首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new photoelectrochemical (PEC) sensing platform comprising TiO2 nanotube arrays (TiONTAs), polyaniline (PANI), and gold nanoparticles (AuNPs) was successfully fabricated. After loading the enzyme, this Au–PANI–TiONTA electrode showed excellent response to glucose at a linear range of 2–36 mM with a 0.02 mM detection limit. Good PEC performance was obtained due to the following advantages of the material: high visible-light harvesting ability for excellent light trapping capacity of PANI and AuNPs, good separation of the photo-induced charges related to the specific Au–PANI–TiONTA heterostructure, efficient electrode surface reaction kinetics derived from the large specific surface area of TiONTAs and improved electrode catalytic activity. This work proposed a new and general PEC enzymatic format and can be extended to prepare different PEC biosensors for biomolecules such as DNA, proteins and substrates of oxidases.

A novel photoelectrode for glucose PEC biosensing composed of TiONTAs, PANI, and AuNPs was successfully obtained. The GOx@Au–PANI–TiONTA electrode exhibited a wide response range (2–36 mM) with a low detection limit (0.02 mM) and good stability.  相似文献   

2.
In this work, tin disulfide/nitrogen-doped reduced graphene oxide/polyaniline ternary composites are synthesized via in situ polymerization of aniline monomers on the surface of tin disulfide/nitrogen-doped reduced graphene oxide nanosheets binary composites with different loading of the conducting polymers. The tin disulfide/nitrogen-doped reduced graphene oxide/polyaniline ternary composites electrode shows much higher specific capacitance, specific energy and specific power values than those of pure polyaniline and tin disulfide/nitrogen-doped reduced graphene oxide binary composites. The highest specific capacitance, specific energy and specific power values of 1021.67 F g−1, 69.53 W h kg−1 and 575.46 W kg−1 are observed for 60% polyaniline deposited onto tin disulfide/nitrogen-doped reduced graphene oxide composites at a current density of 1 A g−1. The above composites also show superior cyclic stability and 78% of the specific capacitance can be maintained after 5000 galvanostatic charge–discharge cycles. The good charge-storage properties of tin disulfide/nitrogen-doped reduced graphene oxide/polyaniline ternary composites is ascribed to the organic–inorganic synergistic effect. This study paves the way to consider tin disulfide/nitrogen-doped reduced graphene oxide/polyaniline ternary composites as excellent electrode materials for energy storage applications.

In this work, SnS2/NRGO/PANI ternary composites are synthesized via in situ polymerization of aniline monomers on the surface of SnS2/NRGO nanosheets binary composites with different loading of the conducting polymers.  相似文献   

3.
Ni–Fe–P nanoparticles/graphene nanosheet (Ni–Fe–P/GNs) composites were successfully synthesized by a simple one-step hydrothermal method. Specifically, Ni2+ and Fe2+ were reduced by using milder sodium hypophosphite as a reducing agent in aqueous solution. SEM and TEM images show that a large number of Ni–Fe–P nanoscale microspheres are uniformly deposited on graphene nanosheets (GNs). At the thickness of 3.9 mm, the minimum reflection loss (RL) of Ni–Fe–P/GNs reaches −50.5 dB at 5.3 GHz. In addition, Ni–Fe–P/GNs exhibit a maximum absorption bandwidth of 5.0 GHz (13.0–18.0 GHz) at the thickness of 1.6 mm. The significant electromagnetic absorption characteristics of the Ni–Fe–P/GN composites can be attributed to the addition of magnetic particles to tune the dielectric properties of graphene to achieve good impedance matching. Therefore, Ni–Fe–P/GN is expected to be an attractive candidate for an electromagnetic wave absorber.

Ni–Fe–P nanoparticle/graphene nanosheet composites synthesized by a one-step hydrothermal method have excellent performance in the field of electromagnetic wave absorption, with a minimum reflection loss of −50.5 dB and a maximum effective absorption bandwidth of 5 GHz.  相似文献   

4.
This research work reports on the anti-corrosion and anti-fouling properties of epoxy (E) coatings reinforced with polyaniline (PANI)/p-phenylenediamine-functionalised graphene oxide (PGO) composites. The mass ratio of graphene oxide/p-phenylenediamine in any PGO was assumed to be 1 : 1, but different PANI–PGO composites containing various loadings of PGO were prepared. An ultrasonic-assisted in situ polymerization method was employed to produce PANI–PGO at low temperature (0 °C). Several analytical and microscopical techniques, i.e., Fourier-transfer infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM), were used to confirm that PANI–PGO composites were successfully synthesized. The epoxy-based coatings (E/PANI–PGO (x), x = 0.05–0.4 g) were applied by brushing them onto carbon steel substrates, which exhibited dual anti-corrosion and anti-fouling performance. Electrochemical impedance spectroscopy (EIS) results show that E/PANI–PGO (0.2) has the highest corrosion resistance (8.87 × 106 Ω cm2) after 192 h of immersion in 3.5 wt% NaCl amongst all the coatings compared with neat epoxy (1.00 × 104 Ω cm2) and E/PANI (6.82 × 103 Ω cm2). Efficient antifouling performance at the macroscopic level under simulated marine conditions was observed for the epoxy-based PANI–PGO coatings with a range of PGO compositions, in particular for the 0.1 and 0.2 g PGO coatings.

Graphene oxide (GO), GO-functionalised using p-phenylenediamine (PGO) and polyaniline (PANI)-PGO composites were successfully prepared for use in epoxy-matrix coatings for anti-corrosion and anti-fouling applications.  相似文献   

5.
A highly efficient visible light active polyaniline (PANI)/Ag composites grafted reduced graphene oxide (rGO–Ag/PANI) was prepared for the efficient photocatalytic degradation of paracetamol. The structural, morphological, and light absorption properties of the as-synthesized rGO–Ag/PANI were characterized by UV-Visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Paracetamol was taken as a model water pollutant to investigate the photocatalytic degradation efficiency of the rGO–PANI/Ag nanocomposites under visible light radiation. The result shows the degradation of paracetamol to be 99.6% in the acidic medium (pH 5) and 75.76% in the basic medium (pH 9), respectively. The enhanced degradation efficiency is attributed to the synergetic effect of rGO, PANI, and Ag NPs in the nanocomposites. This synergy of the rGO–Ag/PANI is explained by the strong adsorption efficiency, charge separation, and light absorption in the visible region.

A highly efficient visible light active polyaniline (PANI)/Ag composites grafted reduced graphene oxide (rGO–Ag/PANI) was prepared for the efficient photocatalytic degradation of paracetamol.  相似文献   

6.
Nitrogen-doped reduced graphene oxide–metal(metal oxides) nanoparticle (N-rGO–M(MO) NPs, M = Fe, MO: M = Co, Mn) composites were prepared through a facile and general method at high temperature (800 °C). M(MO) were well-dispersed and tightly anchored on graphene sheets, which were doped with nitrogen simultaneously and further loaded with Pt nanoparticles. Those results showed a more positive onset potential, higher cathodic density, and higher electron transfer number for the ORR in alkaline media. Furthermore, N-rGO–metal(metal oxides)–Pt (N-rGO–M(MO)–Pt) nanoparticles show better durability than the commercial Pt/C catalyst, and can be used as promising potential materials in practical applications.

We developed a facile, yet general approach to prepare N-rGO–M(MO)–Pt (M = Co, Fe and Mn) composites, which showed excellent electrocatalytic activity for the ORR in alkaline electrolytes.  相似文献   

7.
Graphene sheets decorated with nickel or copper oxides that were anchored on polyaniline (denoted as PANI-graphene/NiO and PANI-graphene/CuO) were prepared by a simple, easy to-control electrochemical method and applied as novel materials for sensitive and selective methanol sensing. The fabricated sensors exhibited good electrocatalytic activity, appropriate dynamic linear range (20–1300 mM), sensitivity (0.2–1.5 μA mM−1 cm−2) and excellent selectivity towards methanol. It should be highlighted from the selectivity tests that no significant interference was observed from ethanol and other alcohols. To our best knowledge, using inexpensive but efficient transition metals like Ni, Cu instead of Pt, Pd and their composites with PANI, graphene would be scientifically novel and practically feasible approach for sensor fabrication that could be potentially used to identify methanol adulteration in counterfeit alcoholic beverages.

PANI/graphene/NiO or PANI/graphene/CuO were prepared by a simple, easy to-control electrochemical method and applied as novel materials for sensitive and selective methanol sensing.  相似文献   

8.
Although nanoparticles, nanorods, and nanosheets of α-Fe2O3 on graphene sheets have been synthesized, it remains a challenge to grow 3D α-Fe2O3 nanomaterials with more sophisticated compositions and structures on the graphene sheets. Herein, we demonstrate a facile solvothermal route under controlled conditions to successfully fabricate 3D α-Fe2O3 hollow meso–microspheres on the graphene sheets (α-Fe2O3/RGO HMM). Attributed to the combination of the catalytic features of α-Fe2O3 hollow meso–microspheres and the high conductivity of graphene, α-Fe2O3/RGO HMM exhibited promising electrocatalytic performance as a counter electrode in dye-sensitized solar cells (DSSCs). The DSSCs fabricated with α-Fe2O3 HMM displayed high power conversion efficiency of 7.28%, which is comparable with that of Pt (7.71%).

Although nanoparticles, nanorods, and nanosheets of α-Fe2O3 on graphene sheets have been synthesized, it remains a challenge to grow 3D α-Fe2O3 nanomaterials with more sophisticated compositions and structures on the graphene sheets.  相似文献   

9.
The current study aims at the development of an electrochemical sensor based on a silver nanoparticle–reduced graphene oxide–polyaniline (AgNPs–rGO–PANI) nanocomposite for the sensitive and selective detection of hydrogen peroxide (H2O2). The nanocomposite was fabricated by simple in situ synthesis of PANI at the surface of rGO sheet which was followed by stirring with AEC biosynthesized AgNPs to form a nanocomposite. The AgNPs, GO, rGO, PANI, rGO–PANI, and AgNPs–rGO–PANI nanocomposite and their interaction were studied by UV-vis, FTIR, XRD, SEM, EDX and XPS analysis. AgNPs–rGO–PANI nanocomposite was loaded (0.5 mg cm−2) on a glassy carbon electrode (GCE) where the active surface area was maintained at 0.2 cm2 for investigation of the electrochemical properties. It was found that AgNPs–rGO–PANI–GCE had high sensitivity towards the reduction of H2O2 than AgNPs–rGO which occurred at −0.4 V vs. SCE due to the presence of PANI (AgNPs have direct electronic interaction with N atom of the PANI backbone) which enhanced the rate of transfer of electron during the electrochemical reduction of H2O2. The calibration plots of H2O2 electrochemical detection was established in the range of 0.01 μM to 1000 μM (R2 = 0.99) with a detection limit of 50 nM, the response time of about 5 s at a signal-to-noise ratio (S/N = 3). The sensitivity was calculated as 14.7 μA mM−1 cm−2 which indicated a significant potential as a non-enzymatic H2O2 sensor.

The current study aims at the development of an electrochemical sensor based on a silver nanoparticle–reduced graphene oxide–polyaniline (AgNPs–rGO–PANI) nanocomposite for the sensitive and selective detection of hydrogen peroxide (H2O2).  相似文献   

10.
Qin Liu  Cunxi Cheng 《RSC advances》2021,11(60):38146
A polypyrrole–cobalt sulfide composite counter electrode (CE) was prepared in this work. Firstly, polypyrrole (PPy) nanorods were prepared by an in situ polymerization method on FTO, then cobalt sulfide (CoS) nanoparticles were coated on PPy nanorods by the electrodeposition method. The DSSC with PPy–CoS CE exhibits superior photoelectric conversion efficiency than that based on platinum (Pt, one of common counter electrodes), which is 7.52%, improving more than 20% compared to Pt CE (6.19%). In addition, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements demonstrated that the PPy–CoS CE exhibited excellent catalytic performance for I3/I solution.

A facile two-step strategy to construct a polypyrrole–cobalt sulfide counter electrode for low-cost dye-sensitized solar cells.  相似文献   

11.
Here, nickel–cobalt sulphide particles embedded in graphene layers (porous Ni–Co–S@G), were successfully prepared by one-step annealing of metallocene/metal–organic framework (MOF) hybrids involving simultaneous carbonization and sulfidation. Benefiting from the porous structure, highly conductive graphene layers and large loading of super-capacitive Ni–Co–S, the obtained Ni–Co–S@G composites exhibited excellent electrochemical performance with a specific capacitance of 1463 F g−1 at a current density of 1 A g−1. A flexible solid-state asymmetric supercapacitor (ASC), assembled with Ni–Co–S@G and active carbon, demonstrated a high energy density of 51.0 W h kg−1 at a power density of 650.3 W kg−1. It is noteworthy that the ASC offered robust flexibility and excellent performance that was maintained when the devices were bent at various angles. The results indicate that the as-prepared materials could potentially be applied in high-performance electrochemical capacitors.

Ni–Co–S@graphene composites, derived from a metallocene/MOF precursor, presents high energy density and excellent cycling stability.  相似文献   

12.
Graphene is considered to be a potential replacement for the traditional Pt counter electrode (CE) in dye-sensitized solar cells (DSSCs). Besides a high electron transport ability, a close contact between the CE and electrolyte is crucial to its outstanding catalytic activity for the I3/I redox reaction. In this study, reduced graphene oxide (RGO) and three-dimensional graphene networks (3DGNs) were used to fabricate the CE, and the graphene-based CE endowed the resulting DSSC with excellent photovoltaic performance features. The high quality and continuous structure of the 3DGNs provided a channel amenable to fast transport of electrons, while the RGO afforded a close contact at the interface between the graphene basal plane and electrolyte. The obtained energy conversion efficiency (η) was closely related to the mass fraction and reduction degree of the RGO that was used. Corresponding optimization yielded, for the DSSCs based on the 3DGN–RGO CE, a value of η as high as 9.79%, comparable to that of the device using a Pt CE and hence implying promising prospects for the as-prepared CE.

Graphene is considered to be a potential replacement for the traditional Pt counter electrode (CE) in dye-sensitized solar cells (DSSCs).  相似文献   

13.
A facile and novel electrode material of nickel–cobalt layered double hydroxides (Ni–Co LDHs) layered on polypyrrole/reduced graphene oxide (PPy/rGO) is fabricated for a symmetrical supercapacitor via chemical polymerization, hydrothermal and vacuum filtration. This conscientiously layered composition is free from any binder or surfactants which is highly favorable for supercapacitors. The PPy/rGO serves as an ideal backbone for Ni–Co LDHs to form a free-standing electrode for a high-performance supercapacitor and enhanced the overall structural stability of the film. The well-designed layered nanostructures and high electrochemical activity from the hexagonal-flakes like Ni–Co LDHs provide large electroactive sites for the charge storage process. The specific capacitance (1018 F g−1 at 10 mV s−1) and specific energy (46.5 W h kg−1 at 464.9 W kg−1) obtained for the PPy/rGO|Ni–Co LDHs symmetrical electrode in the current study are the best reported for the two-electrode system for PPy- and LDHs-based composites. The outstanding performance in the prepared LBL film is a result of the LBL architecture of the film and the combined effect of redox reaction and electrical double layer capacitance.

A facile and novel electrode material of nickel–cobalt layered double hydroxides (Ni–Co LDHs) layered on polypyrrole/reduced graphene oxide (PPy/rGO) is fabricated for a symmetrical supercapacitor via chemical polymerization, hydrothermal and vacuum filtration.  相似文献   

14.
Herein, three-dimensional (3D) N-doped reduced graphene oxide (N-rGO) nanosheets were decorated with a uniform distribution of Co–Ni–S (CNS) nanoparticles to form the CNS/N-rGO composite as a sulfur host material for lithium–sulfur batteries. The CNS nanoparticles and N in CNS/N-rGO strongly interact with polysulfides, whereas graphene, as a conductive network, can improve its electrical conductivity. A CNS/N-rGO/sulfur composite cathode was prepared via the sulfur melting diffusion method. The electrochemical study showed that the CNS/N-rGO/sulfur cathode delivered an initial discharge capacity of 1430 mA h g−1 at a current density of 0.1C. Moreover, it retained a specific capacity of 685 mA h g−1 after 300 cycles at 0.5C with a coulombic efficiency of 98%, which was better than that of commercial rGO. This composite was used as a sulfur cathode for a lithium–sulfur battery, exhibiting excellent rate capability and remarkable performance in terms of long cycling stability.

Herein, three-dimensional (3D) N-doped reduced graphene oxide (N-rGO) nanosheets were decorated with a uniform distribution of Co–Ni–S (CNS) nanoparticles to form the CNS/N-rGO composite as a sulfur host material for lithium–sulfur batteries.  相似文献   

15.
Polyaniline (PANI) is one of the most studied conducting polymers owing to its high electrical conductivity, straightforward synthesis and stability. Graphene-supported PANI nanocomposite materials combine the superior physical properties of graphene, synergistically enhancing the performance of PANI as well as giving rise to new properties. Covalent nanocomposites have shown to give higher stability and better performance than their non-covalent counterparts, however, the covalent graphene–PANI nanocomposite are primarily prepared from graphene oxide. We report a new method to synthesize covalent graphene–PANI nanocomposites from pristine graphene. Using few-layer graphene (FLG) flakes as the model system, we first conjugated aniline to FLG via a perfluorophenyl azide (PFPA)-mediated coupling chemistry. A subsequent in situ polymerization of aniline gave polyaniline covalently grafted on the FLG surface. Characterization by FTIR, TEM, SEM, XPS, XRD and electrochemistry confirmed the successful conjugation of PANI to FLG. The grafting density of PANI was estimated by thermal analysis to be ∼26%. As the PFPA-mediated coupling chemistry is applicable to other carbon materials including carbon nanotubes and fullerene, the method developed in this work can be readily adapted to grow PANI on these materials.

Polyaniline was covalently grafted on pristine few-layer graphene via a perfluorophenyl azide-mediated coupling chemistry.  相似文献   

16.
The electrospinning technique has been successfully used to prepared micro-fibers of the poly(lactic acid)/polyaniline–zinc oxide (PLA/PANI–ZnO) composite. The polyaniline–zinc oxide (PANI–ZnO) nanocomposites are synthesized by hydrothermal and in situ polymerization methods. X-ray diffraction techniques are used to study the structural properties of the PLA/PANI–ZnO composite fibers and the PANI–ZnO nanocomposite. The average crystallite size of the PANI–ZnO nanocomposite is found to be 36 nm. The morphology and diameter of the composite fibers are analyzed by scanning electron microscopy (SEM). The average fiber diameter of the pure poly(lactic acid) (PLA) fiber is around 2.5 μm and that of the PLA/PANI–ZnO composite fiber is around 1.4 μm. Differential scanning calorimetry (DSC) provides the thermal properties of the PLA/PANI–ZnO composite fibers. The melting temperature (Tm) for the pure PLA is observed at 149.3 °C, and it is shifted to 153.0 °C for the PLA/PANI–ZnO composite fibers. The enhanced thermal properties of the composite fibers are due to the interaction between the polymer and the nanoparticles. The water contact angle measurements probe the surface hydrophilicity of the PLA/PANI–ZnO composite fibers. The role of the PANI–ZnO nanocomposite on the sensing behavior of PLA fibers has also been investigated. The humidity sensing properties of the composite fiber based sensor are studied in the relative humidity (RH) range of 20–90% RH. The experimental results show that the composite fiber exhibited good response (85 s) and recovery (120 s) times. These results indicate that the one-dimensional (1D) fiber structure enhances the humidity sensing properties.

The electrospinning technique has been successfully used to prepared micro-fibers of the poly(lactic acid)/polyaniline–zinc oxide (PLA/PANI–ZnO) composite for humidity sensor application.  相似文献   

17.
A new noble metal-free Ni–Co–P/HAP (hydroxyapatite) amorphous alloy catalyst was synthesized by an impregnation-chemical reduction method; the structure and properties of the catalysts were characterized by XRD, SEM, BET, XPS and DSC. Based on the model of the hydrodeoxygenation (HDO) of vanillin to 2-methoxy-4-methylphenol (MMP) with formic acid as a hydrogen source, the catalytic performance of the catalyst was studied. The results found that the Ni–Co–P/HAP catalyst exhibited excellent catalytic activity for the in situ HDO reaction of vanillin compared with Ni–P and Ni–Co–P. The conversion of vanillin could be high to 97.86% with MMP selectivity of 93.97% under optimized reaction conditions. In addition, mechanism studies have shown that the side reaction of carbocation and vanillyl alcohol (HMP) condensation can be effectively reduced with increasing the hydrogenation rate, thereby the selectivity of MMP was effectively increased.

A new noble metal-free Ni–Co–P/HAP amorphous alloy catalyst was developed, and it showed excellent catalytic activity for in situ hydrodeoxygenation of vanillin to 2-methoxy-4-methylphenol with formic acid as a hydrogen source.  相似文献   

18.
We report a facile atmospheric plasma reaction synthesis of PtxFe1−x alloys with the different Pt/Fe stoichiometric ratio in PtxFe1−x alloys on graphene (G) as efficient counter electrode (CE) materials and atmospheric plasma reaction synthesised TiO2 nanoparticles/G as photoanode in dye-sensitized solar cells (DSSCs). Well-distributed PtxFe1−x nanoparticles or TiO2 nanoparticles on the G surface were obtained. Remarkably, DSSCs prepared by the Pt0.7Fe0.3/G CE have much higher catalytic activity and stable durability than Pt1Fe0/G CE. The as-synthesized Pt0.7Fe0.3/G CE exhibits the largest value of |Jred| = 1.479 mA and the lowest value of Rct = 2.86 Ω. With the Pt0.7Fe0.3/G as CE and TiO2/G as the photoanode, the DSSC can deliver an overall power conversion efficiency (PCE) of 10.13%, which is significantly higher than the 9.72% of the expensive Pt1Fe0/G counterpart. The obtained results indicate that the PtxFe1−x/G nanohybrids fabricated using atmospheric plasma reaction exhibited potential as a reference for next generation CE materials in highly efficient DSSCs. We believe that this work provides an effective strategy for optimizing Pt utilization for the low-cost and efficient application of DSSCs.

The DSSCs using a Pt0.7Fe0.3/G CE and TiO2 nanoparticles/G photoanode obtained a PCE of 10.13%.  相似文献   

19.
Conductive polymers, such as polyaniline (PANI), polypyrrole (PPy), polythiophene (PTh) and poly 3,4-ethylenedioxythiophene (PEDOT), play an important role in the application of pseudocapacitors. It is necessary to explore the effects of different conductive polymers in electrode composites. Herein, we prepare zinc sulfide/reduced graphene oxide (ZnS/RGO) by the hydrothermal method, and conductive polymers (PANI, PPy, PTh and PEDOT) doped with the same mass ratio (polymer to 70 wt%) via in situ polymerization on the surface of ZnS/RGO composite. For the supercapacitor application, the ZnS/RGO/PANI ternary electrode composite possesses the best capacitance performance and cycle stability out of all of the polymer-coated ZnS/RGO composites. In the three-electrode system, the discharge specific capacitance and cycle stability of ZnS/RGO/PANI are 1045.3 F g−1 and 160% at 1 A g−1 after 1000 loops. In a two-electrode symmetric system, the discharge specific capacitance and cycle stability of ZnS/RGO/PANI are 722.0 F g−1 and 76.1% at 1 A g−1 after 1000 loops, and the greatest energy and power density of the ZnS/RGO/PANI electrode are 349.7 W h kg−1 and 18.0 kW kg−1. In addition, conductive polymers can effectively improve the voltage range of the electrode composites in 6 M KOH electrolyte for the two-electrode system. The discharge voltage ∼1.6 V makes them promising electrode materials for supercapacitors.

Conductive polymers, such as polyaniline (PANI), polypyrrole (PPy), polythiophene (PTh) and poly 3,4-ethylenedioxythiophene (PEDOT), play an important role in the application of pseudocapacitors.  相似文献   

20.
A noncrystalline Ni–B alloy in the shape of nanotubes has demonstrated its superior catalytic performance for some hydrogenation reactions. Remarkable synergistic effects have been observed in many reactions when bimetallic catalysts were used; however, bimetallic noncrystalline alloy nanotubes are far less investigated. Here, we report a simple acetone-assisted lamellar liquid crystal approach for synthesizing a series of bimetallic Ni–Co–B nanotubes and investigate their catalytic performances. The dilution effect of acetone on liquid crystals was characterized by small-angle X-ray diffraction (SAXRD) and scanning electron microscopy (SEM). The Ni/Co molar ratio of the catalyst was varied to study the composition, porous structure, electronic interaction, and catalytic efficiency. In the liquid-phase hydrogenation of p-chloronitrobenzene, the as-prepared noncrystalline alloy Ni–Co–B nanotubes exhibited higher catalytic activity and increased stability as compared to Ni–B and Co–B alloy nanotubes due to electronic interactions between the nickel and cobalt. The excellent hydrogenation performance of the Ni–Co–B nanotubes was attributed to their high specific surface area and the characteristic confinement effects, compared with Ni–Co–B nanoparticles.

Ni–Co–B noncrystalline alloy nanotubes exhibited higher catalytic activity and better stability due to the synergistic interactions between nickel and cobalt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号