首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of spiro-[indoline-3,3′-pyrrolizin/pyrrolidin]-2-ones, 4, 5 and 6 were synthesized in a sequential manner from Cu–TEMPO catalyzed dehydrogenation of alkylated ketones, 1 followed by 1,3-dipolar cycloaddition of azomethine ylides via decarboxylative condensation of isatin, 2 and l-proline/sarcosine, 3 in high regioselectivities and yields. The detailed mechanistic studies were performed to identify the reaction intermediates, which revealed that the reaction proceeds via dehydrogenative cycloaddition. Additionally, the regio and stereochemistry of the synthesized derivatives were affirmed by 2D NMR spectroscopic studies. The synthesized derivatives were explored further with molecular docking, in vitro antioxidant, and anti-diabetic activities.

A series of spiro-[indoline-3,3′-pyrrolizin/pyrrolidin]-2-ones were synthesized from Cu–TEMPO catalyzed dehydrogenation followed by 1,3-dipolar cycloaddition of azomethine ylides via decarboxylative condensation, resulting in high regioselectivities and yields.  相似文献   

2.
The three-component reaction of 1,2,3,4-tetrahydroisoquinoline, isatins and 3-phenacylideneoxindoles in refluxing ethanol afforded dispiro[indoline-3,1′-pyrrolo[2,1-a]isoquinoline-3′,3′-indolines] (4a–4x) in good yields via 1,3-dipolar cycloaddition of in situ generated azomethine ylide with the exocyclic double bond of 3-phenacylideneoxindoles. 1H NMR spectra and single crystal structures indicated the reaction has high regioselectivity and diastereoselectivity. Furthermore, their biological activities have been preliminarily demonstrated by in vitro evaluation against mouse breast cancer cells 4T1 and human liver cancer cells HepG2 by MTT assay. The results demonstrated that some of the compounds showed cytotoxicities to cell lines of 4T1 and HepG2, and indicated that novel spirooxindoles may become potential lead compounds for further biological screenings of their medicinal applications.

The three-component reaction of 1,2,3,4-tetrahydroisoquinoline, isatins and 3-phenacylideneoxindoles in refluxing ethanol afforded dispiro[indoline-3,1′-pyrrolo[2,1-a]isoquinoline-3′,3′-indolines] (4a–4x) in good yields via 1,3-dipolar cycloaddition.  相似文献   

3.
A set of dispiro[indoline-3,2′-pyrrolidine-3′,3′′-pyrrolidines] 8a–l was regioselectively synthesized utilizing multi-component azomethine cycloaddition reaction of 3-(arylmethylidene)pyrrolidine-2,5-diones 5a–e, isatins 6a–c and sarcosine 7. Single crystal X-ray studies of 8c add conclusive support for the structure. Compounds 8e and 8g reveal cholinesterase inhibitory properties with promising efficacy against both AChE and BChE and were found to be more selective towards AChE than BChE as indicted by the selectivity index like Donepezil (a clinically used cholinesterase inhibitory drug). Molecular modeling studies assist in understanding the bio-observations and identifying the responsible parameters behind biological properties.

Dispiro[indoline-3,2′-pyrrolidine-3′,3′′-pyrrolidines] were regioselectively synthesized revealing cholinesterase (AChE, BChE) inhibitory properties.  相似文献   

4.
A new versatile strategy involving a sequential four-component reaction of the nitroketene dithioacetals, alkylamine/benzylamine, isatin and various enolizable active methylene structures (pyrazolone, barbituric acid, 1,3-indandione and 2-hydroxy-1,4-naphthoquinone) as precursors under mild and catalyst-free conditions results in the synthesis of new functionalized spirooxindole pyrans named spiro[indoline-3,4′-pyrano[2,3-c]pyrazol], spiro[indoline-3,5′-pyrano[2,3-d]pyrimidine], spiro[indeno[1,2-b]pyran-4,3′-indoline] and spiro[benzo[g]chromene-4,3′-indoline] in moderate to good yields. The use of various active methylene compounds affords a range of skeletally distinct spirooxindole-based heterocycles with potential biological properties. The present strategy has many advantages, such as convenient one-pot operation, simple workup procedures and straightforward isolation without using tedious purification steps such as column chromatography, progress under catalyst-free condition and high molecular diversity.

Synthesis of spirooxindole pyrans by a sequential four-component reaction of nitroketene dithioacetals, alkylamine/benzylamine, isatin, and active methylene compounds.  相似文献   

5.
A convenient and efficient method for the regioselective macrocyclization of triazole bridged spiropyrrolidine-oxindole, and bis-spiropyrrolizidine-oxindole derivatives was accomplished through intra and self-intermolecular [3 + 2] cycloaddition of azomethine ylides. The chalcone isatin precursors 9a–i required for the click reaction were obtained from the reaction of N-alkylazidoisatin 4 and propargyloxy chalcone 8a–i which in turn were obtained by the aldol condensation of propargyloxy salicylaldehyde 6 and substituted methyl ketones 7a–i. The regio- and stereochemical outcome of the cycloadducts were assigned based on 2D NMR and confirmed by single crystal XRD analysis. High efficiency, mild reaction conditions, high regio- and stereoselectivity, atom economy and operational simplicity are the exemplary advantages of the employed macrocyclization procedure.

Spiropyrrolidine-oxindole grafted and bis-spiropyrrolizidine-oxindole grafted macrocyles with triazole as a spacer unit have been achieved via regioselective and stereoselective intra and self-intermolecular [3 + 2] cycloaddition of azomethine ylides (click reaction).  相似文献   

6.
A series of binuclear dysprosium compounds, namely, [Dy(api)]2 (1), [Dy(api)]2·2CH2Cl2 (2), [Dy(Clapi)]2·2C4H8O (3), and [Dy(Clapi)]2·2C3H6O (4) (H3api = 2-(2-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazoline; H3Clapi = 2-(2′-hydroxy-5′-chlorophenyl)-1,3-bis[3′-aza-4′-(2′′-hydroxy-5′′-chlorophenyl)prop-4′-en-1′-yl]-1,3-imidazolidine), have been isolated by the reactions of salen-type ligands H3api/H3Clapi with DyCl3·6H2O in different solvent systems. Structural analysis reveals that each salen-type ligand provides a heptadentate coordination pocket (N4O3) to encapsulate a DyIII ion and all of the DyIII centers in 1–4 adopt a distorted square antiprism geometry with D4d symmetry. Magnetic studies showed that compound 1 did not exhibit single-molecule magnetic (SMMs) behavior. With the introduction of different lattice solvents, compounds 2–4 showed filed-induced slow magnetic relaxation with barriers Ueff of 18.2 K (2), 28.0 K (3) and 16.4 K (4), respectively. Ab initio calculations were employed to interpret the magnetization behavior of 1–4. The combination of experimental and theoretical data reveal the importance of the weak exchange interaction between the DyIII ions in the observation of slow magnetic relaxation, and a relaxation mechanism has been developed to rationalize the observed difference in the Ueff values. The different lattice solvents influence Dy–O–Dy bond angles and thus alter the torsion of the square antiprism geometry, consequently resulting in distinct magnetic interactions and the magnetic behavior.

Solvent-tuning changes the magnetic exchange interaction and results in different magnetic relaxation dynamics in Dy2 systems ligated by a μ-phenolato heptadentate Schiff base.  相似文献   

7.
A novel series of fused pyrazolo[5′,1′:2,3]imidazo[1,5-c]quinazolin-6(5H)-ones were synthesized and their affinity against the COVID-19 main protease was investigated using molecular docking study and compared to that of some used standard clinical drugs. These compounds were obtained in good to excellent yields from 63 to 91% in the presence of 30 mol% catalyst in ethanol at reflux for 2 h through an efficient one-pot three-component reaction including an intramolecular rearrangement and a cyclization through intramolecular nucleophilic reaction. The results of in silico studies showed that electronegativity, resonance effects, hydrophobic interaction, halogen and hydrogen bonding had significant effects on the performance of these compounds as an inhibitor ligand. Also, these results indicated the proper affinity of these compounds against the COVID-19 main protease with excellent binding energies (especially 4r = −8.77, 4q = −8.73 and 4m = −8.63) in comparison to remdesivir, chloroquine, hydroxychloroquine, molnupiravir and nirmatrelvir drugs.

A novel series of fused pyrazolo[5′,1′:2,3]imidazo[1,5-c]quinazolin-6(5H)-ones were synthesized and their affinity against the COVID-19 main protease was investigated using molecular docking study and compared to that of some used clinical drugs.  相似文献   

8.
Conjugated dendrimers decorated with 5,5-difluoro-10-(4-(prop-2-ynyloxy)phenyl)-5H-dipyrrolo[1,2-c:1′,2′-f][1,3,2]diazaborinin-4-ium-5-uide, usually known as boron dipyrromethene (BODIPY), have been synthesized and their application as photosensitizer in dye sensitized solar cells (DSSCs) has been evaluated. Third generation triazole bridged BODIPY dendrimers show higher light energy harvesting efficiency of 2.5% better than the first and second generation dendrimers, when used as a dye material in solar cells. The current intensity increases with an increase in the generation of the dendrimer as revealed by cyclic voltammetry. Fluorescence decay analysis shows that the relaxation times τ1 and τ2 increase as the dendrimer generation increases, however τ2 for the third generation dendrimer decreases because of fluorescence quenching due to molecular crowding.

Dye-sensitized solar cells with BODIPY conjugated dendrimers as the dye are described.  相似文献   

9.
Three novel N-hydrospiro-chromeno-carbonitriles namely, 2-amino-7,7-dimethyl-1′,3′,5-trioxo-1′,3′,5,6,7,8-hexahydrospiro[chromene-4,2′-indene]-3-carbonitrile (INH-1), 3-amino-7,7-dimethyl-2′,5-dioxo-5,6,7,8-tetrahydrospiro[chromene-4,3′-indoline]-2-carbonitrile (INH-2) and 3′-amino-7′,7′-dimethyl-2,5′-dioxo-5′,6′,7′,8′-tetrahydro-2H-spiro[acenaphthylene-1,4′-chromene]-2′-carbonitrile (INH-3) were synthesized using the principles of green chemistry and applied as corrosion inhibitors for mild steel in acidic medium using computational simulations and experimental methods. Experimental and computational studies revealed that inhibition effectiveness of the INHs followed the sequence: INH-3 (95.32%) > INH-2 (93.02%) > INH-1 (89.16%). The investigated compounds exhibit mixed-type corrosion inhibition characteristics by blocking the active sites on the surface of mild steel. EIS study revealed that the INHs behave as interface-type corrosion inhibitors. EDX analyses supported the adsorption mechanism of corrosion inhibition. A DFT study carried out for gaseous and aqueous forms of inhibitor molecules indicated that interactions of INHs with the mild steel surface involve charge transfer phenomenon or donor–acceptor interactions. A Monte Carlo (MC) simulation study revealed that only a fractional segment of the molecule lies parallel to the steel surface, since the INH molecules are not completely planar. The results of computational studies and experimental analyses were in good agreement.

Three novel N-hydrospiro-chromeno-carbonitriles, INH-1, INH-2 and INH-3 were synthesized using the principles of green chemistry and applied as corrosion inhibitors for mild steel in acidic medium using computational simulations and experimental methods.  相似文献   

10.
To address the increasing demand of efficient photovoltaic compounds for modern hi-tech applications, efforts have been made herein to design and explore triazatruxene-based novel donor materials with greater efficiencies. Five new molecules, namely M1–M5, were designed by structural modification of acceptor moiety (rhodanine-3-acetic acid) of well known experimentally synthesized JY05 dye (reference R), and their optoelectronic properties are evaluated to be used as donor molecules in organic solar cells. In these molecules M1–M5, triazatruxene acts as a donor unit and benzene spaced different end-capped moieties including 2-(4-(dicyanomethylene)-2-thioxothiazolidin-3-yl)acetic acid (A1), (E)-2-(4-(1-cyano-2-methoxy-2-oxoethylidene)-2-thioxothiazolidin-3-yl)acetic acid (A2), (Z)-2-(3′-ethyl-4′-oxo-2,2′-dithioxo-3′,4′-dihydro-2′H,5H-[4,5′-bithiazolylidene]-3(2H)-yl)acetic acid (A3), (Z)-2-(4′-(dicyano-methylene)-3′-ethyl-2,2′-dithioxo-3′,4′-dihydro-2′H,5H-[4,5′-bithiazol-ylidene]-3(2H)-yl)acetic acid (A4) and 2-((4Z,4′E)-4′-(1-cyano-2-methoxy-2-oxoethylidene)-3′-ethyl-2,2′-dithioxo-3′,4′-dihydro-2′H,5H-[4,5′-bithiazolylidene]-3(2H)-yl)acetic acid (A5) respectively, as acceptor units. The electronic, photophysical and photovoltaic properties of the designed molecules M1–M5 have been compared with reference molecule R. All designed molecules exhibit reduced energy gap in the region of 1.464–2.008 eV as compared to reference molecule (2.509 eV). Frontier molecular orbital (FMO) surfaces confirm the transfer of charge from donor to acceptor units. All designed molecules M1–M5 exhibited an absorption spectrum in the visible region and they were broader as compared to that of reference R. Especially, M5 with highest λmax value 649.26 nm and lowest transition energy value 1.90 eV was accredited to the strong electron withdrawing end-capped acceptor moiety A5. The highest value of open circuit voltage (Voc) 1.02 eV with respect to HOMOdonor–LUMOBTP-4Cl was shown by M5 among all investigated molecules which was 0.15 V larger than reference molecule R. The designed molecule M5 is proven to be the best candidate for both electron and hole transport mobilities due to its smallest λe (0.0212 eV) and λh (0.0062 eV) values among all studied molecules.

Five new molecules (M1–M5) were designed by structural modification of acceptor moiety (rhodanine-3-acetic acid) of well-known synthesized dye JY05, and their optoelectronic properties are evaluated to be used as donor molecules in organic solar cells.  相似文献   

11.
A highly convenient and sustainable one-pot approach for the diversely-oriented synthesis of a variety of medicinally privileged amino-substituted 4,8-dihydropyrano[3,2-b]pyran-3-carbonitriles, and spiro[indoline-3,4′-pyrano[3,2-b]pyran]-3-carbonitrile/carboxylate derivatives on the basis of a domino three-component reaction of readily available carbonyl compounds including aryl aldehydes or isatins, active methylene compounds, and kojic acid as a Michael donor using secondary amine catalyst l-proline under ultrasound irradiation in aqueous ethanolic solution at ambient temperature has been developed. This methodology can involve the assembly of C–C, C Created by potrace 1.16, written by Peter Selinger 2001-2019 C, C–O, C–N bonds via a one-pot operation, and following this protocol, a series of novel amino-substituted spiro[indeno[1,2-b]quinoxaline-11,4-pyrano[3,2-b]pyran]-3-carbonitrile/carboxylates have been synthesized. The practical utility of this method was found to be very efficient for scale-up reaction and other useful transformations. The methodology provides significant advantages including mild reaction conditions, energy-efficiency, short reaction time, fast reaction, simple work-up procedure, broad functional group tolerances, utilization of reusable catalyst, green solvent system, being metal-free, ligand-free, waste-free, inexpensive, etc. Excellent chemical yields have been achieved without using column chromatography. To address the issues of green and more sustainable chemistry, several metrics including Atom Economy (AE), Reaction Mass Efficiency (RME), Atom efficiency, E-factor, Process Mass Intensity (PMI), and Carbon Efficiency (CE) have been quantified for the present methodology that indicates the greenness of the present protocol.

Amino-substituted 4,8-dihydropyrano[3,2-b]pyran-3-carbonitriles, and spiro[indoline-3,4′-pyrano[3,2-b]pyran]-3-carbonitrile/carboxylate derivatives has been synthesised under ultrasound irradiation in aqueous ethanolic solution at rt.  相似文献   

12.
Three new compounds (1–3), including novel tetra-p-cresol substituted cyclopenta[a]naphthalene derivatives, named gastrodinol (1), 2-(4′-hydroxybenzoyl)-3-hydroxyethyl indole (2), 2-(4′-hydroxybenzoyl)-3-(4′′-hydroxybenzyl)indole (3) were isolated from the flower branch of G. elata, along with five known compounds (4–8). Among them, compound 1 exhibited the most anti-microbial activity against Streptococcus agalactiae, with the minimum inhibitory concentration of 1 μg ml−1. This study demonstrated that the novel gastrodinol 1 found in the flower branch of G. elata may be responsible for the anti-microbial effect. It will lead to the development of new antibiotics, and how to utilize the TCM ′′Tianma′′ better.

Three new compounds (1–3): gastrodinol (1), 2-(4′-hydroxybenzoyl)-3-hydroxyethyl indole (2) and 2-(4′-hydroxybenzoyl)-3-(4′′-hydroxybenzyl)indole (3) were isolated from the flower branch of G. elata, and anti-microbial activity.  相似文献   

13.
The synthesis and characterisation (UV-Vis, IR, X-ray diffraction, etc.) of a series of Ni(ii) complexes derived from both known and novel 2-acylmethyl-2-oxazolines (2a–g: i.e., (Z)-1-R-2-(4,4′-dimethyl-2′-oxazolin-2′-yl)eth-1-en-1-ol; R = –Ph, –2-furanyl, –p-NO2-Ph, –t-Bu, –2-thiofuranyl, p-NC-Ph, –CF3) is reported. These Ni materials (3a–g) represent the first group 10 metal complexes of this ligand class. All derivatives reported are paramagnetic (S = 1) compounds of formulae Ni(κ2-N,O-L)2 where L represents an enolate of structure (Z)-1-R-2-(4′,4′-dimethyl-2′-oxazolin-2′-yl)eth-1-en-1-ate formed via proton loss from 2. The air- and moisture-stable metal complexes feature a less typical distorted seesaw-shaped disposition of binding atoms around the metal centre for six structurally characterised (X-ray) examples. Preliminary investigations indicate that 3a (R = –Ph) is a useful catalysts for olefin polymerisation in the presence of alkylaluminum reagents.

Novel Ni(ii) enolate complexes derived from (Z)-1-R-2-(4′,4′-dimethyl-2′-oxazolin-2′-yl)eth-1-en-1-ols are synthesised and structurally examined. The complexes display good potency as olefin polymerisation catalysts.  相似文献   

14.
In this study a novel silicon(iv) phthalocyanine bearing [(2E)-3-[4-(dimethylamino)phenyl]-1-(4-phenoxy)prop-2-en-1-one] group and its quaternized derivative at their axial positions were synthesized for the first time. Axially disubstituted silicon(iv) phthalocyanines were also characterized by various spectroscopic techniques. The inhibition of two human cytosolic carbonic anhydrase (hCA, EC 4.2.1.1) isozymes I and II, with axially disubstituted silicon phthalocyanines and their quaternized derivatives were investigated by using the esterase assay, with 4-nitrophenyl acetate as substrate. Silicon phthalocyanines ZM-1-Si, ZM-5-Si, ZT-Si and their quaternized derivatives ZM-1-SiQ, ZM-5-SiQ, ZT-SiQ showed IC50 values in the range of 0.0178–0.1653 μM for hCA I and of 0.0172–0.1212 μM against hCA II, respectively. This study is the first example of carbonic anhydrase enzyme inhibition of phthalocyanines.

In this study a novel silicon(iv) phthalocyanine bearing [(2E)-3-[4-(dimethylamino)phenyl]-1-(4-phenoxy)prop-2-en-1-one] group and its quaternized derivative at their axial positions were synthesized for the first time.  相似文献   

15.
16.
The highly efficient Lewis acid-catalytic system Cu(ii)-thiophene-2,5-bis(amino-alcohol) has been developed for enantioselective Aldol reaction of isatin derivatives with ketones. The new catalytic system also proved to be highly enantioselective for the one pot three-component Domino Knoevenagel Michael cyclization reaction of substituted isatin with malononitrile and ethylacetoacetate. The chiral ligand (2S,2′S)-2,2′-((thiophene-2,5-diylbis(methylene))bis(azanediyl))bis(3-phenylpropan-1-ol) (L1) in combination with Cu(OAc)2·H2O employed as a new Lewis acid catalyst, furnished 3-substituted-3-hydroxyindolin-2-ones derivatives (3a–s) in good to excellent yields (81–99%) with high enantioselectivities (up to 96% ee) and spiro[4H-pyran-3,3-oxindole] derivatives (6a–l) in excellent yields (89–99%) with high ee (up to 95%). These aldol products and spiro-oxindoles constitute a core structural motif in a large number of pharmaceutically active molecules and natural products.

The highly efficient Lewis acid-catalytic system Cu(ii)-thiophene-2,5-bis(amino-alcohol) has been developed for enantioselective Aldol reaction of isatin derivatives with ketones.  相似文献   

17.
A series of ruthenium complexes with chloro-substituted bidentate ligands, proximal-[Ru(tpy)(Cl-pyqu)L]n+ [n = 1 for L = Cl, and n = 2 for L = OH2, tpy = 2,2′;6′,2′′-terpyridine, pyqu = 2-(2′-pyridyl)quinoline] were synthesized and their reversible photoisomerizations and thermal isomerizations were investigated experimentally. The crystal structures of the complexes indicated that introduction of a chloro substituent at the 4- or 4′-position of the pyqu ligand did not change the structure around the metal center from that of the non-substituted complex, proximal-[Ru(tpy)(pyqu)L]n+. In contrast, the 6′-substituted complexes had sterically hindered environments around the metal center. The ruthenium aqua complexes showed reversible photoisomerization between the proximal and distal isomers. The quantum yield for photoisomerization of the 6′-substituted ruthenium aqua complex was almost twice as large as those of the other derivatives. This is explained by weakening of the ligand field on the ruthenium center by introduction of a chloro substituent at the 6′-position. Thermal back isomerization from the distal isomer to the proximal one was observed for the 6′-substituted complex, but such reactions were not observed for the other derivatives. The steric hindrance in the 6′-substituted aqua complex enhanced both thermal isomerization and photoisomerization.

Introduction of a chloro substituent to the bidentate ligand of ruthenium aqua complexes enhanced photoisomerization and thermal back-isomerization.  相似文献   

18.
A versatile and substrate oriented multicomponent reaction for the syntheses of novel highly diastereoselective tetrahydro-1′H-spiro[pyrazolo[4,3-f]quinoline-8,5′-pyrimidine]-2′,4′,6′(3′H)-triones (d.r. up to 20 : 1 (syn : anti)) and tetrahydro-8H-pyrazolo[4,3-f]pyrimido[4,5-b]quinoline-8,10(9H)-diones via formation of selective multiple C–C bonds under identical reaction conditions (viz. ethanol as a reaction medium and deep eutectic mixture as a catalyst) is demonstrated. Both approaches involve mild reaction conditions, use of non-hazardous solvents, and facilitate good to excellent reaction yields of the target compounds.

Substrate selectivity in the novel multi-component reaction of 5-aminoindazole, barbituric acid derivatives and aldehyde is explored.  相似文献   

19.
The functionalized tetrahydrochromeno[4′,3′:2,3]indolizino[8,7-b]indoles were conveniently synthesized in high yields by one-pot domino reaction of tryptamines, alkyl propiolates and 2-aryl-3-nitro-2H-chromenes. Under similar conditions, the one-pot reaction of tryptamines, alkyl propiolates and β-nitroalkenes resulted in functionalized tetrahydroindolizino[8,7-b]indoles. The reaction mechanism involved sequential generation of β-enamino ester, Michael addition, Pictet–Spengler reaction and annulation process. The reaction showed high atomic economy and met the goals of sustainable chemistry.

The functionalized tetrahydrochromeno[4′,3′:2,3]indolizino[8,7-b]indoles were conveniently synthesized in high yields by one-pot domino reaction of tryptamines, alkyl propiolates and 2-aryl-3-nitro-2H-chromenes.  相似文献   

20.
Two new homo chiral Cu–Ln (Ln = Gd and Ho) compounds bearing a chiral Schiff base ligand (1R,3S)-N′,N′′-bis[3-methoxysalicylidene]-1,3-diamino-1,2,2-trimethylcyclopentane (H2L) have been synthesized and characterized by elemental analysis, IR spectroscopic and single-crystal X-ray diffraction techniques. The compounds were found to exhibit 1D zig-zag skeletons with double μ-1,5 bridging dicyanamide anions. Circular dichroism (CD) spectra have been used to verify their chiroptical activities. Magnetic studies suggest that 1 and 2 hold the same magnetic behavior with the dinuclear compounds presenting ferromagnetic interaction. Furthermore, both compounds show ferroelectricity with the remnant polarization (Pr) value of 0.23 and 0.18 μC cm−2 at room temperature, respectively.

Two homochiral 1D heterometallic chains are potential multifunctional molecules coexisting optical activity, ferromagnetic and ferroelectric properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号