GPa (ζ-HMX) and 10–13 GPa (ε-HMX), and another two phases emerge at 16 GPa (η-HMX) and 27 GPa (ϕ-HMX). The unit cells of ζ-HMX and ε-HMX were determined as a = 6.215 Å, b = 10.417 Å, c = 8.272 Å, β = 124.88°, P21/c at 6.2 GPa and a = 6.130 Å, b = 9.846 Å, c = 8.258 Å, β = 125.06°, P21/c at 12.6 GPa, respectively. The crystal structures of β, ζ, and ε-HMX were obtained by Rietveld refinement, based on which the rotations of NO2 groups were found to be related to the phase transition at 5 GPa. Additionally, HMX decomposes at 8.7 GPa and 300 °C. Carbon dioxide, hydroxyl, imino and hydroxyimino groups were detected in the IR spectrum, which indicates that the reaction contains a hydrogen transfer process. Our investigation uncovers the structural variation of β-HMX under external pressure and identifies the decomposition products under extreme conditions, which provides new insight to understand the detonation process of energetic materials.

Phase transitions, crystal structures and chemical reactions of β-HMX under extreme conditions were described systematically.  相似文献   

8.
Discovering SARS-CoV-2 inhibitors from natural sources is still a target that has captured the interest of many researchers. In this study, the compounds (1–18) present in the methanolic extract of Helichrysum bracteatum were isolated, identified, and their in vitro inhibitory activities against SARS-CoV-2 main protease (Mpro) was evaluated using fluorescence resonance energy transfer assay (FRET-based assay). Based on 1D and 2D spectroscopic techniques, compounds (1–18) were identified as 24-β-ethyl-cholesta-5(6),22(23),25(26)-triene-3-ol (1), α-amyrin (2), linoleic acid (3), 24-β-ethyl-cholesta-5(6),22(23),25(26)-triene-3-O-β-d-glucoside (4), 1,3-propanediol-2-amino-1-(3′,4′-methylenedioxyphenyl) (5), (−)-(7R,8R,8′R)-acuminatolide (6), (+)-piperitol (7), 5,7,4′-trihydroxy-8,3′-dimethoxy flavanone (8), 5,7,4′-trihydroxy-6-methoxy flavanone (9), 4′,5-dihydroxy-3′,7,8-trimethoxyflavone (10), 5,7-dihydroxy-3′,4′,5′,8-tetramethoxy flavone (11), 1,3-propanediol-2-amino-1-(4′-hydroxy-3′-methoxyphenyl) (12), 3′,5′,5,7-tetrahydroxy-6-methoxyflavanone (13), simplexoside (piperitol-O-β-d-glucoside) (14), pinoresinol monomethyl ether-β-d-glucoside (15), orientin (16), luteolin-3′-O-β-d-glucoside (17), and 3,5-dicaffeoylquinic acid (18). Compounds 6, 12, and 14 showed comparable inhibitory activities against SARS-CoV-2 Mpro with IC50 values of 0.917 ± 0.05, 0.476 ± 0.02, and 0.610 ± 0.03 μM, respectively, compared with the control lopinavir with an IC50 value of 0.225 ± 0.01 μM. The other tested compounds showed considerable inhibitory activities. The molecular docking study for the tested compounds was carried out to correlate their binding modes and affinities for the SARS-CoV-2 Mpro enzyme with the in vitro results. Analyzing the results of the in vitro assay together with the obtained in silico results led to the conclusion that phenylpropanoids, lignans, and flavonoids could be considered suitable drug leads for developing anti-COVID-19 therapeutics. Moreover, the phenylpropanoid skeleton oxygenated at C3, C4 of the phenyl moiety and at C1, C3 of the propane parts constitute an essential core of the SARS-CoV-2 Mpro inhibitors, and thus could be proposed as a scaffold for the design of new anti-COVID-19 drugs.

Compounds isolated and identified from Helichrysum bracteatum leaves showed promising in vitro inhibitory activities against SARS-CoV-2 main protease (Mpro). Thus, could be considered suitable drug leads for developing anti-COVID-19 therapeutics.  相似文献   

9.
Soft corals belonging to the family Nephtheidae have been appreciated as marine sources of diverse metabolites with promising anticancer potential. In view of that, the current work investigates the anti-proliferative potential of the crude extract, different fractions, and green synthesized silver nanoparticles (AgNPs) of the Red Sea soft coral, Nephthea sp. against a panel of tumor cell lines. The metabolic pool of the soft coral under study was also explored via an LC-HR-ESI-MS metabolomics approach, followed by molecular docking analysis of the characterized metabolites against the target proteins, EGFR, VEGFR, and HER2 (erbB2) that are known to be involved in cancer cell proliferation, growth, and survival. Overall, the n-butanol fraction of Nephthea sp. exhibited the highest inhibitory activities against MCF7 (breast cancer) and A549 (lung cancer) cell lines, with interesting IC50 values of 2.30 ± 0.07 and 3.12 ± 0.10 μg ml−1, respectively, whereas the maximum growth inhibition of HL60 (leukemia) cells was recorded by the total extract (IC50 = 2.78 ± 0.09 μg ml−1). More interestingly, the anti-proliferative potential of the total soft coral extract was evidently improved when packaged in the form of biogenic AgNPs, particularly against A549 and MCF7 tumor cells, showing IC50 values of 0.72 ± 0.06 and 9.32 ± 0.57 μg ml−1, respectively. On the other hand, metabolic profiling of Nephthea sp. resulted in the annotation of structurally diverse terpenoids, some of which displayed considerable binding affinities and molecular interactions with the studied target proteins, suggesting their possible contribution to the anti-proliferative properties of Nephthea sp. via inhibition of tyrosine kinases, especially the EGFR type. Taken together, the present findings highlighted the relevance of Nephthea sp. to future anticancer drug discovery and provided a base for further work on the green synthesis of a range of bioactive NPs from marine soft corals.

The cytotoxic potential of the crude extract, different fractions, and green synthesized nanoparticles of the soft coral Nephthea sp. was studied, supported by LC-HR-ESI-MS metabolomics analysis and molecular docking of the dereplicated compounds.  相似文献   

10.
For the first time, six novel artemisone–piperazine–tetronamide hybrids (12a–f) were efficiently synthesised from dihydroartemisinin (DHA) and investigated for their in vitro cytotoxicity against some human cancer cells and benign cells. All the targets showed good cytotoxic activity in vitro. Hybrid 12a exhibited much better inhibitory activity against human liver cancer cell line SMMC-7721 (IC50 = 0.03 ± 0.04 μM for 24 h) than the parent DHA (IC50 > 0.7 μM), and two references, vincristine (VCR; IC50 = 0.27 ± 0.03 μM) & cytosine arabinoside (ARA; IC50 = 0.63 ± 0.04 μM). Furthermore, hybrid 12a had low toxicity against human benign liver cell line LO2 (IC50 = 0.70 ± 0.02 μM for 24 h) compared with VCR, ARA, and DHA in vitro. Moreover, the inhibitory activity of hybrid 12a was obviously enhanced when human liver cancer cell line MHCC97H absorbed Fe2+in vitro.

Six novel artemisone–piperazine–tetronamide hybrids were efficiently synthesised and investigated for their cytotoxicity against some human cancer cells.  相似文献   

11.
Dipterocarpus alatus-derived products are expected to exhibit anti-diabetes properties. Natural dipterocarpol (1) was isolated from Dipterocarpus alatus collected in Quang Nam province, Vietnam; afterwards, 20 derivatives including 13 oxime esters (2 and 3a–3m) and 7 lactones (4, 5, 6a–6e) were semi-synthesised. Their inhibitory effects towards diabetes-related proteins were investigated experimentally (α-glucosidase) and computationally (3W37, 3AJ7, and PTP1B). Except for compound 2, the other 19 compounds (3a–3m, 4, 5, and 6a–6d) are reported for the first time, which were modified at positions C-3, C-24 and C-25 of the dipterocarpol via imidation, esterification, oxidative cleavage and lactonisation reactions. A framework based on docking-QSARIS combination was proposed to predict the inhibitory behaviour of the ligand-protein complexes. Enzyme assays revealed the most effective α-glucosidase inhibitors, which follow the order 5 (IC50 of 2.73 ± 0.05 μM) > 6c (IC50 of 4.62 ± 0.12 μM) > 6e (IC50 of 7.31 ± 0.11 μM), and the computation-based analysis confirmed this, i.e., 5 (mass: 416.2 amu; polarisability: 52.4 Å3; DS: −14.9 kcal mol−1) > 6c (mass: 490.1 amu; polarisability: 48.8 Å3; DS: −13.7 kcal mol−1) > 6e (mass: 549.2 amu; polarisability: 51.6 Å3; DS: −15.2 kcal mol−1). Further theoretical justifications predicted 5 and 6c as versatile anti-diabetic inhibitors. The experimental results encourage next stages for the development of anti-diabetic drugs and the computational strategy invites more relevant work for validation.

Dipterocarpus alatus-derived products are expected to exhibit anti-diabetes properties.  相似文献   

12.
The excelling role of organic chemistry in the medicinal field continues to be one of the main leads in the drug development process. Particularly, this industry requires organic chemists to discover small molecular structures with powerful pharmacological potential. Herein, a diverse range of chalcone (1–11) and aurone (12–22) derivatives was designed and synthesized and for the first time, and both motifs were evaluated as potent inhibitors of alkaline phosphatases (APs). Structural identification of the target compounds (1–22) was accomplished using common spectroscopic techniques. The effect of the nature and position of the substituent was interestingly observed and justified based on the detailed structure–activity relationship (SAR) of the target compounds against AP. It was concluded from the obtained results that all the newly synthesized compounds exhibit high inhibitory potential against the AP enzyme. Among them, compounds 12 (IC50 = 2.163 ± 0.048 μM), 15 (IC50 = 2.146 ± 0.056 μM), 16 (IC50 = 2.132 ± 0.034 μM), 18 (IC50 = 1.154 ± 0.043 μM), 20 (IC50 = 1.055 ± 0.029 μM) and 21 (IC50 = 2.326 ± 0.059 μM) exhibited excellent inhibitory activity against AP, and even better/more active than KH2PO4 (standard) (IC50 = 2.80 ± 0.065 μM). Remarkably, compound 20 (IC50 = 1.055 ± 0.029 μM) may serve as a lead structure to design more potent inhibitors of alkaline phosphatase. To the best of our knowledge, these synthetic compounds are the most potent AP inhibitors with minimum IC50 values reported to date. Furthermore, a molecular modeling study was performed against the AP enzyme (1EW2) to check the binding interaction of the synthesized compounds 1–22 against the target protein. The Lineweaver–Burk plots demonstrated that most potential derivative 20 inhibited h-IAP via a non-competitive pathway. Finally, molecular dynamic (MD) simulations were performed to evaluate the dynamic behavior, stability of the protein–ligand complex, and binding affinity of the compounds, resulting in the identification of compound 20 as a potential inhibitor of AP. Accordingly, excellent correlation was observed between the experimental and theoretical results. The pharmacological studies revealed that the synthesized analogs 1–22 obey Lipinski''s rule. The assessment of the ADMET parameters showed that these compounds possess considerable lead-like characteristics with low toxicity and can serve as templates in drug design.

Aurones are the plant secondary metabolites belonging to the flavonoid’s family. The bioactivities of aurones are very promising, thus these heterocyclic compounds can be considered as an alluring scaffold for drug design and development.  相似文献   

13.
Three new phenolic metabolites, daldispols A–C (1–3), two new chromone derivatives, (5R,7R)-5,7-dihydroxy-2-methyl-5,6,7,8-tetrahydro-4H-chromen-4-one (9) and (5R,7R)-5,7-dihydroxy-2-propyl-5,6,7,8-tetrahydro-4H-chromen-4-one (10), together with five known phenolic compounds (4–8) and two known chromone compounds (11 and 12) were isolated from the endolichenic fungus Daldinia sp. CPCC 400770. Their structures were elucidated on the basis of spectroscopic methods, electronic circular dichroism (ECD), and comparison with reported data. Compounds 1, 3, 4, 9, and 11 exhibited significant anti-influenza A virus (IAV) activities with IC50 values of 12.7, 6.4, 12.5, 16.1, and 9.0 μM, respectively, and compound 8 displayed significant anti-ZIKV activity with inhibitory ratio of 42.7% at 10 μM. The results demonstrated that the fungus Daldinia sp. CPCC 400770 might be a rich source for discovering anti-IAV secondary metabolites as potential novel leading compounds.

Eight phenols including three new ones (1–3) and four chromones including two new ones (9 and 10) were isolated from endolichenic fungus Daldinia sp. CPCC 400770, and some of them showed significant antiviral activities.  相似文献   

14.
Rosa laevigata fruit, at present, is becoming increasingly popular as a functional foodstuff with several nutritional and medicinal properties. To explore the acetylcholinesterase (AChE) inhibitory activity of extracts from the Rosa laevigata Michx. fruit (RLMF), a simple and efficient enrichment purification technology based on microwave-assisted extraction (MAE) and multi vacuum extraction columns (VEC) was applied to screen and identify triterpenoids (TTs) in the RLMF extracts. The MAE conditions were optimized using the Box–Behnken design (BBD) with a quadratic regression model and the response surface method (RSM). The optimum conditions were as follows: ethanol concentration, 69%; extraction time, 12 min; ratio of liquid to raw material, 26 : 1 mL g−1; and microwave power, 528 W. Under these conditions, the maximum content of triterpenoids reached 62.48 ± 0.25 mg g−1, which was close to the predicted value of 62.69 mg g−1. In addition, two pure polyhydroxy triterpenoids: 2α,3β,19α,23-tetrahydroxyurs-12-en-28-oic acid (1) and 2α,3β,19α,23-tetrahydroxyurs-12-en-28-oic acid-28-O-β-d-glucopyrannoside (2) were isolated and enriched to more than 500 mg by a multi VEC method. Furthermore, the quantities of compounds 1 and 2 from RLMF were 5.36 and 10.37 mg g−1, respectively, as determined using HPLC. These compounds were further assessed for acetylcholinesterase inhibitory and neuroprotection properties. The results showed that 1 and 2 showed potent AChE inhibitory activities with IC50 values of 29.22 and 45.47 μg mL−1, respectively. At high concentration, compounds 1 and 2 produced a 92% and 89% inhibition on the target enzyme, which was consistent with docking results between AChE and each isolate. Moreover, both 1 and 2 exhibited potential neuroprotective activities against H2O2-induced SHSY5Y cell death.

Rosa laevigata fruit, at present, is becoming increasingly popular as a functional foodstuff with several nutritional and medicinal properties.  相似文献   

15.
The present study reports the biotransformation of an anabolic-androgenic steroid (AAS) drostanolone heptanoate (1) by using two microbial cultures, Beauveria bassiana, and Macrophomina phaseolina. Fermentation of 1 with B. bassiana yielded five new transformed products 2–6, while with M. phaseolina it afforded two new 7–8, and two known 9–10 metabolites. The main sites of hydroxylation in the steroidal skeleton of 1 were at C-5, C-7, C-11, C-14, C-15, and C-20, hydrolysis of the ester moiety at C-17, and reduction of the carbonyl group at C-3. The structures of the transformed products were determined by using mass, NMR, and other spectroscopic techniques.

Incubation of drostanolone heptanoate (1) with B. bassiana and M. phaseolina afforded seven new and two known metabolites.The main sites of hydroxylation include C-5, C-7, C-11, C-14, C-15, and C-20, hydrolysis at C-17, and reduction at C-3 of 1.  相似文献   

16.
We developed a decarboxylative aldol reaction using α,α-difluoro-β-ketocarboxylate salt, carbonyl compounds, and ZnCl2/N,N,N′,N′-tetramethylethylenediamine. The generation of difluoroenolate proceeded smoothly under mild heating to provide α,α-difluoro-β-hydroxy ketones in good to excellent yield (up to 99%). The α,α-difluoro-β-ketocarboxylate salt was bench stable and easy to handle under air, which realizes a convenient and environmentally friendly methodology for synthesis of difluoromethylene compounds.

A ZnCl2/N,N,N′,N′-tetramethylethylenediamine complex promoted decarboxylative aldol reaction of α,α-difluoro-β-ketocarboxylate salt with carbonyl compounds has been developed.  相似文献   

17.
Inhibition of α-glucosidase alleviates postprandial high glycemic levels in diabetic or prediabetic population. In Chinese bayberry fruit, myricetin, quercetin and kaempferol are main flavonols, which differ only in their hydroxylation on the B-ring. Kaempferol (4′-OH) showed high IC50 (65.36 ± 0.27 μmol L−1) against α-glucosidase, while quercetin (3′,4′-OH) exhibited stronger inhibition (46.91 ± 0.54 μmol L−1) and myricetin (3′,4′,5′-OH) possessed the strongest inhibitory activity (33.20 ± 0.43 μmol L−1). Molecular docking analysis illustrated that these flavonols could insert to the active cavity of α-glucosidase. Adjacent hydroxyl groups at B-ring of myricetin and quercetin positively contributed to form hydrogen bonds that were important to the stability of flavonol–enzyme complex, while kaempferol had no adjacent hydroxyl groups. Such observation was further validated by molecular dynamics simulations, and in good consistency with in vitro kinetic analysis and fluorescence spectroscopy analysis. Among three flavonols tested, myricetin possessed the strongest inhibition effects on α-glucosidase with the lowest dissociation constant (Ki = 15.56 μmol L−1) of myricetin-α-glucosidase, largest fluorescence quenching constant (Ksv) of (14.26 ± 0.03) × 104 L mol−1 and highest binding constant (Ka) of (1.38 ± 0.03) × 105 L mol−1 at 298 K with the enzyme. Bio-Layer Interferometry (BLI) and circular dichroism (CD) analysis further confirmed that myricetin had high affinity to α-glucosidase and induced conformational changes of enzyme. Therefore, myricetin, quercetin and kaempferol are all excellent dietary α-glucosidase inhibitors and their inhibitory activities are enhanced by increasing number of hydroxyl groups on B-ring.

Inhibition of α-glucosidase alleviates postprandial high glycemic levels in diabetic or prediabetic population.  相似文献   

18.
The global COVID-19 pandemic became more threatening especially after the introduction of the second and third waves with the current large expectations for a fourth one as well. This urged scientists to rapidly develop a new effective therapy to combat SARS-CoV-2. Based on the structures of β-adrenergic blockers having the same hydroxyethylamine and hydroxyethylene moieties present in the HIV-1 protease inhibitors which were found previously to inhibit the replication of SARS-CoV, we suggested that they may decrease the SARS-CoV-2 entry into the host cell through their ability to decrease the activity of RAAS and ACE2 as well. Herein, molecular docking of twenty FDA-approved β-blockers was performed targeting SARS-CoV-2 Mpro. Results showed promising inhibitory activities especially for Carvedilol (CAR) and Nebivolol (NEB) members. Moreover, these two drugs together with Bisoprolol (BIS) as an example from the lower active ones were subjected to molecular dynamics simulations at 100 ns. Great stability across the whole 100 ns timeframe was observed for the top docked ligands, CAR and NEB, over BIS. Conformational analysis of the examined drugs and hydrogen bond investigation with the pocket''s crucial residues confirm the great affinity and confinement of CAR and NEB within the Mpro binding site. Moreover, the binding-free energy analysis and residue-wise contribution analysis highlight the nature of ligand–protein interaction and provide guidance for lead development and optimization. Furthermore, the examined three drugs were tested for their in vitro inhibitory activities towards SARS-CoV-2. It is worth mentioning that NEB achieved the most potential anti-SARS-CoV-2 activity with an IC50 value of 0.030 μg ml−1. Besides, CAR was found to have a promising inhibitory activity with an IC50 of 0.350 μg ml−1. Also, the IC50 value of BIS was found to be as low as 15.917 μg ml−1. Finally, the SARS-CoV-2 Mpro assay was performed to evaluate and confirm the inhibitory effects of the tested compounds (BIS, CAR, and NEB) towards the SARS-CoV-2 Mpro enzyme. The obtained results showed very promising SARS-CoV-2 Mpro inhibitory activities of BIS, CAR, and NEB (IC50 = 118.50, 204.60, and 60.20 μg ml−1, respectively) compared to lopinavir (IC50 = 73.68 μg ml−1) as a reference standard.

Hydroxyethylamine and hydroxyethylene moieties of β-blockers exert potential SARS-CoV-2 inhibitory effects: rational-based design and in silico, in vitro, and SAR Studies.  相似文献   

19.
Acinetobacter baumannii is an increasingly problematic pathogen in United States hospitals. Antibiotics that can treat A. baumannii are becoming more limited. Little is known about the contributions of penicillin binding proteins (PBPs), the target of β-lactam antibiotics, to β-lactam–sulbactam susceptibility and β-lactam resistance in A. baumannii. Decreased expression of PBPs as well as loss of binding of β-lactams to PBPs was previously shown to promote β-lactam resistance in A. baumannii. Using an in vitro assay with a reporter β-lactam, Bocillin, we determined that the 50% inhibitory concentrations (IC50s) for PBP1a from A. baumannii and PBP3 from Acinetobacter sp. ranged from 1 to 5 μM for a series of β-lactams. In contrast, PBP3 demonstrated a narrower range of IC50s against β-lactamase inhibitors than PBP1a (ranges, 4 to 5 versus 8 to 144 μM, respectively). A molecular model with ampicillin and sulbactam positioned in the active site of PBP3 reveals that both compounds interact similarly with residues Thr526, Thr528, and Ser390. Accepting that many interactions with cell wall targets are possible with the ampicillin-sulbactam combination, the low IC50s of ampicillin and sulbactam for PBP3 may contribute to understanding why this combination is effective against A. baumannii. Unraveling the contribution of PBPs to β-lactam susceptibility and resistance brings us one step closer to identifying which PBPs are the best targets for novel β-lactams.  相似文献   

20.
Integrin targeted therapies by natural bioactive compounds have attracted attention in the field of oncology and cancer treatment. This study evaluates the potential of phenolic extract from the medicinal herb Ecballium elaterium L. seed oil (PEO) to inhibit the adhesion and migration of the highly invasive human fibrosarcoma cell line HT1080. At safe concentrations (up to 40 μg mL−1), results show that PEO dose-dependently inhibits adhesion and migration of HT1080 to fibronectin (IC50 = 18 μg mL−1) and fibrinogen (IC50 = 12.86 μg mL−1). These observations were associated with the reduction of cell motility and migration velocity as revealed in the Boyden chamber and random motility using two-dimensional assays, respectively. Additional experiments using integrin blocking antibodies showed that PEO at the highest safe concentration (40 μg mL−1) competitively inhibited the attachment of HT1080 cell to anti-αvβ3 (>98%), anti-α5β1 (>86%), and to a lesser extent anti-α2 (>50%) immobilized antibodies, suggesting that αvβ3 and α5β1 integrins were selectively targeted by PEO. Moreover, PEO specifically targeted these integrins in human microvascular endothelial cells (HMEC-1) and dose-dependently blocked the in vitro tubulogenesis. In the CAM model, PEO inhibited the VEGF-induced neoangiogenesis confirming its anti-angiogenic effect. Collectively, these results indicate that PEO holds promise for the development of natural integrin-targeted therapies against fibrosarcoma.

Phenolic extract from Ecballium elaterium inhibits integrin-mediated adhesion and migration, and hinders VGEF-induced angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号