首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new structure of a flexible, transparent polyaniline (PANI) ammonia gas sensor is reported. The sensor features a hierarchical nanostructured PANI polymer arranged in a micromesh, exhibiting excellent chemiresistive sensitivity to ammonia gas and near-neutral color transparency. The PANI mesh is embedded in a flexible substrate and therefore exhibits superior mechanical stability against peeling and bending. These merits make it a promising candidate for application in wearable electronics. Moreover, the PANI mesh sensor is fabricated through a cost-effective, solution-based strategy that enables vacuum-free fabrication of a sacrificial catalytic copper mesh followed by in situ polymerization, and this strategy is scalable for high-volume production. We demonstrate the high-performance resistive sensing of ammonia gas with concentrations from 2.5 ppb to 100 ppm using this flexible PANI mesh sensor with an excellent transparency of 88.4% at 600 nm wavelength. Furthermore, no significant degradation in the sensing performance occurs after 1000 bending cycles.

A new solution to flexible transparent polyaniline sensors by introducing hierarchical structures with regular micro meshes and solution-processed fabrication.  相似文献   

2.
Nanozymes have piqued the curiosity of scientists in recent years because of their ability to demonstrate enzyme-like activity combined with advantages such as high stability, inexpensive availability, robust activity, and tunable properties. These attributes have allowed the successful application of nanozymes in sensing to detect various chemical and biological target analytes, overcoming the shortcomings of conventional detection techniques. In this review, we discuss recent developments of nanozyme-based sensors to detect biomarkers associated with food quality and safety. First, we present a brief introduction to this topic, followed by discussing the different types of sensors used in food biomarker detection. We then highlight recent studies on nanozyme-based sensors to detect food markers such as toxins, pathogens, antibiotics, growth hormones, metal ions, additives, small molecules, and drug residues. In the subsequent section, we discuss the challenges and possible solutions towards the development of nanozyme-based sensors for application in the food industry. Finally, we conclude the review by discussing future perspectives of this field towards successful detection and monitoring of food analytes.

We present a discussion on different types of sensors used in food biomarker detection and highlight recent studies on nanozyme-based sensors to detect markers like toxins, pathogens, antibiotics, growth hormones, metal ions, additives, small molecules, drug residues.  相似文献   

3.
It is still a challenge to fabricate flexible pressure sensors that possess high sensitivity, ultralow detection limit, wide sensing range, and fast response for intelligent electronic devices. We here demonstrate superelastic and highly pressure-sensitive polyimide (PI)/reduced graphene oxide (rGO) aerogel sensors with unique honeycomb structure, which were designed and fabricated using a bidirectional freezing technique. This unique honeycomb structure with large aspect ratio is composed of aligned thin lamellar layers and interconnected bridges. The combination of the aligned lamellar layers and the bridges endows the aerogel sensors with high pressure sensitivity (1.33 kPa−1), ultralow detection limit (3 Pa), broad detection range (80% strain, 59 kPa), fast response time (60 ms), and excellent stability during cycling (over 1000 cycles). Remarkably, the aerogel sensors maintain stable piezoresistive performance at −50 °C, 100 °C, and 200 °C in air, indicating promising potential applications in harsh environments. Owing to the high sensitivity and wide sensing range, the aerogel sensors have been used to detect a full-range of human motion including small-scale motion monitoring (wrist pulse, blowing, puffing) and large-scale movement monitoring (finger bending, elbow bending, walking, running). These advantages make the composite aerogels attractive for high-performance flexible pressure sensors and wearable electronic devices.

The polyimide (PI)/reduced graphene oxide (rGO) aerogel sensors possess unique large aspect ratio honeycomb structure, which exhibits superelastic and excellent sensing performance.  相似文献   

4.
This review summarizes the progress that has been made in the past ten years in the field of electrochemical sensing using nanomaterial-based carbon paste electrodes. Following an introduction into the field, a first large section covers sensors for biological species and pharmaceutical compounds (with subsections on sensors for antioxidants, catecholamines and amino acids). The next section covers sensors for environmental pollutants (with subsections on sensors for pesticides and heavy metal ions). Several tables are presented that give an overview on the wealth of methods (differential pulse voltammetry, square wave voltammetry, amperometry, etc.) and different nanomaterials available. A concluding section summarizes the status, addresses future challenges, and gives an outlook on potential trends.

This review summarizes the progress that has been made in the past ten years in the field of electrochemical sensing using nanomaterial-based carbon paste electrodes.  相似文献   

5.
Although organic light emitting diodes (OLEDs) can find important applications in display-related fields, it still remains a challenge to fabricate high-efficiency ultraviolet (UV) OLEDs with tunable wavelength. In this work, we demonstrate a facile method to adjust the electroluminescence (EL) peak from an inverted UV-OLED device that has zinc oxide nanowires (ZnO NWs) as an electron injection layer. The organic–inorganic interface between ZnO NWs and the 3-(4-biphenyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole (TAZ) emission layer employed in this work allows a reduction of the diffusion length of excitons, which further results in a hampered relaxation process of higher energy states as well as a blue shift of the EL spectrum. As a result, the emission peaks of the UV-OLED can be easily adjusted from 383 nm to 374 nm by tuning both the length of the ZnO NWs and the thickness of the TAZ emission layer. Our work reveals an important correlation between emission peaks and exciton diffusion, and presents a novel approach to fabricate high-performance UV-OLEDs with the capability of facilely modifying the emission wavelength.

As organic light emitting diodes (OLEDs) find important applications in display-related fields, we demonstrate the fabrication of an inverted UV-OLED device with tunable wavelength that composes zinc oxide nanowires as an electron injection layer.  相似文献   

6.
The development of wearable devices has shown tremendous dynamism, which places greater demands on the accuracy and consistency of sensors. This work reports a flexible sensing system for human health monitoring of parameters such as human pulse waveform, blood pressure and heart rate. The signal acquisition part is a vertically structured piezoresistive micro-pressure flexible sensor. To ensure accuracy, the sensors are filled with melamine sponge covered by graphene nanoconductive materials as the conductive layer, and ecoflex material acts as the flexible substrate. The flexible sensors fabricated under the 3D printing mold-assisted method exhibited high accuracy, good repeatability and remarkable response to micro-pressure. However, when used for human pulse signal measurement, the sensors are affected by unavoidable interference. In order to collect human health data accurately, signal acquisition and processing systems were constructed. The system allows for the accurate acquisition of human pulse signals, accompanied by the function of non-invasive, real-time and continuous detection of human blood pressure heart rate parameters. By comparing with an Omron blood pressure monitor, the blood pressure heart rate index error of the flexible sensing system does not exceed 3%.

We fabricated a flexible sensing system, including the preparation of sensors and construction of the signal processing computing platform, which enabled human health monitoring by collecting pulse signals.  相似文献   

7.
A tunable near-infrared surface plasmon resonance sensor based on graphene plasmons via electrostatic gating control is investigated theoretically. Instead of the traditional refractive index sensing, the sensor can respond sensitively to the change of the chemical potential in graphene caused by the attachment of the analyte molecules. This feature can be potentially used for biological sensing with high sensitivity and high specificity. Theoretical calculations show that the chemical potential sensing sensitivities under wavelength interrogation patterns are 1.5, 2.21, 3, 3.79, 4.64 nm meV−1 at different wavebands with centre wavelengths of 1100, 1310, 1550, 1700, 1900 nm respectively, and the full width half maximum (FWHM) is also evaluated to be 10, 25.5, 43, 55.5, 77 nm at these different wavebands respectively. It can be estimated that the theoretical limit of detection (LOD) in DNA sensing of the proposed sensor can reach the femtomolar level, several orders of magnitude superior to that of noble metal-based SPR sensors (nanomolar or subnanomolar scale), and is comparable to that of noble metal-based SPR sensors with graphene/Au-NPs as a sensitivity enhancement strategy. The FWHM is much smaller than that of the noble metal-based SPR sensors, making the proposed sensor have a potentially higher figure of merit (FOM). This work provides a new way of thinking to detect in an SPR manner the analyte that can cause chemical potential change in graphene and provides a beneficial complement to refractive index sensing SPR sensors.

A tunable near-infrared surface plasmon resonance sensor based on graphene plasmons via electrostatic gating control is investigated theoretically.  相似文献   

8.
Metal oxide based humidity sensors are important indicators in environmental monitoring. However, most of them are non-transparent and have a long response time, which cannot meet the application of real-time humidity sensing in transparent electronics. Here, we report a metal oxide humidity sensor based on chemically synthesized molybdenum oxide (α-MoO3) thin films. By a green reaction in an ice water bath, the stable precursor containing nanocrystalline colloids was obtained. Molybdenum oxide films with controllable morphology were fabricated through one-step spin coating. The α-MoO3 based humidity sensor exhibits extremely high transparency (85%) in the visible region and has short response and recovery times (0.97 and 12.11 s). In addition, it also shows high sensitivity, good logarithmic linearity and selectivity in a wide relative humidity range of 11% to 95%. The mechanism of humidity sensing was further studied by complex impedance spectroscopy. This novel metal oxide humidity sensor combined with high transparency and fast response speed is expected to broaden the application ranges of humidity sensors.

A transparent and rapid humidity sensor based on α-MoO3 thin films was fabricated by a facile chemical route.  相似文献   

9.
Strain sensor technologies have been spotlighted for their versatility for healthcare, soft robot, and human–robot applications. Expecting large future demands for such technology, extensive studies have investigated flexible and stretchable strain sensors based on various nanomaterials and metal films. However, it is still challenging to simultaneously satisfy parameters such as sensitivity, stretchability, linearity, hysteresis, and mass producibility. In this work, we demonstrate a novel approach for producing highly sensitive metal-grid strain sensors based on an all-solution process, which is suitable for mass production. We investigated the effects of the width of the metal grid and width/spacing ratio on the piezoresistivity of the strain sensors. The metal grid strain sensors exhibited high sensitivity (gauge factor of 4685.9 at 5% strain), rapid response time (∼18.6 ms), and superior strain range (≤5%) compared to other metal-based sensors. We demonstrated that the sensors could successfully convert voice signals and tiny movements of fingers and muscles into electrical signals. In addition, the metal-grid strain sensors were produced using a low-cost procedure without toxic solvent via an all water-based solution process, which is expected to allow the integration of such metal-grid strain sensors into future highly sensitive physical sensing devices.

Highly sensitive strain sensors with metal-grid structures formed by a water-based solution process are presented.  相似文献   

10.
This is an unprecedented report of hydrogel gratings with an analyte responsive dye immobilised in alternating strips where the patterned dye is its own dispersive element to perform spectroscopy. At each wavelength, the diffraction efficiency of hydrogel gratings is a function of dye absorbance, which in turn is dependent on the concentration of analytes in samples. Thus, changes in intensity of diffracted light of hydrogel gratings were measured for sensing of analytes. Equally, the ratio of diffracted intensities at two wavelengths was used for quantification of analytes to reduce errors caused by variations in intensity of light sources and photobleaching of dyes. 15.27 μm pitch gratings were fabricated by exposing 175 μm thick films of photofunctionalisable poly(acrylamide) hydrogel in a laser interferometric lithography setup, generating an array of alternating lines with and without free functional groups. The freed functional groups were reacted with pH sensitive fluorescein isothiocyanate to create gratings for measurement of pH. The ratio of intensity of diffracted light of hydrogel gratings at 430 and 475 nm was shown to be linear over 4 pH units, which compares favourably with ∼2 pH units for conventional absorption spectroscopy. This increased dynamic range was a result of cancellation of the opposite non-linearities in the pH response of the analyte responsive dye and the diffraction efficiency as a function of dye absorbance.

This is an unprecedented report of hydrogel gratings with an analyte responsive dye immobilised in alternating strips where the patterned dye is its own dispersive element to perform spectroscopic sensing.  相似文献   

11.
Owing to its excellent physical and chemical properties, ZnO has been considered to be a promising material for development of NO2 sensors with high sensitivity, and fast response and recovery. However, due to the low activity of ZnO at low temperature, most of the current work is focused on detecting NO2 at high operating temperatures (200–500 °C), which will inevitably increase energy consumption and shorten the lifetime of sensors. In order to overcome these problems and improve the practicality of ZnO-based NO2 sensors, it is necessary to systematically understand the effective strategies and mechanisms of low-temperature NO2 detection of ZnO sensors. This paper reviews the latest research progress of low-temperature ZnO nanomaterial-based NO2 gas sensors. Several efficient strategies to achieve low-temperature NO2 detection (such as morphology modification, noble metal decoration, additive doping, heterostructure sensitization, two-dimensional material composites, and light activation) and corresponding sensing mechanisms (such as depletion layer theory, grain boundary barrier theory, spill-over effects) are also introduced. Finally, the challenges and future development directions of low-temperature ZnO-based NO2 sensors are outlined.

A comprehensive review on designs and mechanisms of ZnO-based NO2 gas sensors operated at low temperature.  相似文献   

12.
Paper is ubiquitous in the daily life and has been widely used for writing and drawing because of their low-cost, widely accessible, and degradable properties. However, simple ways to fabricate paper-based optoelectronic devices remain a great challenge. In this work, we report a facile method to fabricate high-quality perovskite films and optoelectronic devices on paper by direct pen-writing. Through introducing seed layers on papers, planar-integrated single-crystal perovskite films are easily prepared using commercial pens. Based on such a simple and convenient method, perovskite photodetector arrays and image sensors with graphite electrodes are fabricated on paper, and show satisfactory performances. This method provides a simple and effective approach for preparation of paper-based perovskite devices. It will be of significance for the development of degradable optoelectronic devices.

A facile approach to fabricate high-quality perovskite films and optoelectronic devices by pen-writing is reported. With perovskite material and graphite as the photosensitive layer and the electrode, perovskite photodetector arrays are written on paper.  相似文献   

13.
Mesoporous metal films can detect biomarkers with high sensitivity. Further coating the mesoporous metal with polymers enhances sensing selectivity by favoring specific biomarkers against other interferents. In the present study, we report the fabrication of a Nafion®-coated mesoporous Pd film to filtrate interferents present in sweat during non-invasive biosensing. By using a Nafion®-coated mesoporous Pd film, lactic acid, a metabolite present in sweat, can be successfully detected with high sensitivity.

Mesoporous metal films can detect biomarkers with high sensitivity.  相似文献   

14.
Herein, we report the chemiresistive gas and humidity sensing properties of pristine and nickel-doped tin oxide (Ni-SnO2) gas sensors prepared by a microwave-assisted wet chemical method. The structural and optical properties are characterised using X-ray diffraction, scanning electron microscopy, scanning transmission electron microscopy, ultraviolet spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The structural elucidation and morphology analyses confirm a particle size of 32–46 nm, tetragonal rutile crystal structure and small cauliflower-type surface appearance. Nickel doping can tune the structure of NPs and morphology. The tested carbon dioxide gas and humidity sensing properties reveal a rapid sensing performance with high-to-moderate sensitivity. Also, the materials favour gas sensing because their sensitivity is enhanced with the increase in nickel concentration. The sensing results suggest that nickel is a vibrant metal additive to increase the gas sensitivity of the sensor. However, nickel doping decreases the electron density and increases the oxygen vacancies. Ultimately, the gas sensor produces highly rapid sensing with a response time of 4 s.

Herein, we report the chemiresistive gas and humidity sensing properties of pristine and nickel-doped tin oxide (Ni-SnO2) gas sensors prepared by a microwave-assisted wet chemical method.  相似文献   

15.
5-period ZnO/Zn0.9Mg0.1O multiple quantum wells (MQWs) were employed as active layers to fabricate the p-GaN/MQWs/n-ZnO diode by molecular beam epitaxy. It exhibited an efficient UV emission around 370 nm at room temperature. Calculated band structures and carrier distributions showed that electrons were restricted to overflow to the p-type layer, and carriers were confined in the high-quality MQWs well layer.

ZnO/ZnMgO MQWs was employed as an active layer to fabricate p-GaN/MQWs/n-ZnO diode by molecular beam epitaxy. It showed sharp and efficient UV emission around 370 nm due to constraint of carriers in high-quality MQWs well layer.  相似文献   

16.
Monitoring the oil movement using a non-contact optical fiber probe during enhanced oil recovery is a novel technique to increase the efficiency of the process by distinguishing the oil position in the reservoir. A partially unclad fiber Bragg grating (FBG) coated with Fe3O4 nanoparticles as a magnetic field sensor is experimentally demonstrated. A series of six FBGs reflecting different wavelengths are fixed on the surface of sandstone. Nanofluids containing magnetite nanoparticles and alkaline-surfactant-polymer are injected continuously in two separate steps into the sandstone, which is saturated with 20% oil and 80% brine. The chamber is equipped with a solenoid that acts as a magnetic field generator. The changes in the magnetic field strength depended on the FBG-solenoid distance and the density of localized injected nanoparticles near the FBGs leads to a shift of the reflected wavelength of each single FBG accordingly. The shift is caused by the interference of different propagating modes reflected from the core-cladding and cladding-magnetite layer interfaces. The intensity of the FBG spectra decreases by injecting the nanofluid and vice versa for surfactant injection. The sensor response time of ∼21 s confirms the high reliability and repeatability of the sensing scheme. Movement of oil along the sandstone alters the wavelength shift in the FBG spectra.

Monitoring the oil movement using a non-contact optical fiber probe during enhanced oil recovery is a novel technique to increase the efficiency of the process by distinguishing the oil position in the reservoir.  相似文献   

17.
Nitrogen-doped carbon quantum dots (N-CQDs) exhibit a high quantum yield with controllable emission wavelength and intensity in the blue-green regime. N-CQDs were tested and determined to be thermally and optically stable during 150 °C heat treatment and prolonged UV irradiation. Potential applications of N-CQDs were demonstrated, including excellent Fe3+ sensing in aqueous solution, fluorescent polymer fibres, and stealth quick response coding at visible wavelengths.

Carbon quantum dots have received attention due to their environmental friendliness, low biological toxicity and production cost. Polymer–CQD composite fibers, detection of Fe3+, and stealthy fluorescent labels made by thermal transfer printing are potential applications.  相似文献   

18.
Bionic electronic skin with human sensory capabilities has attracted extensive research interest, which has been applied in the fields of medical health diagnosis, wearable electronics, human–computer interaction, and bionic prosthetics. Electronic skin tactile pressure sensing required high sensitivity, good resolution and fast response for sensing different pressure stimuli. In particular, there were still great challenges in the detection of wide pressure and the preparation of sensitive unit microstructures. Here, the direct-write printing of Weissenberg principle to fabricate GNPs/MWCNT filled conductive composite flexible pressure sensors on PDMS substrates was proposed. The effects of platform moving speed, microneedle rotation speed and the number of direct-write times on the line width of the pressure sensitive structure were investigated based on orthogonal experiments, and the optimal direct-write printing parameters were obtained. The performance of the S-shaped polyline pressure sensor was tested, in which the sensitivity could reached 0.164 kPa−1, and the response/recovery time was 100 ms and 100 ms respectively. The capture cases of objects of different quality and objects with flat/curved surfaces were successively demonstrated to exhibit its excellent sensitivity, stability and fast response performance. This work may paved the road for future integration of high-performance electronic skin in smart robotics and prosthetic solutions.

Bionic electronic skin with human sensory capabilities has attracted extensive research interest, which has been applied in the fields of medical health diagnosis, wearable electronics, human–computer interaction, and bionic prosthetics.  相似文献   

19.
Paper-based sensing platforms hold promise in human physiological health monitoring, soft robots, and indoor environment monitoring, owing to their cost effectiveness, flexibility, disposability, and biodegradability. However, most of the existing paper-based sensors require complex fabrication procedures which are also associated with high-cost. Herein, we report a simple yet effective manufacturing process of paper-based carbonaceous sensors based on a laser direct writing (LDW) method. Specifically, carbonaceous pressure, temperature, and humidity sensors on cardboard are developed for human physiological signal monitoring and indoor environment monitoring. Due to the external force induced compaction of the layered carbon flakes, the LDW pressure sensor array has a sensitivity of ∼−0.563 kPa−1, a broad sensing range (0.009–50 kPa), and a high mechanical durability (over 11 000 cycles), all of which are promising for human health monitoring. The LDW-temperature and humidity devices have sensitivities of −0.002/°C and 36.75 fF per %RH, respectively. A prototype is developed using cardboard integrated with temperature and humidity sensors, which not only serves as an ornament to decorate homes but also works as a sensor platform for indoor environment monitoring. Systematic investigation of the LDW manufacturing process, sensing mechanisms, and sensor design and evaluation illustrates the key aspects of carbonaceous sensors.

Carbonaceous sensors on cardboard can be used for human health and indoor environment monitoring.  相似文献   

20.
The methanol oxidation reaction (MOR) has recently gained a lot of attention due to its application in fuel cells and electrochemical sensors. To enhance the MOR, noble metal nanoparticles should be homogeneously dispersed on the electrode surface with the aid of one suitable support. In this work, 4-aminothiophenol (4-ATP) molecules which contain simultaneously amine and thiol groups were electro-grafted onto the electrode surface to provide anchoring sites, limit aggregation and ensure good dispersion of metal nanoparticles. The results showed a high density of platinum nanoparticles (PtNPs) with an average size of 25 nm on the glassy electrode modified with a 4-ATP supporting layer. Consequently, the MOR was improved by 2.1 times with the aid of the grafted 4-ATP layer. The electrochemical sensor based on PtNPs/4-ATP/GCE is able to detect MeOH in a linear range from 1.26 to 21.42 mM with a detection limit of 1.21 mM.

Well-dispersed Pt nanoparticles for MOR reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号