首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
In the current paper, a hexamethylenetetramine-based ionic liquid immobilized on the MIL-101(Cr) metal–organic framework was successfully synthesized as a novel, efficient, and recoverable catalyst for the synthesis of pyrido[2,3-d:5,6-d′]dipyrimidine derivatives via the reaction of barbituric acid derivatives, 6-aminouracil/6-amino-1,3-dimethyl uracil, and aromatic aldehydes under solvent-free conditions. Characterization of the catalyst was carried out using various methods such as field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectrophotometry (FT-IR), and Brunauer–Emmett–Teller (BET). Efficient transformation, short reaction times, excellent yields, easy product isolation, mild conditions, and the potential high recyclability of the organocatalyst are the main features of this protocol.

In this study, HMTA-BAIL@MIL-101(Cr) was prepared as a novel catalyst for the synthesis of dipyrimidine derivtives by the reaction of barbituric acids, 6-aminouracil/6-amino-1,3-dimethyl uracil, and arylaldehydes under solvent-free conditions.  相似文献   

2.
Pyrrolo[3′,2′:4,5][1,3]diazepino[2,1,7-cd]pyrrolizine derivatives 2 and 3 were synthesized from dicyanovinylene-bis(meso-aryl)dipyrrin in the presence of either BF3·OEt2 or InBr3, where 2 was readily oxidized in aerobic conditions to be 3. It was understood that the fully elongated π-conjugation of 3 is achieved via the conformation of 2. Crystal structures of 2 and 3 were elucidated by X-ray diffraction analysis. Furthermore, two redox states, 3ox and 3red were observed in the chemical redox processes.

Pyrrolo[3′,2′:4,5][1,3]diazepino[2,1,7-cd]pyrrolizine derivatives 2 and 3 were synthesized from dicyasnovinylene-bis(meso-aryl)dipyrrin in the presence of BF3·OEt2 or InBr3. The structures were elucidated by X-ray crystallography.  相似文献   

3.
Magnetic resonance (MR) is currently used for diagnosis of osteosarcoma but not well even though contrast agents are administered. Here, we report a novel bone-targeted MR imaging contrast agent, Gd2-diethylenetriaminepentaacetate-bis(alendronate) (Gd2-DTPA-BA) for the diagnosis of osteosarcoma. It is the conjugate of a bone cell-seeking molecule (i.e., alendronate) and an MR imaging contrast agent (i.e., Gd-DTPA). Its physicochemical parameters were measured, including pKa, complex constant, and T1 relaxivity. Its bone cell-seeking ability was evaluated by measuring its adsorption on hydroxyapatite. Hemolysis was investigated. MR imaging and biodistribution of Gd2-DTPA-BA and Gd-DTPA were studied on healthy and osteosarcoma-bearing nude mice. Gd2-DTPA-BA showed high adsorption on hydroxyapatite, the high MR relaxivity (r1) of 7.613 mM−1 s−1 (2.6 folds of Gd-DTPA), and no hemolysis. The MR contrast effect of Gd2-DTPA-BA was much higher than that of Gd-DTPA after intravenous injection to the mice. More importantly, the MR imaging of osteosarcoma was significantly improved by Gd2-DTPA-BA. The signal intensity of Gd2-DTPA-BA reached 120.3% at 50 min, equal to three folds of Gd-DTPA. The bone targeting index (bone/blood) of Gd2-DTPA-BA in the osteosarcoma-bearing mice was very high to 130 at 180 min. Furthermore, the contrast enhancement could also be found in the lung due to metastasis of osteosarcoma. Gd2-DTPA-BA plays a promising role in the diagnoses of osteosacomas, including the primary bone tumors and metastases.  相似文献   

4.
5.
A series of novel hybrid molecular entities incorporating various spiro chromanone scaffolds onto the benzannulated oxepine core moiety were synthesised using allylation, Claisen rearrangement, Kabbe condensation and Ring Closing Metathesis (RCM) as a key step. During the synthesis we found that the nitrogen functionality in the substrate influences significantly the catalyst load due to electronic effects. Several iterations have been carried out to achieve complete conversion to products 6a–6e.

We successfully synthesized these type of angular tetracyclic frameworks.  相似文献   

6.
The short-wave infrared window (SWIR, 900–1700 nm) fluorescence imaging has been demonstrated to have excellent imaging performance in signal/noise ratio and tissue penetration compared to the conventional NIR biological window (NIR-I, 700–900 nm). Conventional organic SWIR fluorescent materials still suffer from low fluorescence quantum efficiency. In this work, a donor unit with sp3 hybrid configuration and an acceptor unit with small hindered alkyl side chains are employed to construct donor–acceptor (D–A) type conjugated polymers P1 and P2, which were substituted with one or two fluorine atoms. These structural features can alleviate the aggregation-caused quenching (ACQ) and contribute to charge transfer, resulting in a significantly improved fluorescence quantum efficiency. The SWIR fluorescent quantum efficiencies of P1 and P2 nanoparticles are 3.4% and 4.4%, respectively, which are some of the highest for organic SWIR fluorophores reported so far. Excellent imaging quality has been demonstrated with P2 nanoparticles for SWIR imaging of the vascular system of nude mice. The results indicate that our design strategy of introducing sp3 hybrid configuration and small hindered alkyl side chains to fabricate conjugated polymers is efficient in improving the fluorescent quantum efficiency as SWIR fluorescent imaging agents for potential clinical practice.

A D–A type polymer with a SWIR fluorescence quantum efficiency of 4.4% was obtained after structural optimization.  相似文献   

7.
The first access to tris(het)arylated pyrido[1′,2′:1,5]pyrazolo[3,4-d]pyrimidine derivatives is reported. The series were generated from 4-chloroaminopyridinium, which afforded the key intermediate bearing three leaving groups, i.e. a C-2 methylsulfanyl, a lactame carbonyl group in C-4 and a chlorine atom in C-6. The regioselective reactions led to the tris(het)aryl derivatives with satisfying to high yields. The three successive cross-coupling reactions occurred first in C-6 by the displacement of chlorine, next in C-4 position by a sequential Pd-catalyzed phosphonium coupling and finally in C-2 under a Pd/Cu-catalyzed desulfitative cross-coupling reaction. The optimization and scope of each reaction are discussed and the original compounds characterized.

The first access to tris(het)arylated pyrido[1′,2′:1,5]pyrazolo[3,4-d]pyrimidine derivatives is reported.  相似文献   

8.
A new benzothiadiazole (BTZ) luminogen is prepared via the Suzuki–Miyaura Pd-catalysed C–C cross-coupling of 8-iodoquinolin-4(1H)-one and a BTZ bispinacol boronic ester. The rapid reaction (5 min) affords the air-, thermo-, and photostable product in 97% yield as a yellow precipitate that can be isolated by filtration. The luminogen exhibits aggregated-induced emission (AIE) properties, which are attributed to its photoactive BTZ core and nonplanar geometry. It also behaves as a molecular heterogeneous photosensitizer for the production of singlet oxygen under continuous flow conditions.

A new benzothiadiazole (BTZ) luminogen is prepared via the Suzuki–Miyaura Pd-catalysed C–C cross-coupling of 8-iodoquinolin-4(1H)-one and a BTZ bispinacol boronic ester.  相似文献   

9.
Heterocyclic compounds being potent biochemical materials are ubiquitous molecules in our life. Amongst, the five membered aromatic ring systems, thiophene has emerged as a remarkable entity in organic electronics owing to its (i) high resonance energy, (ii) more electrophilic reactivity than benzene, (iii) high π-electron density, (iv) planar structure and, (v) presence of vacant d-orbital in addition to the presence of loosely bind lone-pairs of electrons on sulfur atoms. In recent past, thiophene-fused molecule namely, dithienothiophene (DTT) has attracted a tremendous attention of the researchers worldwide due to their potential applicability in organic electronics such as in solar cells, electrochromic devices (ECDs), organic field effect transistors (OFETs), organic limiting diodes (OLEDs), fluorescent probes, redox switching and so forth because of their (i) higher charge mobility, (ii) extended π-conjugation, and (iii) better tuning of band gaps, etc. In this particular review article, we envisioned to report the recent advancements made on the DTT-based architectures not only because of the potential applicability of this valuable scaffold in organic electronic but also to motivate the young researchers worldwide to look for the challenging opportunities related to this privileged building block in both material sciences and functional supramolecular chemistry.

DTT: a potential electron rich building block and its diverse application in organic electronic materials.  相似文献   

10.
Developing high proton conducting solid materials is significant in the field of fuel cells. A europium(iii)-based metallo-supramolecular polymer with uncoordinated carboxylic acids (PolyEu-H) was successfully synthesized by modifying the synthesis conditions. The proton conductivity was enhanced with increasing the relative humidity (RH) from 30 to 95% RH. PolyEu-H showed about 104 times higher proton conductivity than the polymer with coordinated carboxylic acids (PolyEu) and about 400 times higher than the polymer without carboxylic acids (PolyEu-2). The proton conductivity of PolyEu-H reached 4.45 × 10−2 S cm−1 at 95% RH and 25 °C and 5.6 × 10−2 S cm−1 at 75 °C. The activation energy, Ea was ultralow (0.04 eV), which indicates proton conduction based on the Grotthuss mechanism. The results indicate that efficient proton conduction occurs through proton channels formed by moisture in PolyEu-H.

Developing high proton conducting solid materials is significant in the field of fuel cells. We firstly synthesized europium(iii)-based metallo-supramolecular polymer with uncoordinated carboxylic acids (PolyEu-H), for high proton conduction.  相似文献   

11.
A novel series of fused pyrazolo[5′,1′:2,3]imidazo[1,5-c]quinazolin-6(5H)-ones were synthesized and their affinity against the COVID-19 main protease was investigated using molecular docking study and compared to that of some used standard clinical drugs. These compounds were obtained in good to excellent yields from 63 to 91% in the presence of 30 mol% catalyst in ethanol at reflux for 2 h through an efficient one-pot three-component reaction including an intramolecular rearrangement and a cyclization through intramolecular nucleophilic reaction. The results of in silico studies showed that electronegativity, resonance effects, hydrophobic interaction, halogen and hydrogen bonding had significant effects on the performance of these compounds as an inhibitor ligand. Also, these results indicated the proper affinity of these compounds against the COVID-19 main protease with excellent binding energies (especially 4r = −8.77, 4q = −8.73 and 4m = −8.63) in comparison to remdesivir, chloroquine, hydroxychloroquine, molnupiravir and nirmatrelvir drugs.

A novel series of fused pyrazolo[5′,1′:2,3]imidazo[1,5-c]quinazolin-6(5H)-ones were synthesized and their affinity against the COVID-19 main protease was investigated using molecular docking study and compared to that of some used clinical drugs.  相似文献   

12.
A novel electron deficient building block [2,2′-bithiophene]-4,4′-dicarboxamide (BTDCA) was designed to lower the highest occupied molecular orbital (HOMO) energy level of polythiophenes in order to achieve a higher open circuit voltage (Voc) and thus a higher power conversion efficiency in polymer solar cells (PSCs). BTDCA dibromo monomers were conveniently synthesized in four steps, and were used to prepare three thiophene-based D-A polymers, P(BTDCA66-BT) (66BT), P(BTDCA44-BT) (44BT) and P(BTDCA44-TT) (44TT). All the polymers exhibited unipolar hole transport properties, exhibiting mobilities in the range of ∼10−4 to 10−2 cm2 V−1 s−1 with the highest hole mobility of up to 1.43 × 10−2 cm2 V−1 s−1 achieved for 44BT in bottom-gate bottom-contact organic thin film transistors (OTFTs). In PSCs, these polymers achieved high Voc''s of 0.81–0.87 V when PCBM or ITIC was used as acceptor. When 44TT was used as donor and ITIC was used as acceptor, a power conversion efficiency (PCE) of up to 4.5% was obtained, a significant improvement when compared with the poly(3-hexylthiophene) (P3HT):ITIC devices, which showed the highest PCE of merely 0.92%.

A new electron acceptor building block, [2,2′-bithiophene]-4,4′-dicarboxamide, is synthesized and used to develop donor polymers for organic solar cells.  相似文献   

13.
Heterocyclic compounds incorporated with a pyranopyrimidine skeleton have received substantial consideration owing to their privileged, and intelligible biodiversity. Accordingly, this review highlights the multicomponent synthetic routes adopted to prepare heterocyclic compounds incorporated with the pyrano[2,3-d]pyrimidine skeleton in the preceding two years. The different sections comprise the synthesis of bicyclic, tricyclic, polycyclic, and spirocyclic systems along with the estimation of the probable mechanistic routes for the reaction pathways. Commonly, the pyran ring closure was the major idea of most studies, and the mechanistic pathways of these reactions involved Knoevenagel condensation, Michael addition, and intramolecular cyclocondensation. Besides, the significant biological potency of the compounds recently synthesized from multicomponent reactions is deliberated.

The present review highlighted the recent developments of the multicomponent synthesis of heterocyclic compounds with pyrano[2,3-d]pyrimidine skeleton applying the diverse strategies.  相似文献   

14.
Nickel oxide (NiO) has good optical transparency and wide band-gap, and due to the particular alignment of valence and conduction band energies with typical current collector materials has been used in solar cells as an efficient hole transport-electron blocking layer, where it is most commonly deposited via sol–gel or directly deposited as nanoparticles. An attractive alternative approach is via vapour deposition. This paper describes the chemical vapour deposition of p-type nickel oxide (NiO) thin films using the new nickel CVD precursor [Ni(dmamp′)2], which unlike previous examples in literature is synthesised using the readily commercially available dialkylaminoalkoxide ligand dmamp′ (2-dimethylamino-2-methyl-1-propanolate). The use of vapour deposited NiO as a blocking layer in a solar-cell device is presented, including benchmarking of performance and potential routes to improving performance to viable levels.

We describe CVD of nickel oxide (NiO) thin films using a new precursor [Ni(dmamp′)2], synthesised using a readily commercially available dialkylaminoalkoxide ligand (dmamp′), which is applied to synthesis of a hole transport-electron blocking layer.  相似文献   

15.
A new synthetic approach for realizing biologically relevant bis-aryl spiro[azetidine-2,3′-indoline]-2′,4-diones was developed based on Staudinger ketene–imine cycloaddition through the one-pot reaction of substituted acetic acids and Schiff bases in the presence of oxalyl chloride and an organic base. A series of [azetidine-2,3′-indoline]-2′,4-diones were synthesized using this method. For comparison, the same compounds were obtained using a known technique, where ketene is generated from pre-synthesized acyl chloride. It was shown that the use of oxalyl chloride for ketene generation in the one-pot reaction at room temperature allows for the reversal of the diastereoselectivity of spiro-lactam formation, unlike previously described procedures.

Two experimental techniques of the ketene–imine Staudinger reaction allowed different diastereomers of spiro-indolinone-β-lactams to be obtained.  相似文献   

16.
Two kinds of donor–acceptor π-conjugated copolymer based on poly{[N-hexyl-dithieno(3,2-b:2′,3′-d)pyrrole-2,6-diyl]alt-[isoindigo]} (PDTP-IID) and poly{[N-hexyl-dithieno(3,2-b:2′,3′-d)pyrrole-2,6-diyl]alt-[thiazol-2,5-diyl]} (PDTP-Thz) were investigated. These copolymers were synthesized via a Stille coupling reaction. The results showed the structure–property relationships of different donor–acceptor (D–A) combinations. The polymer structures and photophysical properties were characterized by 1H NMR, TGA, DSC, UV-vis absorption spectroscopy, AFM, CV, and XRD measurement. Through UV-vis absorption and cyclic voltammetry (CV) measurements, it showed that the copolymers exhibit not only a low bandgap of 1.29 eV and 1.51 eV but also a deep highest occupied molecular orbital (HOMO) of −5.49 and −5.11 eV. Moreover, photovoltaic properties in combination with the fullerene derivatives were investigated. The device based on the copolymers with PC71BM exhibited higher maximum power conversion efficiency and higher maximum short-circuit current density of 0.23% with 1.64 mA cm−2 of PDTP-IID:PC71BM and 0.13% with 1.11 mA cm−2 of PDTP-Thz:PC71BM than those of the copolymers with PC61BM. Measurements performed for N-hexyl-dithieno(3,2-b:2′,3′-d)pyrrole-based copolymers proved the potential of these polymers to be applied in optoelectronic applications.

The relationships between the structure and the property of donor–acceptor copolymers based on dithieno[3,2-b:2′,3′-d]pyrrole as a strong donor unit and isoindigo or thiazole as acceptor units are successfully studied.  相似文献   

17.
In this work, we report the efficient synthesis of novel (hydroxybenzoyl)pyrido[2,3-d]pyrimidine heterocycle derivatives: 6-(2-hydroxy-5-methylbenzoyl)-1-methylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (6a), 6-(5-fluoro-2-hydroxybenzoyl)-1-methylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (6b), 6-(5-ethyl-2-hydroxybenzoyl)-1-methylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (6c) and 6-(2-hydroxy-5-isopropylbenzoyl)-1-methylpyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (6d). The chemical structures of the title compounds were ascertained by spectral techniques including 1H, 13C NMR, UV-visible and FT-IR spectroscopy as well as single-crystal X-ray diffraction analysis. Additionally, density functional theory (DFT) and time-dependent (TD-DFT) computation were adopted to analyze the electronic structures of 6a–d. Compounds 6a–d were computed in the ground state for FT-IR spectroscopic and natural bond orbital (NBO) analysis by DFT/B3LYP with the 6-311+G(d,p) basis set. UV-vis spectroscopic and HOMO and LUMO energy values for 6a–d were determined via TD-DFT/B3LYP with the 6-311+G(d,p) basis set. The optimized geometric parameters, UV-vis findings, and vibrational frequencies indicate good consistency with the experimental data. NBO analysis was conducted to explore the interactions and charge transfer among different orbitals in the title compounds. The HOMO and LUMO band gap (ΔE) values for 6a–d were found to be 3.93, 3.91, 4.10 and 3.91 eV, respectively. Molecular electrostatic potential (MEP) analysis explored the reactivity of the title compounds by predicting their nucleophilic as well as electrophilic sites.

The chemical structures of the title compounds were ascertained by spectral techniques including 1H, 13C NMR, UV-vis and FT-IR spectroscopy as well as single-crystal X-ray diffraction, and DFT computation adopted to analyze the electronic structure.  相似文献   

18.
The rapid oxidation of carbon black (CB) is a major drawback for its use as a catalyst support in polymer electrolyte fuel cells. Here, we synthesize poly[2,2′-(4,4′-bipyridine)-5,5′-bibenzimidazole] (BiPyPBI) as a conducting polymer and use it to functionalize the surface of CB and homogenously anchor platinum metal nanoparticles (Pt-NPs) on a CB surface. The as-prepared materials were confirmed by different spectroscopic techniques, including nuclear magnetic resonance spectroscopy, energy-dispersive X-ray, thermal gravimetric analysis, and scanning-transmittance microscopy. The as-fabricated polymer-based CB catalyst showed an electrochemical surface area (ECSA) of 63.1 cm2 mgPt−1, giving a catalyst utilization efficiency of 74.3%. Notably, the BiPyPBI-based CB catalyst exhibited remarkable catalytic activity towards oxygen reduction reactions. The onset potential and the diffusion-limiting current density reached 0.66 V and 5.35 mA cm−2, respectively. Furthermore, oxidation stability testing showed a loss of only 16% of Pt-ECSA for BiPyPBI-based CB compared to a 36% loss of Pt-ECSA for commercial Pt/CB after 5000 potential cycles. These improvements were related to the synergetic effect between the nitrogen-rich BiPyPBI polymer, which promoted the catalytic activity through the structural nitrogen atoms, and demolished the degradation of CB via the wrapping process.

The rapid oxidation of carbon black (CB) is a major drawback for its use as a catalyst support in polymer electrolyte fuel cells.  相似文献   

19.
Chemical transformation of 4-methoxy-5-oxo-5H-furo[3,2-g]chromene-6-carbonitrile (1) with 1,3-thiazolidine-2,4-dione (2) in boiling ethanol containing piperidine afforded the novel 10-methoxy-10H-furo[3,2-g]chromeno[2,3-b][1,3]thiazole[5,4-e]pyridine-2,10(3H)-dione (3, MFCTP). The chemical structure of the synthesized compound was established via elemental analysis and spectral data. FT-IR spectroscopy was performed in the range of 400–4000 cm−1 for the vibrational spectral analysis of MFCTP. The GIAO method was employed to calculate the values of 1H and 13C NMR chemical shifts theoretically, which were consistent with the experimental chemical shifts. The molecule (3, MFCTP) has two stable structures, as determined from the potential energy curve. The S1 structure is the most stable conformer of (3, MFCTP) according to the computational results. The density functional theory (DFT) and ab initio HF calculations and different basis set combinations based on the structure optimizations and normal coordinate force field were interpreted with the aid of the molecular structure, fundamental vibrational frequencies, and intensities of the vibrational bands. The potential energy distribution (PED) was determined based on the complete vibrational wavenumber assignments. The calculated spectra of the title compound were in agreement with the observed spectra. The scaled B3LYP/6-311++G(d,p) results exhibited better agreement with the experimental values compared to the other method used. The time-dependent density functional theory (TD-DFT) was employed to calculate the energy and oscillator strength and supplement the experimental findings. Also, it was performed and the results interpreted the molecular electrostatic potential, nonlinear optical and thermodynamic properties, and Mulliken and natural charges of the title compound. DFT calculations were performed to study the structure–activity relationship (SAR) and compared with the experimental antimicrobial results for compound (3, MFCTP).

A novel MFCTP was synthesized and characterized.  相似文献   

20.
In this work, a novel strategy of colorimetric and photothermal dual-mode sensing determination of ascorbic acid (AA) based on a Ag+/3,3′,5,5′-tetramethylbenzidine (TMB) system was developed. In this sensing system, Ag+ could oxidize TMB with a distinct color change from colorless to blue color, strong absorbance at 652 nm and a photothermal effect under 808 nm laser irradiation due to the formation of oxidized TMB (oxTMB). When AA was present, oxTMB was reduced accompanied by a change from blue to colorless, and a decrease in absorption peak intensity and the photothermal effect. AA concentration showed a negative linear correlation with the value of both the absorbance intensity at 652 nm and temperature in the range of 0.2–10 μM (A = −0.03C + 0.343 (R2, 0.9887; LOD, 50 nM); ΔT = −0.57C + 8.453 (R2, 0.997; LOD, 7.8 nM)). Based on this, a sensing approach for detection of AA was proposed with dual-mode and without the complicated synthesis of nanomaterials. The photothermal effect and colorimetric signal provided a dual-mode detection strategy for AA, overcoming the limitations of any single mode. This colorimetric and photothermal dual-mode detection has great potential in the detection of AA in clinical pharmaceuticals and the construction of portable and highly sensitive sensors.

Colorimetric and photothermal dual-readout sensing detection of AA using a Ag+/TMB system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号