首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 334 毫秒
1.
2.
3.
4.
Correction for ‘An indenocarbazole-based host material for solution processable green phosphorescent organic light emitting diodes’ by Eun Young Park et al., RSC Adv., 2021, 11, 29115–29123. DOI: 10.1039/D1RA04855D.

The authors regret that an incorrect version of Fig. 1 was included in the original article. The correct version of Fig. 1 is presented below.Open in a separate windowFig. 1HOMO, LUMO distributions and energy level of PCIC predicted through DFT and TD-DFT calculations.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

5.
Correction for ‘Green-synthesised cerium oxide nanostructures (CeO2-NS) show excellent biocompatibility for phyto-cultures as compared to silver nanostructures (Ag-NS)’ by Qaisar Maqbool, RSC Adv., 2017, 7, 56575–56585, https://doi.org/10.1039/c7ra12082f.

The author regrets that Fig. 4 and and55 of the original article did not appropriately represent the findings.Open in a separate windowFig. 4Comparative TGA analysis of CeO2-NS and Ag-NS.Open in a separate windowFig. 5FTIR spectrum of CeO2-NS and Ag-NS.The correct version of Fig. 4 is shown below. In addition, the associated text on page 56578 “Experimental findings show total mass loss…” should be changed to “Experimental findings show total mass loss of 57.53% by CeO2-NS and 61.12% by Ag-NS.” Fig. 5 of the original article shows only the plot of selected data points. In order to provide clarity to readers, it should be replaced with the following original FTIR plots (complete scan).The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

6.
7.
Correction for ‘Synthesis of a well-dispersed CaFe2O4/g-C3N4/CNT composite towards the degradation of toxic water pollutants under visible light’ by Fei Liu et al., RSC Adv., 2019, 9, 25750–25761.

The authors regret that mistakes were made during the preparation of Fig. 1 in the published article. In the original article, Fig. 1 presented XRD data for CaFe2O4/CNT, which inadvertently duplicated the data for CaFe2O4. In addition, the spectra in the original figure do not match with the relevant discussion of Fig. 1 (on page 25753–25754) which referred to XRD patterns for g-C3N4, CaFe2O4 and CaFe2O4/g-C3N4/CNT composite. The correct image for Fig. 1 is shown below but no changes are required to the associated discussion of Fig. 1.Open in a separate windowFig. 1XRD patterns of the as-prepared CaFe2O4 and CaFe2O4/g-C3N4/CNT composite.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

8.
Li Han  Tao Wang 《RSC advances》2018,8(37):21029
Correction for ‘Preparation of glycerol monostearate from glycerol carbonate and stearic acid’ by Li Han et al., RSC Adv., 2016, 6, 34137–34145.

The authors regret that Fig. 6 in the original article was incorrect. The caption referred to 13C NMR spectra, whereas the figure itself was an expanded version of the 1H NMR shown in Fig. 5. The correct version of Fig. 6 is presented below.Open in a separate windowFig. 6 13C NMR spectra of GMS.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

9.
Correction for ‘Structure evolution, amorphization and nucleation studies of carbon-lean to -rich SiBCN powder blends prepared by mechanical alloying’ by Daxin Li et al., RSC Adv., 2016, 6, 48255–48271.

The authors regret that Fig. 13 was displayed incorrectly in the original article. Due to a data processing error, partially repetitive data was displayed for the entry for 10 h. The correct version of Fig. 13 is shown below.Open in a separate windowFig. 13Solid-state 29Si NMR spectra of carbon-lean C2 (a) and carbon-rich C9 (b) powder blends subjected to different hours of milling.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

10.
Correction for ‘Efficient removal of cobalt from aqueous solution using β-cyclodextrin modified graphene oxide’ by Wencheng Song et al., RSC Adv., 2013, 3, 9514–9521.

The authors regret that Fig. 1 and and33 were incorrect in the original article. The SEM images of both GO and β-CD, and the Raman spectra of both, were confused with other samples. The correct versions of Fig. 1 and and33 are presented below.Open in a separate windowFig. 1SEM images of (a) GO and (b) β-CD-GO.Open in a separate windowFig. 2Raman spectra of GO and β-CD-GO.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

11.
Correction for ‘Synthesis and characterization of AFe2O4 (A: Ni, Co, Mg)–silica nanocomposites and their application for the removal of dibenzothiophene (DBT) by an adsorption process: kinetics, isotherms and experimental design’ by Fahimeh Vafaee et al., RSC Adv., 2021, 11, 22661–22676, https://doi.org/10.1039/D1RA02780H.

The authors regret an error in Fig. 4 where a section of the XRD for 4(a) and (b) is identical.Open in a separate windowFig. 4(a) The XRD pattern of sample 3 after adsorption of DBT. (b) The XRD pattern of sample 3 before adsorption of DBT.The authors have repeated the experiment and provided new data for Fig. 4. An independent expert has viewed the new data and has concluded that it is consistent with the discussions and conclusions presented. The correct Fig. 4 is shown below:The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

12.
Correction for ‘Variation in surface properties, metabolic capping, and antibacterial activity of biosynthesized silver nanoparticles: comparison of bio-fabrication potential in phytohormone-regulated cell cultures and naturally grown plants’ by Tariq Khan et al., RSC Adv., 2020, 10, 38831–38840, DOI: 10.1039/D0RA08419K.

The authors regret that an incorrect version of Fig. 7 was included in the original article. The correct version of Fig. 7 is presented below.Open in a separate windowFig. 7Venn diagram for the comparative analysis of compounds detected through LC-MS/MS.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

13.
Correction for ‘Synthesis of a furfural-based DOPO-containing co-curing agent for fire-safe epoxy resins’ by Weiqi Xie et al., RSC Adv., 2020, 10, 1956–1965.

The authors regret that an incorrect version of Fig. 8 was included in the original article. This was due to FTIR spectra of the commercial reference sample (DGEBA/DDM, EP-0) being confused with those of other samples. The correct version of Fig. 8 is presented below.Open in a separate windowFig. 8FTIR spectra of the pyrolysis products of EP-0 and EP-4.0 at (a) the initial and (b) maximum degradation temperatures.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

14.
Correction for ‘Helium-induced damage in U3Si5 by first-principles studies’ by Yibo Wang et al., RSC Adv., 2021, 11, 26920–26927. DOI: 10.1039/D1RA04031F.

The authors regret that an incorrect version of Fig. 4 was included in the original article. The correct version of Fig. 4 is presented below.Open in a separate windowFig. 4The dependence of the trapping energy on the number of He atoms trapped in Vac-U, Vac-Si1, and Vac-Si2 vacancies of U3Si5.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

15.
16.
Correction for ‘A novel biocompatible, simvastatin-loaded, bone-targeting lipid nanocarrier for treating osteoporosis more effectively’ by Shan Tao et al., RSC Adv., 2020, 10, 20445–20459, DOI: 10.1039/D0RA00685H.

The authors regret that incorrect versions of Fig. 7, ,99 and and1010 were included in the original article. The correct versions of Fig. 7, ,99 and and1010 are presented below.Open in a separate windowFig. 7Histological analysis of organs from all experimental groups. H&E staining of heart, liver, spleen, lung, kidney, indicating the carrier has good biocompatibility. Scale bar = 50 μm.Open in a separate windowFig. 9Alkaline phosphatase (ALP) activity (arrows) and tartrate-resistant acid phosphatase (TRAP) assay results (arrowheads) of bone tissue sections. Scale bar = 50 μm. The ALP activity is much more high in SIM/LNPs and SIM/ASP6-LNPs groups, while the TRAP activity is the opposite.Open in a separate windowFig. 10Histological assessment of bone formation in all experimental groups. (A) HE staining of femur bone. Scale bar = 50 μm. Histology of bone in the all experimental groups shows all ovariectomized groups had a higher amount of adipose tissue than Sham group. The trabecular bone is much more prominent in SIM/LNPs and SIM/ASP6-LNPs groups. (B) Immunohistochemical staining for BMP-2 in typical newly-formed bone tissue (red arrows) and immunohistochemical staining for the osteogenic markers osteopontin (OPN, arrows) and osteocalcin (OCN, arrowheads). Scale bar = 50 μm. The BMP-2, OPN, OCN are much more prominent in SIM/LNPs and SIM/ASP6-LNPs groups.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

17.
Correction for ‘iTRAQ-based quantitative proteomic analysis for identification of biomarkers associated with emodin against severe acute pancreatitis in rats’ by Hong Xiang et al., RSC Adv., 2016, 6, 72447–72457.

The authors regret that Fig. 2–4 were shown incorrectly in the original article. An incorrect section of the SAP group in the MPO-immunohistochemical staining (Fig. 2A) and HE staining (Fig. 3) experiments was used in error. In addition, Fig. 4 has been revised to show the zymogen granule, in order to better represent the ultrastructure of the pancreas. The correct versions of Fig. 2–4 are shown below.Open in a separate windowFig. 2Emodin down-regulated the MPO protein expression in pancreas of SAP rats. (A) Effect of emodin on MPO-immunopositive area (brown) staining of pancreatic tissue in SAP rats by immunohistochemical detection. (B) Effect of emodin on MPO-immunopositive area (red) staining of pancreatic tissue in SAP rats by immunofluorescence detection. Images are presented at 200× magnification. The data are presented as the mean ± SD, n = 6. **P < 0.01 versus SO; #P < 0.05 versus SAP, ##P < 0.01 versus SAP.Open in a separate windowFig. 3Emodin improved pancreatic histopathology of SAP rats. Effect of emodin on H&E staining of pancreatic tissue in SAP rats. Images are presented at 200× magnification. The data are presented as the mean ± SD, n = 6. **P < 0.01 versus SO; #P < 0.05 versus SAP, ##P < 0.01 versus SAP.Open in a separate windowFig. 4Emodin attenuated cellular structure changes in pancreas of SAP rats. Representative images of the cells’ ultrastructure in the SO (A), SAP (B), 60 mg kg−1 emodin (C), 30 mg kg−1 emodin (D) and 15 mg kg−1 emodin (E) groups. Images are presented at 25 000× magnification.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

18.
Correction for ‘A novel G·G·T non-conventional intramolecular triplex formed by the double repeat sequence of Chlamydomonas telomeric DNA’ by Aparna Bansal et al., RSC Adv., 2022, 12, 15918–15924, https://doi.org/10.1039/D2RA00861K.

The authors regret that an incorrect version of Fig. 6 was included in the original article. The correct version of Fig. 6 is presented below.Open in a separate windowFig. 6Proposed model of the non-conventional triplex comprising G·G·T triplets formed by Chlm2.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

19.
Correction for ‘Noninvasive target CT detection and anti-inflammation of MRSA pneumonia with theranostic silver loaded mesoporous silica’ by Hao Zhang et al., RSC Adv., 2016, 6, 5049–5056.

The authors regret that an incorrect version of Fig. 1 was included in the original article. The correct version of Fig. 1 is presented below.Open in a separate windowFig. 1(A) SEM image of PEGylated SLS NPs; inset: high-resolution TEM image highlighting the anchored Ag NPs. (B) XPS result of the SLS NPs and silver element. (C) DLS and zeta-potential profiles of the SLS NPs pre- and post-PEGylation.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

20.
Correction for ‘The corrosion behaviors of multilayer diamond-like carbon coatings: influence of deposition periods and corrosive medium’ by Mingjun Cui et al., RSC Adv., 2016, 6, 28570–28578, DOI: 10.1039/C6RA05527C.

The authors regret that an incorrect version of Fig. 3 was included in the original article. The correct version of Fig. 3 is shown below.Open in a separate windowFig. 3SEM images of surface morphology of multilayer DLC coatings. (a) 5 deposition periods, (b) 12 deposition periods, (c) 15 deposition periods, (d) 20 deposition periods.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号