首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rationally designed precursors of N-doped carbon are crucial for high performance carbon materials of supercapacitor electrodes. Herein, we report a scalable preparation of hierarchically structured N-doped carbon of micro/meso porous nanofiber morphology by using a supramolecular assembled polypyrrole as the precursor. The influences of the dose of supramolecular dopant on final products after carbonization and sequential chemical activation were investigated. The interconnected nanofiber backbone allows better electron transport and the optimized hierarchically porous structure of the material exhibits a large specific surface area of 2113.2 m2 g−1. The N content of the carbon is as high as 6.49 atom%, which is favorable to improve the supercapacitive performance via additional reversible redox reaction over pure carbon. The hierarchically porous N-doped carbon electrode delivered an outstanding specific capacitance of 435.6 F g−1 at 0.5 A g−1, significantly higher than that of the control sample derived from undoped polypyrrole samples. Moreover, the capacitance retention is as high as 96.1% after 5000 cycles. This precursor''s structural control route is readily applicable to various conducting polymers, and provides a methodology to design carbon materials with advanced structure for developing high-performance supercapacitor electrode materials.

Hierarchically porous N-doped carbon with optimized morphology exhibits an enhanced specific capacitance of 435.6 F g−1 at 0.5 A g−1 and 96.1% capacitance retention after 5000 cycles in 1 M H2SO4.  相似文献   

2.
Biomass-derived carbon materials have been widely researched due to their advantages such as low cost, environmental friendliness, readily available raw materials. Black fungus and Hericium erinaceus contain many kinds of amino acids. In this paper, unique O, N-codoped black fungus-derived activated carbons (FACX), and Hericium erinaceus-derived activated carbons (HACX) were prepared by KOH chemical activation under different temperatures without adding additional reagents containing nitrogen and oxygen functional groups, respectively. As electrode materials of symmetric supercapacitors, FAC2 and HAC2 calcined at 800 °C exhibited the highest specific capacitance of 209.3 F g−1 and 238.6 F g−1 at 1.0 A g−1 in the two-electrode configuration with 6.0 M KOH as the electrolyte, respectively. The X-ray photoelectron spectroscopy confirmed that the as-synthesized FACX and HACX contained small amounts of nitrogen and oxygen elements. Moreover, heteroatom-doped FAC2 and HAC2 electrode materials shown excellent rate performance (84.1% and 75.0% capacitance retention at 20 A g−1, respectively). By comparison, the oxygen-rich hierarchical porous carbon (HAC2) shows higher specific capacitance and energy density and longer cycling performance. Nevertheless, carbon-rich hierarchical porous carbon (FAC2) indicates excellent rate performance. Biomass-derived heteroatom self-doped porous carbons are expected to become ideal active materials for high performance supercapacitor.

Biomass-derived heteroatom self-doped porous carbons are expected to become ideal active materials for high performance supercapacitor.  相似文献   

3.
N-doped porous carbon nanospheres were fabricated directly by pyrolyzing chitin nanogels, which were facilely prepared by mechanical agitation induced sol–gel transition of chitin solution in NaOH/urea solvent. The resulting carbon nanospheres displayed ordered micropores (centered at ∼0.6 nm) and high BET surface area of up to 1363 m2 g−1, which is substantially larger than that of the carbons from raw chitin (600 m2 g−1). In addition, the carbon nanospheres retained a nitrogen content of 3.2% and excellent conductivity. Consequently, supercapacitor electrodes prepared from the carbon nanospheres pyrolyzed at 800 °C showed a specific capacitance as high as 192 F g−1 at a current density of 0.5 A g−1 and impressive rate capability (81% retention at 10 A g−1). When assembled in a symmetrical two-electrode cell, N-doped porous carbon nanospheres demonstrated excellent cycling stability both in aqueous and organic electrolytes (95% retention after 10 000 cycles at 10 A g−1), together with outstanding energy density of 5.1 W h kg−1 at the power density of 2364.9 W kg−1. This work introduces a novel and efficient method to prepared N-doped porous carbon nanospheres directly from chitin and demonstrates the great potential of utilization of abundant polymers from nature in power storage.

N-doped microporous carbon nanospheres were directly carbonized from chitin nanogels and demonstrated fascinating supercapacitance performance.  相似文献   

4.
A gel carbonization strategy for the synthesis of hierarchical porous carbons (HPCs) from carboxylated coal-tar pitches (CCP) functional poly(acrylic acid) (PAA) hydrogel networks for advanced supercapacitor electrodes was reported. The amphiphilic CCP and PAA polymer could be easily self-assembled to gel by the major driving force of hydrogen bonding and π–π stacking. The HPCs containing interconnected macro-/meso-/micropores were fabricated by direct carbonization of the dried hydrogels. The resultant HPCs with a high specific surface area and total pore volume of 1294.6 m2 g−1 and 1.34 cm3 g−1 respectively, as a supercapacitor electrode exhibit a high specific capacitance of 292 F g−1 at 1.0 A g−1 in two-electrode system. The electrode also exhibits ultra-long cycle life with a capacitance retention as high as 94.2% after 10 000 cycles, indicating the good electrochemical stability. Furthermore, the concept of such hierarchical architecture and synthesis strategy would expand to other materials for advanced energy storage systems, such as Na-ion batteries and metal oxides for supercapacitors.

As a supercapacitor electrode exhibit a high specific capacitance of 292 F g−1 at 1.0 A g−1.  相似文献   

5.
Biomass-derived porous carbon materials have drawn considerable attention due to their natural abundance and low cost. In this work, nitrogen enriched porous carbons (NRPCs) with large surface areas were designed and prepared from cottonseed hull via simultaneous carbonization and activation with a facile one-pot approach. The NRPCs were tunable in terms of pore structure, nitrogen content and morphology by adjusting the ratio of the carbon precursor (cottonseed hull), nitrogen source (urea), and activation agent (KOH). The as-synthesized NRPCs exhibited three-dimensional oriented and interlinked porous structure, high specific surface area (1160–2573 m2 g−1) and a high level of nitrogen-doping (6.02–10.7%). In a three electrode system, NRPCs prepared at 800 °C with the ratio (cottonseed hull : KOH : urea) of 1 : 1 : 2 (NRPC-112) showed a high specific capacitance of 340 F g−1 at a current density of 0.5 A g−1 and good rate capability (∼80% retention at a current density of 10 A g−1) with 6 M KOH as electrolyte. In a two electrode cell, NRPC-112 demonstrated a high specific capacitance of 304 F g−1 at 0.5 A g−1 and an excellent rate capacity (∼71% retention at current density of 10 A g−1) as well as excellent cycling stability (∼91% retention at 5 A g−1) after 5000 cycles. Furthermore, the NRPCs exhibited an extraordinary adsorption capacity up to 205 mg g−1 for emerging pollutant triclosan. The work provided a sustainable approach to prepare functional carbon materials from biomass-based resource for environment remediation and electrochemical applications.

Biomass derived nitrogen-enriched porous carbon materials from cottonseed hull for emerging pollutant triclosan removal and electrochemical application.  相似文献   

6.
A green method is designed to obtain hierarchical porous carbon nanofibers from coal. In the work, deionized water, coal, polyvinyl alcohol and Pluronic F127 are used as the aqueous solution, carbon source, spinning assistant and soft template for spinning, respectively. As electrode materials for supercapacitors, the obtained hierarchical porous carbon nanofibers exhibit a high specific capacitance of 265.2 F g−1 at 1.0 A g−1 in 6 M KOH, a good rate performance with a capacitance of 220.3 F g−1 at 20.0 A g−1 with the retention of 83.1% and a superior cycle stability without capacitance loss after 20 000 charge/discharge cycles at 10.0 A g−1. Compared with the carbon nanofibers constructed without Pluronic F127, the enhanced electrochemical performance of the sample benefits from a larger contact surface area and the mesoporous structure formed by decomposition of Pluronic F127 and good structural stability. This work not only provides a green route for high-value utilization of coal in energy storage, but also paves a new way to make hierarchical porous carbon nanofibers from coal for supercapacitor electrodes with high specific capacitance and long cycle life.

A green method is designed to obtain hierarchical porous carbon nanofibers from coal for supercapacitor electrodes with high specific capacitance and long cycle life.  相似文献   

7.
Biomass porous carbon materials are ideal supercapacitor electrode materials due to their low price, rich source of raw materials and environmental friendliness. In this study, an ultrasonic-assisted method was applied to synthesize the rice-straw-based porous carbon (UPC). The obtained UPC exhibited a two-dimensional structure and high specific surface area. In addition, the electrochemical test results showed that the UPC with a 1 hour ultrasonic treatment and lower activation temperature of 600 °C (UPC-600) demonstrated optimal performance: high specific capacitances of 420 F g−1 at 1.0 A g−1 and 314 F g−1 at a high current of 10 A g−1. Significantly, the symmetric supercapacitors showed a high energy density of 11.1 W h kg−1 and power density of 500 W kg−1. After 10 000 cycles, 99.8% of the specific capacitance was retained at 20 A g−1. These results indicate that UPC-600 is a promising candidate for supercapacitor electrode materials.

Rice-straw-based porous carbon was successfully prepared via an ultrasonic-assisted method to lower activation temperature and for ultra-stable electrode materials of symmetric supercapacitors.  相似文献   

8.
The exploitation of efficient renewable energy resources and the promotion of added value of agricultural products are always hot topics. In this study, we present a novel porous carbon material for high performance supercapacitor applications made from the byproduct of bean curd stick manufacture. The as-prepared carbon material possesses a hollow interconnected structure with a large specific surface area (2609 m2 g−1), while containing 5.01% oxygen and 1.75% nitrogen heteroatoms. Therefore, besides electrical double-layer capacitance, it can also produce additional pseudocapacitance to enhance the overall capacitance. Benefiting from these advantages of structure and composition, the bean curd stick based porous carbon material demonstrates a high specific capacitance of 405 F g−1 at 0.5 A g−1. Moreover, the presented porous carbon material based symmetric supercapacitor also offers a high energy density (11.35 W h kg−1 at a power density of 125 W kg−1). All the above findings indicate that the byproduct of bean curd stick manufacture is an excellent optional material for preparing high-performance supercapacitor material. Simultaneously, this work also provides an effective strategy for adding value to agricultural products.

Preparation of heteroatom-functionalized porous carbon derived from byproducts of bean curd stick manufacture as an electrode material for high performance supercapacitors.  相似文献   

9.
Transition metal oxides are commonly used in electrochemical energy storage materials, but there are still many drawbacks that impede a wide range of applications. Heteroatom doping can significantly improve its performance. Herein, we have successfully prepared highly uniform N-doped NiCo2O4@C hollow nanostructures for supercapacitors by a two-step hydrothermal treatment associated with successive annealing process. Prepared N-doped NiCo2O4@C materials exhibited an admirable specific capacitance of 1028 F g−1 at a current density of 3 A g−1, with 625 F g−1 remaining even at high current density of 20 A g−1. Besides, this composite showed good electrochemical stability with capacity retention of 84% after 5000 cycles repetitive galvanostatic charge–discharge test at 10 A g−1. An asymmetric supercapacitor was assembled by the N-doped NiCo2O4@C electrode, attached activate carbon (AC) as a counter electrode, exhibiting a high energy density of 26.67 W h kg−1 at a power density of 402 W kg−1. The improvement of electrochemical performance is ascribed to the co-doping of nitrogen and carbon atoms. These results indicate that N-doped NiCo2O4@C can be employed as an ideal electrode material for electrochemical energy storage.

Procedure for fabricating N-doped NiCo2O4@C hollow nanostructures.  相似文献   

10.
N-doped porous metal–organic framework (MOF)-derived carbons (MDCs) were directly synthesized from a new Zn-DpyDtolP-MOF (ZnDpyDtolP·1/2DMF, H2DpyDtolP = 5,15-di(4-pyridyl)-10,20-di(4-methylphenyl)porphyrin) containing a 3D hexagonal network through a self-templated carbonization method. KOH-activated MDC derivatives denoted as MDC-700-nKOH were also prepared with different weight ratios of KOH activator to MDC (MDC : KOH = 1 : n, where n = 1, 2). Compared to bare MDC, MDC-700-nKOH showed effective improvements of both gas sorption and electrochemical capacitive properties. More developed microporosity by KOH activation might induce great enhancement of high operating capacitive performances. The N-doped MDC-700-2KOH had high maximum gravimetric specific capacitance (555.6 F g−1) and specific energy (40.4 W h kg−1) at 0.1 A g−1 in 1 M H2SO4. Even at a high current density of 190 A g−1 in 6 M KOH, it exhibited high capacitive performance with a large specific power of 80 423 W kg−1. MDC-700-nKOH electrodes also showed good recycling properties of electrochemical capacitance up to 30 000 cycles.

The porphyrin-based Zn-MOF is directly carbonized and activated by KOH for the generation of N-doped porous carbons acting as high performance supercapacitor electrode materials.  相似文献   

11.
Tremella-like NiO microspheres embedded with fish-scale-like polypyrrole (PPy) were synthesized by polymerizing pyrrole (Py) onto uniform NiO nanosheets. PPy has a fish-scale-like appearance with a thickness of approximately 10 nm, and is connected to the NiO nanosheet surface. NiO/PPy microspheres (diameter of ∼4 μm) were applied as the electrode material in a supercapacitor. The NiO/PPy-6 obtained under a NiO : Py molar ratio of 6 shows a high specific capacitance of 3648.6 F g−1 at 3 A g−1 and good rate capability (1783 F g−1 at a high current density of 30 A g−1). An asymmetric supercapacitor (ASC) was fabricated using NiO/PPy-6 and activated carbon (AC) as the positive electrode and the negative electrode, respectively. NiO/PPy-6//AC can achieve a high specific capacitance of 937.5 F g−1 at 3 A g−1 and a high energy density of 333.3 W h kg−1 at a power density of 2399.99 W kg−1. The excellent supercapacitor performance is assigned to the combined contribution of both components and the unique heterostructure in NiO/PPy-6.

Tremella-like NiO/fish-scale-like PPy was fabricated via a solvothermal process coupled with in situ polymerization. The NiO/PPy-6//AC asymmetric supercapacitor can achieve a high specific capacitance and maintain a specific capacitance at 88.2% after 10 000 cycles.  相似文献   

12.
An asymmetric supercapacitor (ASC) was constructed using a polythiophene/aluminium oxide (PTHA) nanocomposite as an anode electrode and charcoal as a cathode electrode. The highest specific capacitance (Csp) of the PTHA electrode was found to be 554.03 F g−1 at a current density (CD) of 1 A g−1 and that of the charcoal electrode was 374.71 F g−1 at 1.4 A g−1, measured using a three electrode system. The maximum Csp obtained for the assembled PTHA//charcoal asymmetric supercapacitor (ASC) was 265.14 F g−1 at 2 A g−1. It also showed a high energy density of 42.0 W h kg−1 at a power density of 735.86 W kg−1 and capacitance retention of 94.61% even after 2000 cycles. Moreover, it is worth mentioning that the asymmetric device was used to illuminate a light emitting diode (LED) for more than 15 minutes. This PTHA//charcoal ASC also possesses stable electrochemical properties in different bending positions and hence finds a promising application in flexible, wearable and portable energy storage electronic devices.

A high energy density flexible solid-state asymmetric supercapacitor is fabricated using polythiophene nanocomposites and charcoal which exhibits stable electrochemical properties in different bending position.  相似文献   

13.
High surface area activated carbons (ACs) were prepared from a hydrochar derived from waste onion peels. The resulting ACs had a unique graphene-like nanosheet morphology. The presence of N (0.7%) and O content (8.1%) in the OPAC-800 °C was indicative of in situ incorporation of nitrogen groups from the onion peels. The specific surface area and pore volume of the best OPAC sample was found to be 3150 m2 g−1 and 1.64 cm3 g−1, respectively. The hydrogen uptake of all the OPAC samples was established to be above 3 wt% (at 77 K and 1 bar) with the highest being 3.67 wt% (800 °C). Additionally, the OPAC-800 °C achieved a specific capacitance of 169 F g−1 at a specific current of 0.5 A g−1 and retained a capacitance of 149 F g−1 at 5 A g−1 in a three electrode system using 3 M KNO3. A symmetric supercapacitor based on the OPAC-800 °C//OPAC-800 °C electrode provided a capacitance of 158 F g−1 at 0.5 A g−1. The maximum specific energy and power was found to be 14 W h kg−1 and 400 W kg−1, respectively. Moreover, the device exhibited a high coulombic efficiency of 99.85% at 5 A g−1 after 10 000 cycles. The results suggested that the high surface area graphene-like carbon nanostructures are excellent materials for enhanced hydrogen storage and supercapacitor applications.

Graphene-like activated carbons (ACs), with excellent properties for enhanced hydrogen storage and supercapacitor applications, were prepared from waste onion peels.  相似文献   

14.
Hollow ZIF-8 was assembled into fiber to fabricate a nitrogen-doped hierarchical porous CNF electrode, which exhibits specific capacitance of 394 F g−1 at 1 A g−1 and excellent rate performance with a retention of up to 76.1% at 20 A −1, exceeding those of many previously reported 1D carbon materials.

Hollow ZIF-8 shells were assembled into fibers to obtain nitrogen-doped hierarchical porous carbon nanofibers for excellent supercapacitor application.  相似文献   

15.
Nowadays, designing heteroatom-doped porous carbons from inexpensive biomass raw materials is a very attractive topic. Herein, we propose a simple approach to prepare heteroatom-doped porous carbons by using nettle leaves as the precursor and KOH as the activating agent. The nettle leaf derived porous carbons possess high specific surface area (up to 1951 m2 g−1), large total pore volume (up to 1.374 cm3 g−1), and high content of nitrogen and oxygen heteroatom doping (up to 17.85 at% combined). The obtained carbon as an electrode for symmetric supercapacitors with an ionic liquid electrolyte can offer a superior specific capacitance of 163 F g−1 at 0.5 A g−1 with a capacitance retention ratio as high as 67.5% at 100 A g−1, and a low capacitance loss of 8% after 10 000 cycles. Besides, the as-built supercapacitor demonstrates a high specific energy of 50 W h kg−1 at a specific power of 372 W kg−1, and maintains 21 W h kg−1 at the high power of 40 kW kg−1. Moreover, the resultant carbon as a Li-ion battery anode delivers a high reversible capacity of 1262 mA h g−1 at 0.1 A g−1 and 730 mA h g−1 at 0.5 A g−1, and maintains a high capacity of 439 mA h g−1 after 500 cycles at 1 A g−1. These results demonstrate that the nettle leaf derived porous carbons offer great potential as electrodes for advanced supercapacitors and lithium ion batteries.

Nettle leaf derived nitrogen and oxygen dual-doped porous carbons exhibit great potential as anodes for high performance supercapacitors and lithium ion batteries.  相似文献   

16.
To design high specific surface area and optimize the pore size distribution of materials, we employ a combination of carbonization and KOH activation to prepare activated carbon derived from ground grain hulls. The resulting carbon material at lower temperature (800, BSAC-A-800) exhibits a porous structure with a high specific surface area of 1037.6 m2 g−1 and a pore volume of 0.57 m3 g−1. Due to the synergistic structural characteristics, BSAC-A-800 reveals preferable capacitive performance, showing a specific capacitance as high as 313.3 F g−1 at 0.5 A g−1, good rate performance (above 73%), and particularly stable cycling performance (99.1% capacitance retention after 10 000 cycles at a current density of 10 A g−1). More importantly, the assembled symmetric supercapacitor using a water-in-salt electrolyte (17 m NaClO4) with high discharge specific capacitance (59 F g−1 at 0.5 A g−1), high energy density (47.2 W h kg−1) and high voltage (2.4 V) represents significant progress towards performance comparable to that of commercial salt-in-water electrolyte supercapacitors (with discharge specific capacitance of 50 F g−1, energy densities of ∼28.1 W h kg−1 and voltages of 2.0 V).

To design high specific surface area and optimize the pore size distribution of materials, we employ a combination of carbonization and KOH activation to prepare activated carbon derived from ground grain hulls.  相似文献   

17.
A simple template-free method of preparing mesoporous TiN nanostructures directly on Ti foils is developed by combining hydrothermal, ion exchange and nitridation reactions. The as-prepared TiN nanosheet arrays on Ti foils can be directly used as an electrode without any subsequent processing, and are found to be a good capacitance material. The specific capacitance of the TiN nanosheets electrode measured at the current density of 0.5 A g−1 reaches 81.63 F g−1, and the capacitance retention is still 75% after 4000 cycles. The symmetric supercapacitor made up of two TiN nanosheet electrodes sandwiching a solid electrolyte (polyvinyl alcohol in KOH) shows a specific capacitance of 0.42 F cm−3, and retains 77.6% of the capacitance even at the current density of 12.5 mA cm−3.

Mesoporous TiN nanostructures were fabricated directly on Ti foils, which can be used as an electrode directly. The specific capacitance at the current of 0.5 A g−1 reaches 81.63 F g−1, and the capacitance retention is still 100% after 2500 cycles.  相似文献   

18.
A novel asymmetric supercapacitor (ASC) is assembled on the basis of an inerratic hexagonal-like WO3 nanorod bundle as a negative electrode and graphene-like alfalfa-derived porous activated carbon (APAC) as the positive electrode in 1 M H2SO4 aqueous electrolyte. The WO3 nanostructures prepared at pH of 1.6, 1.8, 2.0, 2.5 and 3.0 display hexagonal disc-like, nanorod bundle, inerratic hexagonal-like, sphere-like, and needle-shaped nanorod morphology. WO3-2.0, which was prepared at a pH of 2.0, exhibits high specific capacitance (415.3 F g−1 at 0.5 A g−1). APAC-2, which had the mass ratios of dried alfalfa and ZnCl2 as 1 : 2, showed a 3D porous structure, large surface area (1576.3 m2 g−1), high specific capacitance (262.1 F g−1 at 0.5 A g−1), good cycling stability with 96% of initial specific capacitance after 5000 consecutive cycles. The ASC assembled with WO3-2.0 and APAC-2 exhibits high energy density (27.3 W h kg−1 at a power density of 403.1 W kg−1), as well as good electrochemical stability (82.6% capacitance retention after 5000 cycles). Such outstanding electrochemical behavior implies that the electrode materials are promising for practical energy-storage systems.

A asymmetric supercapacitor is assembled on the basis of an inerratic hexagonal-like WO3 nanorod bundle as a negative electrode and graphene-like alfalfa-derived porous activated carbon as the positive electrode in 1 M H2SO4 aqueous electrolyte.  相似文献   

19.
Biomass-derived porous carbon has received increasing attention as an energy storage device due to its cost-effectiveness, ease of manufacture, environmental friendliness, and sustainability. In this work, phosphorus-doped porous carbon was prepared from biomass sawdust (carbon source) and a small amount of phosphoric acid (P-doping source and gas expanding agent) by one-step carbonization. For comparison, parallel studies without phosphate treatment were performed under the same conditions. Benefiting from the addition of phosphoric acid, the prepared carbon material has higher carbon yield, higher specific area and micropore volume. Due to the heteroatom doping of P in the carbon material, the optimized PC-900 sample not only exhibits high specific capacitances of 292 F g−1 and 169.4 F g−1 at current densities of 0.1 A g−1 and 0.5 A g−1, respectively, but also excellent cycle longevity (98.3% capacitance retention after 5000 cycles) in 1 M H2SO4. In addition, the supercapacitor exhibits a high energy density of 10.6 W h kg−1 when the power density is 224.8 W kg−1 at a discharge current density of 0.5 A g−1. This work proposes a sustainable strategy to reuse waste biomass in high-performance and green supercapacitors for advanced energy storage equipment.

P-doped porous carbon can be prepared by one-step carbonization using biomass sawdust impregnated with a small amount of phosphoric acid.  相似文献   

20.
B, N dual-doped sisal-based activated carbon (BN-SAC) with a multiscale porous structure for high-rate supercapacitor electrode was prepared through a novel and facile strategy. With the inherent cellular channels serving as primary macropores, secondary mesopores and micropores are generated on the fiber surface and tracheid walls through low-pressure rapid carbonization of (NH4)2B4O7-containing sisal fibers and successive KOH activation. In addition to introducing B, N atoms into the BN-SAC, the additive also facilitates the formation of mesopores due to the rapid gas evaporation during its decomposition, leading to significantly increased specific surface area (2017 m2 g−1) and mesoporosity (68.6%). As a result, the BN-SAC-3 shows highly enhanced electrochemical performance including a high specific capacitance of 304 F g−1, excellent rate capability (with 72.6% retention at 60 A g−1) and superior cycling stability (4.6% capacitance loss after 3000 cycles). After assembling the BN-SAC-3 into symmetric supercapacitor, it shows a specific capacitance of 258 F g−1 at 1 A g−1 with 76.4% retention at 40 A g−1 in 6 M KOH electrolyte, and delivers a maximum energy density of 24.3 W h kg−1 at a power density of 612.8 W kg−1 in 1 M TEABF4/AN electrolyte. This work provides a new strategy for the synthesis of multiscale porous ACs for high-performance supercapacitors or other energy storage and conversion devices and is expected to be applied on other biomasses for large-scale production.

B, N dual-doped sisal-based activated carbon (BN-SAC) with a multiscale porous structure for high-rate supercapacitor electrode was prepared through a novel and facile strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号