首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell-surface sphingomyelin (SM) inhibits binary and ternary complex activity of blood coagulation by an unknown mechanism. Here we show the OH functionality of SM contributes in forming the close assembly through intermolecular H-bond and through Ca2+ chelation, which restricts the protein–lipid/protein–protein interactions and thus inhibits the coagulation procedure.

Cell-surface sphingomyelin (SM) inhibits binary and ternary complex activity of blood coagulation.  相似文献   

2.
Acridone derivatives with electron-rich triphenylamine functionalized at the amino position were synthesized and their properties were experimentally and computationally investigated. The single crystal structure analysis revealed that the π–π interaction of acridone and the formation of hydrogen bonds of carbonyl and the hydrogen atoms of the pending phenyl ring were crucial in the determination of molecular packing in the crystalline state. An intramolecular charge transfer (ICT) process was observed between acridone and triphenylamine even with reduced conjugation by the nitrogen atom of acridone. Tuneable aggregation induced emissions with blue and green fluorescence were found due to the different aggregation state and particle size, which varied according to the water content in THF. Furthermore, the size of the spacer between acridone and the appended amine was also important in adjusting the property of aggregation induced emission or aggregation caused quenching in the solid state.

Triphenylamine functionalized acridone leads to a donor–acceptor system with intramolecular charge transfer process and tuneable aggregation induced enhanced emission.  相似文献   

3.
An efficient rhodium(iii)-catalyzed C–H activation followed by intermolecular annulation between enamides and sulfoxonium ylides has been developed. The transformation proceeds smoothly with a broad range of substrates, affording a series of isoquinoline derivatives in moderate to good yields under additive-free conditions.

An efficient rhodium(iii)-catalyzed C–H activation followed by intermolecular annulation between enamides and sulfoxonium ylides has been developed.  相似文献   

4.
An efficient Rh(iii)-catalyzed synthesis of 2-arylindole derivatives via intermolecular C–H annulation of arylhydrazines with sulfoxonium ylides was accomplished. A variety of 2-acetyl-1-arylhydrazines with sulfoxonium ylides were converted into 2-arylindoles in satisfactory yields. Excellent selectivity and good functional group tolerance of this transformation were also observed.

Rh(iii)-catalyzed intermolecular C–H annulation of arylhydrazines with sulfoxonium ylides for synthesis of 2-arylindole derivatives was well established.  相似文献   

5.
Two efficient novel fluorescent naphthalene and fluorene-based aromatic hydrocarbon isomers (1 and 2) are prepared and investigated for organic electroluminescence. These compounds show bright violet to deep-blue emission, narrow full width at half maximum (52 nm), and high photoluminescence efficiency (e.g. 0.61 in CH2Cl2, 0.67 in film). Alternation of substituent position on the naphthalene moiety can give rise to remarkable emission variation. The relatively large torsion angle between naphthalene and fluorene suppresses the π–π interactions by weakening the intermolecular interactions in the solid state, which can result in highly efficient fluorescence. Moreover, the 1931 Commission Internationale de L''Eclairage coordinates and maximum emission peak for deep-blue electroluminescence based on 1 are (0.16, 0.08) and 410 nm, respectively.

Novel solution processable aromatic hydrocarbons have been designed and synthesized for deep-blue OLEDs with a maximum emission peak of 410 nm and CIE coordinates of (0.16, 0.08).  相似文献   

6.
Mesoporous core–shell structure Ag@SiO2 nanospheres are constructed to prevent Ag nanoparticles from aggregation during the hydrogenation reaction. The prepared catalyst shows superior catalytic performance for hydrogenation of nitro compounds with 100% conversion and selectivity without any by-products, which also indicates good recycling performance for several times use.

Mesoporous core–shell structure Ag@SiO2 nanospheres are constructed to prevent Ag nanoparticles from aggregation during the hydrogenation reaction.  相似文献   

7.
This paper bridges the gap between high-level ab initio computations of gas-phase models of 1 : 1 arene–arene complexes and calculations of the two-component (binary) organic crystals using atom–atom potentials. The studied crystals consist of electron-rich and electron-deficient compounds, which form infinite stacks (columns) of heterodimers. The sublimation enthalpy of crystals has been evaluated by DFT periodic calculations, while intermolecular interactions have been characterized by Bader analysis of the periodic electronic density. The consideration of aromatic compounds without a dipole moment makes it possible to reveal the contribution of quadrupole–quadrupole interactions to the π-stacking energy. These interactions are significant for heterodimers formed by arenes with more than 2 rings, with absolute values of the traceless quadrupole moment (Qzz) larger than 10 D Å. The further aggregation of neighboring stacks is due to the C–H⋯F interactions in arene/perfluoroarene crystals. In crystals consisting of arene and an electron-deficient compound such as pyromellitic dianhydride, aggregation occurs due to the C–H⋯O interactions. The C–H⋯F and C–H⋯O inter-stacking interactions make the main contribution to the sublimation enthalpy, which exceeds 150 kJ mol−1 for the two-component crystals formed by arenes with more than 2 rings.

The interplay of π-stacking and inter-stacking interactions in two-component organic crystals without conventional hydrogen bonds.  相似文献   

8.
Biomacromolecule-based nanomaterials have attracted much attention due to their excellent function in sensing, catalysis, medicine, biology and recognition. In this work, a silane-coupling ionic liquid, 1-(3-trimethoxysilylpropyl)-3-methylimidazolium chloride ([TMIM]Cl), was synthesized and applied to prepare ionic liquid-functionalized nanoparticles (SiO2@IL) using surface grafting technology. By employing multiple non-covalent interactions, including electrostatic interactions, hydrogen bonding and π–π stacking, the obtained functional nanoparticles were able to bind bovine serum albumin (BSA) with strong binding affinity, which has been illustrated through experiments and theoretical calculations. Moreover, the stability of SiO2@IL further demonstrated that it is promising in applications for biomacromolecule immobilization.

Non-covalent binding between nanosilica and bovine serum albumin has been illustrated by experiments and theoretical calculations.  相似文献   

9.
The effect of intermolecular interactions between the chains of the amorphous PFO–MEH-PPV films built from toluene and tetrahydrofuran (THF) were studied by atomistic molecular dynamics simulations, applying a successive solvent removal procedure. In the good solvent toluene, the incidence of topological entanglements is more significant. While in the poor solvent, coplanar interactions between neighbouring segments of the chains were also found, which is characteristics of cohesional entanglements. Structure factor curves of the films showed three peaks associated with the microstructure of the film, as previously reported by WAX diffractogram measurements. Moreover, the good solvent promotes more flexibility in dihedral angles, and the chains become nearer to each other.

The effect of intermolecular interactions between the chains of the amorphous PFO–MEH-PPV films built from toluene and tetrahydrofuran (THF) were studied by atomistic molecular dynamics simulations, applying a successive solvent removal procedure.  相似文献   

10.
Dispersion interactions are omnipresent in large aromatic systems and influence the dynamics as intermolecular forces. The structural preference induced by dispersion interactions is demonstrated to influence the excited state dynamics of diphenyl ether (DPE) using femtosecond time-resolved transient absorption (TA) associated with quantum chemical calculations. The experimental results in aprotic solvents show that the S1 state is populated upon irradiation at 267 nm with excess vibrational energy dissipating to solvent molecules in several picoseconds, and then decays via internal conversion (IC) within 50 ps as well as intersystem crossing (ISC) and fluorescence with a lifetime of nanoseconds. The polarity of the solvent disturbs the excited state energies and enhances the energy barriers of the ISC channel. Furthermore, the intermolecular dispersion interactions with protic solvents result in the OH–π isomer dominating in methanol and the OH–O isomer is slightly preferred in t-butanol in the ground state. The hydrogen bonded isomer measurements show an additional change from OH–O to OH–π geometry in the first 1 ps besides the relaxation processes in aprotic solvents. The time constants measured in the TA spectra suggest that the OH–O isomer facilitates IC. The results show that the OH–π isomer has a more rigid structure and a higher barrier for IC, making it harder to reach the geometric conical intersection through conformer rearrangement. This work enables us to have a good knowledge of how the structural preference induced by dispersion interactions affects excited state dynamics of the heteroaromatic compounds.

Dispersion interactions are omnipresent in large aromatic systems and influence the dynamics as intermolecular forces.  相似文献   

11.
A new type of carboxylic-functional indole-based aerogel (CHIFA) has been successfully prepared via a facile sol–gel technology, which possessed a highly effective removal of heavy metals from aqueous solution through the synergistic effects of face–point and point–point interactions.

A new type of carboxylic-functional indole-based aerogel (CHIFA) has been successfully prepared, which possessed highly effective removal of heavy metals from aqueous solution through the synergistic effects of face–point and point–point interactions.  相似文献   

12.
We developed a D–π–A based unsymmetrical azine molecule 4-((E)-((E)-(4-(dipropylamino)benzylidene)hydrazono)methyl)benzonitrile [DPBN] and studied its optical and aggregation induced emission properties. The DPBN molecule shows good aggregation induced emission (AIE) behaviour with 1157-fold fluorescence enhancement in the aggregated state. In addition to that, both colorimetric as well as fluorometric sensing studies revealed that DPBN selectively detects diethylchlorophosphate (DCP), a potent nerve agent. Interestingly, DPBN shows solvent dependent optical output in the presence of DCPvia two different mechanisms. In the monomer state, it shows red shifted fluorescence enhancement along with color change from colorless to orange color via the formation of a new intramolecular charge transfer state in pure tetrahydrofuran (THF). In the aggregated state, DPBN shows blue shifted emission with fluorescence enhancement in THF–water mixture by protonation at the amine nitrogen centre. Thus, DPBN can be used as a diagnostic measure to selectively detect nerve agents like DCP. This study also paves the way for further development of molecular probes for nerve agents that would represent immense implications in various fields of chemistry and biology.

Selective detection of diethylchlorophosphate using a D–π–A based AIEgen in aqueous as well as non-aqueous environment via different sensing mechanisms.  相似文献   

13.
A dinuclear vanadium(v) complex, (μ-O)2[V(O)(L)]2, [where HL = 2-methoxy-6-((2-(2-hydroxyethylamino)ethylimino)methyl)phenol] has been synthesized and characterized by spectral and elemental analysis. A single crystal X-ray diffraction study confirms it structure. Two different conformations, stabilized via either intra- or inter-dinuclear hydrogen bonding interactions, co-exist in the solid-state structure. The energies of these intra- or inter-dinuclear hydrogen bonding interactions have been estimated by Density functional theory (DFT) calculations. A ‘Non-covalent interaction’ (NCI) plot has also been used to characterize these interactions.

Two different hydrogen bonded conformers coexist in a synthesized dinuclear oxovanadium(v) Schiff base. Density functional theory (DFT) calculations were utilized to calculate the energies involved in two different conformers.  相似文献   

14.
A benzo[ghi]perylenetriimide (BPTI) derivative bearing a terminal azido group on the expanded π-conjugated backbone has been synthesized and characterized. This promising photo- and electroactive BPTI motif has been used to obtain an original penta(organo)fullerene as a promising multi-electron acceptor system. Our studies show its self-assembly resulting from aggregation via π–π stacking interaction in solution and in the solid state.

New penta(organo)fullerene bearing five benzo[ghi]perylenetriimide units has been synthesized to form self-assemblies through π–π interactions.  相似文献   

15.
A novel class of solid-emissive boron-difluoride derivatives, using phenanthrenequinone hydrazone as ligands, were designed and efficiently synthesized. These dyes exhibit weak fluorescence in dilute solutions, but much higher fluorescence efficiency in aggregate states with a large stokes shift (over 70 nm) due to the their aggregation-induced emission enhancement (AIEE) characteristics. According to their photophysical properties and X-ray single crystal structure analysis, the AIEE was ascribed to the H(J)-aggregate formation aided by multiple intermolecular interactions to restrict intramolecular motion in the solid state. Moreover, their solid emissions could be reversibly tuned between “on” and “off” by mechanical grinding and recrystallization, due to the stacking model transition between H(J)-aggregation with loose molecular packing and J-aggregation with intense intermolecular interactions.

A class of AIEE-active mechanochromic boron-difluorides were reported, and the mechanochromism was ascribed to the transition between H(J)-aggregation with loose molecular packing and J-aggregation with intense intermolecular interactions.  相似文献   

16.
Platinum–(phosphinito–phosphinous acid) complex catalyzes the oxidative fragmentation of hindered piperidinols according to a hydrogen transfer induced methodology. This catalyst acts successively as both a hydrogen carrier and soft Lewis acid in a one pot – two steps process. This method can be applied to the synthesis of a wide variety of primary amines in a pure form by a simple acid–base extraction without further purification.

Platinum–(phosphinito–phosphinous acid) complex catalyzes the oxidative fragmentation of hindered piperidinols according to a hydrogen transfer induced methodology.  相似文献   

17.
By Suzuki coupling reaction, three pairs of chiral conjugated polymers with optically stable helical aromatic ester subunits as the main-chain were designed and synthesized. Polymers (+)-P-P1 and (−)-M-P1, (+)-P-P2 and (−)-M-P2 showed strong fluorescence emission, strong mirror image CD and circularly polarized luminescence (CPL) signals in THF. For polymers (+)-P-P3 and (−)-M-P3, containing the tetraphenylethene (TPE) moiety, they not only showed obvious aggregation induced enhancement emission (AIEE), but also exhibited mirror image CD signals and aggregation-induced enhancement CPL signals in THF–water mixtures. Moreover, (+)-P-P3 and (−)-M-P3 could also form chiral nanoparticles by solvent evaporation induced self-assembly. Interestingly, it was further found that the size of the nanoparticles could be controlled by the changing of THF/water ratio, and their CPL properties were also shown.

Chiral conjugated polymers based on helical aromatic esters and self-assembled nanoparticles were prepared and showed strong fluorescence and CPL properties.  相似文献   

18.
Self-assembly of alkanethiol chains on metallic surfaces is a spontaneous process which leads to the formation of highly ordered layers. However, the organization of the thiol chains on the surface strongly depends on the intermolecular interactions between the terminal groups in the chain. The solution environment also plays an important role. In this paper we present the effect of solution solvent (water and ethanol) and the presence of various hydrophilic terminal groups (–OH, –NH2 and –COOH) on the quality and electrochemical properties of the formed alkanethiol layers. In the studies we applied voltammetry, atomic force microscopy and quartz crystal microbalance to characterize the morphology, packing density and ability to electron exchange through the thiol layer. The blocking properties of the formed SAMs expressed as the electron-transfer rate constant as well as their organization have been examined using a model electrochemical probe, Fe(CN)63−. With the increase in the polarity of the terminal functional group the regularity of the thiol layer decreased.

The organization of the thiol chains on the surface strongly depends on the intermolecular interactions between the terminal groups in the chain and the solution environment.  相似文献   

19.
Graphene has stimulated great enthusiasm in a variety of fields, while its chemically inert surface still remains challenging for functionalization towards various applications. Herein, we report an approach to fabricate non-covalently functionalized graphene by employing π–π stacking interactions, which has potentialities for enhanced ammonia detection. 5,5′-Di(4-biphenylyl)-2,2′-bithiophene (BP2T) molecules are used in our work for the non-covalent functionalization through strong π–π interactions of aromatic structures with graphene, and systematic investigations by employing various spectroscopic and microscopic characterization methods confirm the successful non-covalent attachment of the BP2T on the top of graphene. From our gas sensing experiments, the BP2T functionalized graphene is promising for ammonia sensing with a 3-fold higher sensitivity comparing to that of the pristine graphene, which is mainly attributed to the enhanced binding energy between the ammonia and BP2T molecules derived by employing the Langmuir isotherm model. This work provides essential evidence of the π–π stacking interactions between graphene and aromatic molecules, and the reported approach also has the potential to be widely employed in a variety of graphene functionalizations for chemical detection.

Non-covalent functionalization of graphene has been achieved by employing π–π stacking interactions, and it is promising for ammonia detection with greatly enhanced sensitivity.  相似文献   

20.
The influence of hydrogels on the nanostructural formation of siloxane-polyether nanocomposites was examined. The nanostructure was studied with small-angle X-ray scattering (SAXS) to determine the siloxane nanostructure aggregation mechanisms. The interactions between matrix and drug were examined by infrared spectroscopy to verify the compatibility of the drug with the matrix. For in vitro release tests Piroxicam was used as a model molecule. The variation of the different types of hydrogels, bis-acrylamide (BIS), poly(acrylamide-co-acrylic acid) (PAM) and polyvinylpyrrolidone (PVP) can modify the drug release profiles. The release behaviour was determined to be composed of two concomitant release mechanisms. The first is in the early stages of drug release, governed by erosion, diffusion and swelling and the second, in advanced stages of release, typical of diffusion through pores. These dependencies were found to be correlated to the physical and chemical properties of the nanocomposites, including the interactions disturbing polycondensation formation. The release rate depends on intramolecular matrix–matrix and intermolecular drug–matrix interactions, as well as a crystalline state of the matrix.

Nanostructure and drug dual-release properties correlation for siloxane-polyether nanocomposite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号