首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a decarboxylative aldol reaction using α,α-difluoro-β-ketocarboxylate salt, carbonyl compounds, and ZnCl2/N,N,N′,N′-tetramethylethylenediamine. The generation of difluoroenolate proceeded smoothly under mild heating to provide α,α-difluoro-β-hydroxy ketones in good to excellent yield (up to 99%). The α,α-difluoro-β-ketocarboxylate salt was bench stable and easy to handle under air, which realizes a convenient and environmentally friendly methodology for synthesis of difluoromethylene compounds.

A ZnCl2/N,N,N′,N′-tetramethylethylenediamine complex promoted decarboxylative aldol reaction of α,α-difluoro-β-ketocarboxylate salt with carbonyl compounds has been developed.  相似文献   

2.
Readily available lanthanide amides Ln[N(SiMe3)2]3 (Ln = Nd (1), Sm (2), Eu (3), Yb (4), La (5)), combined with chiral salen ligands H2La ((S,S)-N,N′-di-(3,5-disubstituted-salicylidene)-1,2-cyclohexanediamine) and H2Lb ((S,S)-N,N′-di-(3,5-disubstituted-salicylidene)-1,2-diphenyl-1,2-ethanediamine) were employed in the enantioselective epoxidation of α,β-unsaturated ketones. It was found that the salen–La complex shows the highest efficiency and enantioselectivity. A relatively broad scope of α,β-unsaturated ketones was investigated, and excellent yields (up to 99%) and moderate to good enantioselectivities (37–87%) of the target molecules were achieved.

The enantioselective epoxidation of α,β-unsaturated ketones was catalysed by readily available lanthanide amides La[N(SiMe3)2]3 combined with chiral salen ligands.  相似文献   

3.
N α-benzenesulfonylhistamine, a new semi-synthetic β-glucosidase inhibitor, was obtained by bioactivity-guided isolation from a chemically engineered extract of Urtica urens L. prepared by reaction with benzenesulfonyl chloride. In order to identify better β-glucosidase inhibitors, a new series of Nα,Nτ-di-arylsulfonyl and Nα-arylsulfonyl histamine derivatives was prepared. Biological studies revealed that the β-glucosidase inhibition was in a micromolar range for several Nα-arylsulfonyl histamine compounds of the series, Nα-4-fluorobenzenesulfonyl histamine being the most powerful compound. Besides, this reversible and competitive inhibitor presented a good selectivity for β-glucosidase with respect to other target enzymes including α-glucosidase.

A selective β-glucosidase inhibitor was discovered using the chemically engineered extracts approach.  相似文献   

4.
The β-selective asymmetric addition of γ-butyrolactam with cyclic imino esters catalyzed by a bifunctional chiral tertiary amine has been developed, which provides an efficient access to optically active β-position functionalized pyrrolidin-2-one derivatives in both high yield and enantioselectivity (up to 78% yield and 95 : 5 er). This is the first catalytic method to access chiral β-functionalized pyrrolidin-2-one via a direct organocatalytic approach.

The asymmetric addition of γ-butyrolactam with cyclic imino esters catalyzed by (DHQD)2AQN has been developed, which provides an access to β-position functionalized pyrrolidin-2-one derivatives in high levels yield and enantioselectivity.

Metal-free organocatalytic asymmetric transformations have successfully captured considerable enthusiasm of chemists as powerful methods for the synthesis of various kinds of useful chiral compounds ranging from the preparation of biologically important molecules through to novel materials.1 Chiral pyrrolidin-2-ones have been recognized as important structural motifs that are frequently encountered in a variety of biologically active natural and synthetic compounds.2 In particular, the β-position functionalized pyrrolidin-2-one backbones, which can serve as key synthetic precursors for inhibitory neurotransmitters γ-aminobutyric acids (GABA),3 selective GABAB receptor agonists4 as well as antidepressant rolipram analogues,5 have attracted a great deal of attention. Therefore, the development of highly efficient, environmentally friendly and convenient asymmetric synthetic methods to access these versatile frameworks is particularly appealing.As a direct precursor to pyrrolidin-2-one derivatives, recently, α,β-unsaturated γ-butyrolactam has emerged as the most attractive reactant in asymmetric organometallic or organocatalytic reactions for the synthesis of chiral γ-position functionalized pyrrolidin-2-ones (Scheme 1). These elegant developments have been achieved in the research area of catalytic asymmetric vinylogous aldol,6 Mannich,7 Michael8 and annulation reactions9 in the presence of either metal catalysts or organocatalysts (a, Scheme 1). These well-developed catalytic asymmetric methods have been related to the γ-functionalized α,β-unsaturated γ-butyrolactam to date. However, in sharp contrast, the approaches toward introducing C-3 chirality at the β-position of butyrolactam through a direct catalytic manner are underdeveloped (b, Scheme 1)10 in spite of the fact that β-selective chiral functionalization of butyrolactam can directly build up α,β-functionalized pyrrolidin-2-one frameworks.Open in a separate windowScheme 1Different reactive position of α,β-unsaturated γ-butyrolactam in catalytic asymmetric reactions.So far, only a few metal-catalytic enantioselective β-selective functionalized reactions have been reported. For examples, a rhodium/diene complex catalyzed efficient asymmetric β-selective arylation10a and alkenylation10b have been reported by Lin group (a, Scheme 2). Procter and co-workers reported an efficient Cu(i)–NHC-catalyzed asymmetric silylation of unsaturated lactams (b, Scheme 2).10c Despite these creative works, considerable challenges still exist in the catalytic asymmetric β-selective functionalization of γ-butyrolactam. First, the scope of nucleophiles is limited to arylboronic acids, potassium alkenyltrifluoroborates and PhMe2SiBpin reagents. Second, the catalytic system and activation mode is restricted to metal/chiral ligands. To our knowledge, an efficient catalytic method to access chiral β-functionalized pyrrolidin-2-one via a direct organocatalytic approach has not yet been established. Therefore, the development of organocatalytic asymmetric β-selective functionalization of γ-butyrolactam are highly desirable. In conjunction with our continuing efforts in building upon chiral precedents by using chiral tertiary amine catalytic system,11 we rationalized that the activated α,β-unsaturated γ-butyrolactam might serve as a β-position electron-deficient electrophile. This γ-butyrolactam may react with a properly designed electron-rich nucleophile to conduct an expected β-selective functionalized reaction of γ-butyrolactam under a bifunctional organocatalytic fashion, while avoiding the direct γ-selective vinylogous addition reaction or β,γ-selective annulation as outlined in Scheme 2. Herein we report the β-selective asymmetric addition of γ-butyrolactam with cyclic imino esters12 catalyzed by a bifunctional chiral tertiary amine, which provides an efficient and facile access to optically active β-position functionalized pyrrolidin-2-one derivatives with both high diastereoselectivity and enantioselectivity.Open in a separate windowScheme 2β-Selective functionalization of γ-butyrolactam via metal- (previous work) or organo- (this work) catalytic approach.To begin our initial investigation, several bifunctional organocatalysts13 were firstly screened to evaluate their ability to promote the β-selective asymmetric addition of γ-butyrolactam 2a with cyclic imino ester 3a in the presence of 15 mol% of catalyst loading at room temperature in CH2Cl2 (entries 1–6,
EntryCat.SolventYieldeerf
11aCH2Cl270%40 : 60
21bCH2Cl2<5%57 : 43
31cCH2Cl270%65 : 35
41dCH2Cl268%70 : 30
51eCH2Cl258%63 : 47
61fCH2Cl271%77 : 23
71fDCE72%80 : 20
81fCHCl370%80 : 20
91fMTBE68%79 : 21
101fToluene63%78 : 22
111fTHF45%76 : 24
121fMeOH32%62 : 38
13b1fDCE : MTBE75%87 : 13
14c1fDCE : MTBE72%87 : 13
15d1fDCE : MTBE70%85 : 15
Open in a separate windowaReaction conditions: unless specified, a mixture of 2a (0.2 mmol), 3a (0.3 mmol) and a catalyst (15 mmol%) in a solvent (2.0 mL) was stirred at rt. for 48 h.bThe reaction was carried out in 2.2 mL a mixture of dichloroethane and methyl tert-butyl ether (volume ratio = 10 : 1).cThe reaction was carried out in 2.2 mL a mixture of dichloroethane and methyl tert-butyl ether (volume ratio = 10 : 1) for 24 h.dThe reaction was carried out in 2.2 mL a mixture of dichloroethane and methyl tert-butyl ether (volume ratio = 10 : 1) and 10 mol% of catalyst was used.eIsolated yields.fDetermined by chiral HPLC, the product was observed with >99 : 1 dr by 1H NMR and HPLC. Configuration was assigned by X-ray crystal data of 4a.The results of experiments under the optimized conditions that probed the scope of the reaction are summarized in Scheme 3. The catalytic β-selective asymmetric addition of γ-butyrolactam 2a with cyclic imino esters 3a in the presence of 15 mol% (DHQD)2AQN 1f was performed. A variety of phenyl-substituted cyclic imino esters including those bearing electron-withdrawing and electron-donating substituents on the aryl ring, heterocyclic were also examined. The electron-neutral, electron-rich, or electron-deficient groups on the para-position of phenyl ring of the cyclic imino esters afforded the products 4a–4m in 57–75% yields and 82 : 18 to 95 : 5 er values. It appears that either an electron-withdrawing or an electron-donating at the meta- or ortho-position of the aromatic ring had little influence on the yield and stereoselectivity. Similar results on the yield and enantioselectivities were obtained with 3,5-dimethoxyl substituted cyclic imino ester (71% yield and 91 : 9 er). It was notable that the system also demonstrated a good tolerance to naphthyl substituted imino ester (78% yield and 92 : 8 er value). The 2-thienyl substituted cyclic imino ester proceeded smoothly under standard conditions as well, which gave the desired product 4p in good enantioselectivity (88 : 12 er), although yield was slightly lower. However, attempts to extend this methodology to aliphatic-substituted product proved unsuccessful due to the low reactivity of the substrate 3q. It is worth noting that the replacement of Boc group with 9-fluorenylmethyl, tosyl or benzyl group as the protection, no reaction occurred. The absolute and relative configurations of the products were unambiguously determined by X-ray crystallography (4a, see the ESI).Open in a separate windowScheme 3Substrate scope of the asymmetric reaction of α,β-unsaturated γ-butyrolactam 2 to cyclic imino esters 3.a aReaction conditions: unless specified, a mixture of 2 (0.2 mmol), 3 (0.3 mmol) and 1f (15.0 mmol%) in 2.2 mL a mixture of dichloroethane and methyl tert-butyl ether (volume ratio = 10 : 1) was stirred at rt. bIsolated yields. cDetermined by chiral HPLC, all products were observed with >99 : 1 dr by 1H NMR and HPLC. Configuration was assigned by comparison of HPLC data and X-ray crystal data of 4a.We then examined the substrate scope of the imide derivatives (Scheme 4). Investigations with maleimides 4r–4u gave 48–61% yield of corresponding products as lower er and dr values than most of γ-butyrolactams. As for methyl substituted maleimides, the reaction failed to give any product.Open in a separate windowScheme 4Substrate scope of the asymmetric reaction of maleimides to cyclic imino esters.a aReaction conditions: unless specified, a mixture of 2 (0.2 mmol), 3 (0.3 mmol) and 1f (15.0 mmol%) in 2.2 mL a mixture of dichloroethane and methyl tert-butyl ether (volume ratio = 10 : 1) was stirred at rt. bIsolated yields. cDetermined by 1H NMR and chiral HPLC.The chloride product 4a ((R)-tert-butyl 4-((R)-3-((E)-(4-chlorobenzylidene)amino)-2-oxotetra hydrofuran-3-yl)-2-oxopyrrolidine-1-carboxylate) was recrystallized and the corresponding single crystal was subjected to X-ray analysis to determine the absolute structure. Based on this result and our previous work, a plausible catalytic mechanism involving multisite interactions was assumed to explain the high stereoselectivity of this process (Fig. 1). Similar to the conformation reported for the dihydroxylation and the asymmetric direct aldol reaction, the transition state structure of the substrate/catalyst complexes might be presumably in the open conformation. The acidic α-carbon atom of cyclic imino ester 3a could be activated by interaction between the tertiary amine moiety of the catalyst and the enol of 3avia a hydrogen bonding. Moreover, the enolate of 3a in the transition state might be in part stabilized through the π–π stacking between the phenyl ring of 3a and the quinoline moiety. Consequently, the Re-face of the enolate is blocked by the left half of the quinidine moiety. The steric hindrance between the Boc group of 2a and the right half of the quinidine moiety make the Re-face of 2a face to the enolate of 3a. Subsequently, the attack of the incoming nucleophiles forms the Si-face of enolate of 3a to Re-face of 2a takes place, which is consistent with the experimental results.Open in a separate windowFig. 1Proposed transition state for the reaction.In conclusion, we have disclosed the β-selective asymmetric addition of γ-butyrolactam with cyclic imino esters catalyzed by a bifunctional chiral tertiary amine, which provides an efficient and facile access to optically active β-position functionalized pyrrolidin-2-one derivatives with high diastereoselectivity and enantioselectivity. To our knowledge, this is the first catalytic method to access chiral β-functionalized pyrrolidin-2-one via a direct organocatalytic approach. Current efforts are in progress to apply this new methodology to synthesize biologically active products.  相似文献   

5.
N-Amino peptide scanning reveals inhibitors of Aβ42 aggregation     
Khalilia C. Tillett  Juan R. Del Valle 《RSC advances》2020,10(24):14331
The aggregation of amyloids into toxic oligomers is believed to be a key pathogenic event in the onset of Alzheimer''s disease. Peptidomimetic modulators capable of destabilizing the propagation of an extended network of β-sheet fibrils represent a potential intervention strategy. Modifications to amyloid-beta (Aβ) peptides derived from the core domain have afforded inhibitors capable of both antagonizing aggregation and reducing amyloid toxicity. Previous work from our laboratory has shown that peptide backbone amination stabilizes β-sheet-like conformations and precludes β-strand aggregation. Here, we report the synthesis of N-aminated hexapeptides capable of inhibiting the fibrillization of full-length Aβ42. A key feature of our design is N-amino substituents at alternating backbone amides within the aggregation-prone Aβ16–21 sequence. This strategy allows for maintenance of an intact hydrogen-bonding backbone edge as well as side chain moieties important for favorable hydrophobic interactions. An N-amino scan of Aβ16–21 resulted in the identification of peptidomimetics that block Aβ42 fibrilization in several biophysical assays.

Structure-based design of backbone-aminated peptides affords novel β-strand mimics that inhibit amyloid-beta fibrillogenesis.  相似文献   

6.
Cationic palladium(ii)-catalyzed synthesis of substituted pyridines from α,β-unsaturated oxime ethers     
Takahiro Yamada  Yoshimitsu Hashimoto  Kosaku Tanaka  III  Nobuyoshi Morita  Osamu Tamura 《RSC advances》2022,12(33):21548
An efficient method for the synthesis of multi-substituted pyridines from β-aryl-substituted α,β-unsaturated oxime ethers and alkenes via Pd-catalyzed C–H activation has been developed. The method, using Pd(OAc)2 and a sterically hindered pyridine ligand, provides access to various multi-substituted pyridines with complete regioselectivity. Mechanistic studies suggest that the pyridine products are formed by Pd-catalyzed electrophilic C–H alkenylation of α,β-unsaturated oxime followed by aza-6π-electrocyclization. The utility of this method is showcased by the synthesis of 4-aryl-substituted pyridine derivatives, which are difficult to synthesize efficiently using previously reported Rh-catalyzed strategies with alkenes.

An efficient method for the synthesis of multi-substituted pyridines from α,β-unsaturated oxime ethers via cationic Pd(ii)-catalyzed C–H activation has been developed.  相似文献   

7.
A novel approach for obtaining α,β-diaminophosphonates bearing structurally diverse side chains and their interactions with transition metal ions studied by ITC     
Pawe&#x; Lenartowicz  Danuta Witkowska  Beata yszka-Haberecht  B&#x;a ej Dziuk  Krzysztof Ejsmont  Jolanta wi&#x;tek-Koz&#x;owska  Pawe&#x; Kafarski 《RSC advances》2020,10(40):24045
Aminophosphonates are an important group of building blocks in medicinal and pharmaceutical chemistry. Novel representatives of this class of compounds containing nontypical side chains are still needed. The aza-Michael-type addition of amines to phosphonodehydroalanine derivatives provides a simple and effective approach for synthesizing N′-substituted α,β-diaminoethylphosphonates and thus affords general access to aminophosphonates bearing structurally diverse side chains. Thermodynamic analysis of the chosen aminophosphonates at physiological pH proves that they serve as potent chelators for copper(ii) ions and moderate chelators for nickel(ii) ions.

A convenient and general reaction is presented for the preparation of diaminophosphonates further evaluated as chelators of metal ions.  相似文献   

8.
Cu-catalyzed cyanomethylation of imines and α,β-alkenes with acetonitrile and its derivatives     
Muhammad Siddique Ahmad  Atique Ahmad 《RSC advances》2021,11(10):5427
We describe copper-catalyzed cyanomethylation of imines and α,β-alkenes with a methylnitrile source and provide an efficient route to synthesize arylacrylonitriles and β,γ-unsaturated nitriles. This method tolerates aliphatic and aromatic alkenes substituted with a variety of functional groups such as F, Cl, Br, Me, OMe, tert-Bu, NO2, NH2 and CO2H with good to excellent yields (69–98%). These systems consist of inexpensive, simple copper catalyst and acetonitrile with its derivatives (α-bromo/α-iodo-acetonitrile) and are highly applicable in the industrial production of acrylonitriles.

We describe copper-catalyzed cyanomethylation of imines and α,β-alkenes with a methylnitrile source and provide an efficient route to synthesize arylacrylonitriles and β,γ-unsaturated nitriles.  相似文献   

9.
New α-galactosidase-inhibiting aminohydroxycyclopentanes     
Patrick Weber  Roland Fischer  Seyed A. Nasseri  Arnold E. Stütz  Martin Thonhofer  Stephen G. Withers  Andreas Wolfsgruber  Tanja M. Wrodnigg 《RSC advances》2021,11(26):15943
A set of cyclopentanoid α-galactosidase ligands was prepared from a partially protected ω-eno-aldose via a reliable (2 + 3)-cycloaddition protocol with slightly modified conditions. The obtained N-benzylisoxazolidine ring was selectively opened and the configuration of the hydroxymethylgroup was inverted. Consecutive deprotection provided an aminocyclopentane, which was N-alkylated to furnish a set of potential α-galactosidase inhibitors. Their glycosidase inhibitory activities were screened with a panel of standard glycosidases of biological significance.

A concise and robust synthesis of new cyclopentanoid competitive inhibitors of α-galactosidases related to Fabry''s disease and other α-galactosidase related disorders.  相似文献   

10.
Metal-free photoredox-catalyzed direct α-oxygenation of N,N-dibenzylanilines to imides under visible light     
Nalladhambi Neerathilingam  Ramasamy Anandhan 《RSC advances》2022,12(14):8368
An efficient synthesis of imides using metal-free photoredox-catalyzed direct α-oxygenation of N,N′-disubstituted anilines in the presence of 9-mesityl-10-methylacridinium [Acr+-Mes]BF4 as a photoredox catalyst and molecular oxygen as a green oxidant under visible light was developed. This photochemical approach offered operational simplicity, high atom economy with a low E-factor, and functional group tolerance under mild reaction conditions. Control and quenching experiments confirmed the occurrence of a radical pathway and superoxide radical anion α-oxygenation reactions, and also provided strong evidence for the reductive quenching of [Acr+-Mes]BF4 based on a Stern–Volmer plot, which led to the proposed mechanism of this reaction.

A visible-light-mediated direct α-oxygenation of N,N-dibenzylanilines to imides in the presence of [Acr+-Mes]BF4 as a metal-free photocatalyst and O2 as a green oxidant.  相似文献   

11.
A practical method for the aziridination of α,β-unsaturated carbonyl compounds with a simple carbamate utilizing sodium hypochlorite pentahydrate     
Takehiro Umeda  Satoshi Minakata 《RSC advances》2021,11(36):22120
The efficient formation of tert-butyl N-chloro-N-sodio-carbamate by the reaction of simple tert-butyl carbamate with sodium hypochlorite pentahydrate (NaOCl·5H2O) would be a practical and green method for the aziridination of α,β-unsaturated carbonyl compounds. The process described herein is transition-metal free, all of the materials are commercially available, the byproducts (NaCl and H2O) are environmentally benign and the reaction is stereoselective. The resulting aziridines are potential precursors of amino acids.

The efficient formation of tert-butyl N-chloro-N-sodio-carbamate by the reaction of simple tert-butyl carbamate with sodium hypochlorite pentahydrate would be a practical and green method for the aziridination of α,β-unsaturated carbonyl compounds.  相似文献   

12.
High-pressure synthesis of ε-FeOOH from β-FeOOH and its application to the water oxidation catalyst     
Kazuhiko Mukai  Tomiko M. Suzuki  Takeshi Uyama  Takamasa Nonaka  Takeshi Morikawa  Ikuya Yamada 《RSC advances》2020,10(73):44756
Research on materials under extreme conditions such as high pressures provides new insights into the evolution and dynamics of the earth and space sciences, but recently, this research has focused on applications as functional materials. In this contribution, we examined high-pressure/high-temperature phases of β-FeO1−x(OH)1+xClx with x = 0.12 (β-FeOOH) and their catalytic activities of water oxidation, i.e., oxygen evolution reaction (OER). Under pressures above 6 GPa and temperatures of 100–700 °C, β-FeOOH transformed into ε-FeOOH, as in the case of α-FeOOH. However, the established pressure–temperature phase diagram of β-FeOOH differs from that of α-FeOOH, probably owing to its open framework structure and partial occupation of Cl ions. The OER activities of ε-FeOOH strongly depended on the FeOOH sources, synthesis conditions, and composite electrodes. Nevertheless, one of the ε-FeOOH samples exhibited a low OER overpotential compared with α-FeOOH and its parent β-FeOOH, which are widely used as OER catalysts. Hence, ε-FeOOH is a potential candidate as a next-generation earth-abundant OER catalyst.

Research on materials under extreme conditions such as high pressures provides new insights into the evolution and dynamics of the earth and space sciences, but recently, this research has focused on applications as functional materials.  相似文献   

13.
Pyrrolidine and oxazolidine ring transformations in proline and serine derivatives of α-hydroxyphosphonates induced by deoxyfluorinating reagents     
Patrycja Kaczmarek  Magdalena Rapp  Henryk Koroniak 《RSC advances》2018,8(43):24444
Transformations of α-hydroxyphosphonates derived from proline or serine by treatment with different deoxyfluorinating reagents (DAST, Deoxofluor, PyFluor) are reported. Depending on the applied reagent, as well as the protecting group used (N-Cbz, N-Boc, N-Bn) different types of products are observed. The reaction of N-Cbz or N-Boc prolinols with DAST or Deoxofluor due to aziridinium intermediate participation gave fluorinated amino phosphonates such as piperidine and pyrrolidine derivatives and/or oxazolidine-2-ones. Similarly, the analogous reaction of N-Cbz or N-Boc protected serinol yielded oxazolidine-2-ones or its fluorinated analogues. As the second type of product formed by DAST-induced reaction of serine derivatives, aziridines were obtained. Only in the case of deoxyfluorination of N-benzyl prolinols were both diastereoisomers of β-fluoropiperidine-α-phosphonates formed, while the reaction of protected N-benzyl serinols gave fluorinated oxazolidines. Moreover, application of PyFluor gave sulfonate derivatives.

Diastereoselective reactions of hydroxyphosphonates from proline or serine with fluorinating agents yielding piperidine-, oxazolidine-, aziridine- or sulfonate phosphonates were reported.  相似文献   

14.
Catalyst-free chemoselective α-sulfenylation/β-thiolation for α,β-unsaturated carbonyl compounds     
Xi Huang  Juan Li  Xiang Li  Jiayi Wang  Yanqing Peng  Gonghua Song 《RSC advances》2019,9(45):26419
A novel, efficient, catalyst-free and product-controllable strategy has been developed for the chemoselective α-sulfenylation/β-thiolation of α,β-unsaturated carbonyl compounds. An aromatic sulfur group could be chemoselectively introduced at α- or β-position of carbonyls with different sulfur reagents under slightly changed reaction conditions. A series of desired products were obtained in moderate to excellent yields. Mechanistic studies revealed that B2pin2 played the key role in activating the transformation towards the β-thiolation of α,β-unsaturated carbonyl compounds. This transition-metal-catalyst-free method provides a convenient and efficient tool for the highly chemoselective preparation of α-thiolation or β-sulfenylation products of α,β-unsaturated carbonyl compounds.

This catalyst-free method provides a useful and efficient tool for the highly chemoselective preparation of α-thiolation or β-sulfenylation products of α,β-unsaturated carbonyl compounds.  相似文献   

15.
Semi-rational screening of the inhibitors and β-lactam antibiotics against the New Delhi metallo-β-lactamase 1 (NDM-1) producing E. coli     
Juan Wang  Yang Li  Haizhong Yan  Juan Duan  Xihua Luo  Xueqin Feng  Lanfen Lu  Weijia Wang 《RSC advances》2018,8(11):5936
Bacteria containing blaNDM-1 gene are a growing threat to almost all clinically β-lactam antibiotics. Especially, the New Delhi metallo-β-lactamase (NDM-1) has become a potential public survival risk. In this study, a novel and efficient strategy for inhibitors and β-lactam antibiotics screening using recombinant New Delhi metallo-beta-lactamase (NDM-1) was developed. First, the gene of blaNDM-1 were identified and cloned from multi-drug resistance of Acinetobacter baumannii isolate; by the means of protein expression and purification, recombinant NDM-1 activity was up to 68.5 U ml−1, and high purity NDM-1 protein with activity of 347.4 U mg−1 was obtained. Finally, for NDM-1, the inhibitors (aspergillomarasmine A (AMA) and EDTA) with high affinity (HI) and the β-lactam antibiotics (imipenem) with low affinity (LA) were screened out. Surprisingly, the inhibition of the NDM-1 was enhanced by the use of inhibitor combinations (AMA–EDTA (1 : 2)), where the IC50 of AMA–EDTA was reduced by 88% and 95%, respectively, comparing to the AMA and EDTA alone. More interesting, AMA–EDTA could restore the activity of imipenem when tested against NDM-1 expressing strains (E. coli and Acinetobacter baumannii), with a working time of 120 min and 330 min, respectively. This method is expected to be used in high-throughput screening, drug redesign (including new inhibitors and drugs) and “old drug new use”.

Bacteria containing blaNDM-1 gene are a growing threat to almost all clinically β-lactam antibiotics. A semi-rational screening of the inhibitors and antibiotics against the New Delhi metallo-β-lactamase 1 has been developed in this study.  相似文献   

16.
An umpolung reaction of α-iminothioesters possessing a cyclopropyl group     
Makoto Shimizu  Takayoshi Morimoto  Yusuke Yanagi  Isao Mizota  Yusong Zhu 《RSC advances》2020,10(17):9955
An umpolung N-alkylation reaction of α-cyclopropyl α-iminothioesters with diethylaluminum chloride or ethylmagnesium bromide affords the corresponding N-ethylated α-aminothioesters in good yields. Subsequent oxidation and reaction of the N-ethylated product with a thiolate or a chloride anion proceed effectively to give the ring-opened products in good yields. In contrast, relatively “hard” nucleophiles did not give the ring-opened products but gave the addition products to the iminium carbon.

Tandem N-alkylation/oxidation/second addition reaction to α-cyclopropyl α-imino(thio)esters gave N-alkylated ring-opened products in good yields.  相似文献   

17.
Thermal stability and oxidation characteristics of α-pinene, β-pinene and α-pinene/β-pinene mixture     
Pin Liu  Xiongmin Liu  Tei Saburi  Shiro Kubota  Pinxian Huang  Yuji Wada 《RSC advances》2021,11(33):20529
Turpentine is a renewable resource, has good combustion performance, and is considered to be a fuel or promising additive to diesel fuel. This is very important for the investigation of thermal stability and energy oxidation characteristics, because evaluation of energy or fuel quality assurance and use safety are necessary. The main components of turpentine are α-pinene and β-pinene, which have unsaturated double bonds and high chemical activity. By investigating their thermal stability and oxidation reaction characteristics, we know the chemical thermal properties and thermal explosion hazard of turpentine. In this present study, the thermal stability and oxidation characteristics of α-pinene, β-pinene and α-pinene/β-pinene mixture were investigated using a high sensitivity accelerating rate calorimeter (ARC) and C80 calorimeter. The important parameters of oxidation reaction and thermal stability were obtained from the temperature, pressure and exothermic behavior in chemical reaction. The results show that α-pinene and β-pinene are thermally stable without chemical reaction under a nitrogen atmosphere even when the temperature reaches 473 K. The initial exothermic temperature of the two pinenes and their mixture is 333–338 K, and the heat release (−ΔH) of their oxidation is 2745–2973 J g−1. The oxidation activation energy (Ea) of α-pinene, β-pinene and α-pinene/β-pinene mixture is 116.25 kJ mol−1, 121.85 kJ mol−1, and 115.95 kJ mol−1, respectively. There are three steps in the oxidation of pinenes: the first is the induction period of the oxidation reaction; the second is the main oxidation stage, and the pressure is reduced; the third is thermal decomposition to produce gas.

Turpentine is a renewable resource, has good combustion performance, and is considered to be a fuel or promising additive to diesel fuel.  相似文献   

18.
NH2-MIL-88B (FeαIn1−α) mixed-MOFs designed for enhancing photocatalytic Cr(vi) reduction and tetracycline elimination     
Chunhua Xu  Mingjun Bao  Jiawen Ren  Zhiguang Zhang 《RSC advances》2020,10(64):39080
Aiming at solving the issue of wastewater purification, this work synthesized NH2-MIL-88B (FeαIn1−α) photocatalysts by a simple one-pot method, which was employed for photocatalytic reduction of Cr(vi) and oxidation of TC-HCl. Compared with traditional NH2-MIL-88B (Fe) photocatalysts, NH2-MIL-88B (Fe0.6In0.4) displayed excellent photocatalytic performance; the photocatalytic redox rate for Cr(vi) and TC-HCl reached 86.83% and 72.05%, respectively. The good photocatalytic performance might be attributed to the metal-to-metal charge transition (MMCT) between Fe–O clusters and In–O clusters formed by doping In(iii) into NH2-MIL-88B (Fe), which provides effective active sites for the photocatalytic reduction and oxidation routes. Besides, the synergistic effect of the ligand-to-metal charge transition (LMCT) and MMCT expands the separation and transfer of photogenerated carriers and inhibits the recombination of electron–hole pairs, thus effectively improving the photocatalytic performance. Therefore, this work could provide a new method for the construction of mixed metal MOFs for the photocatalytic degradation of pollutants.

Aiming at solving the issue of wastewater purification, this work synthesized NH2-MIL-88B (FeαIn1−α) photocatalysts by a simple one-pot method, which was employed for photocatalytic reduction of Cr(vi) and oxidation of TC-HCl.  相似文献   

19.
Phosphine-catalyzed [3 + 2] annulation of β-sulfonamido-substituted enones with trans-α-cyano-α,β-unsaturated ketones for the synthesis of highly substituted pyrrolidines     
Zhenzhen Gao  Lei Xie  Lusha Ji  Xin Ma  Xiaojing Li  Honglei Liu  Hongchao Guo 《RSC advances》2021,11(63):40136
To synthesize highly substituted pyrrolidines, we developed a phosphine-catalyzed [3 + 2] annulation of β-sulfonamido-substituted enones with trans-α-cyano-α,β-unsaturated ketones. We prepared a series of pyrrolidines under mild conditions with high yields and moderate-to-good diastereoselectivities. A catalytic mechanism for this reaction is suggested.

To synthesize highly substituted pyrrolidines, we developed a phosphine-catalyzed [3 + 2] annulation of β-sulfonamido-substituted enones with trans-α-cyano-α,β-unsaturated ketones.

Nucleophilic phosphine catalysis is a practical and powerful synthetic approach to obtain heterocyclic compounds using various annulation reactions, the advantages of which are it being mild and metal-free, ecologically friendly, and inexpensive.1 Phosphine-catalyzed intermolecular [3 + 2],2 [4 + 1],3 [2 + 2 + 1]4 and intramolecular annulations are often used to obtain pyrrole derivatives. Intermolecular [3 + 2] annulations of imines and phosphorus ylides formed in situ from allenoates, alkynes, or Morita–Baylis–Hillman carbonates under the presence of phosphine catalysts are especially the most widely used approach to synthesize pyrrolidine derivates. In these reactions, phosphorus ylides act as C–C–C synthons for the [3 + 2] annulations with a C Created by potrace 1.16, written by Peter Selinger 2001-2019 N bond converting to a pyrrolidine ring (Scheme 1). However, literature reports on exploring new activation modes, namely, phosphorus ylides acting as C–C–N synthons for the [3 + 2] annulations, are rare.Open in a separate windowScheme 1Pyrrolidine ring formation through reaction of phosphorus ylides act as C–C–C and C–C–N synthons.β-Sulfonamido-substituted enones could be used as C–C–N synthons to form various N-based heterocycles. Catalytically activated (by amines) β-sulfonamido-substituted enones act as nucleophiles towards electron-deficient olefins or imines during [3 + 2] annulation reactions. Du''s5 and Pan''s groups6 have made outstanding contributions to this field.7 In 2018, Guo''s group developed a Bu3P-catalyzed [5 + 1] annulation of γ-sulfonamido-substituted enones with N-sulfonyl-imines to obtain chiral 2,4-di-substituted imidazolidines. They also synthesized γ-sulfonamido-substituted enones attacked by phosphine catalyst and acting as C–C–C–C–N synthon (see Scheme 2).8 Recently, Guo et al.9 used β-sulfonamido-substituted enone as a phosphine acceptor as well as a C–C–N synthon for the [3 + 2] annulation with sulfamate-derived cyclic imines (see Scheme 2). Using of β-sulfonamido-substituted enone as a novel phosphine acceptor is very promising for phosphine-catalyzed reactions. Inspired by Guo''s work, we further extended the substrate scope of this reaction from sulfamate-derived cyclic imines to unsaturated ketones for the construction of pyrrolidine rings. Therefore, in this work, we report phosphine-catalyzed [3 + 2] annulation of β-sulfonamido-substituted enones and trans-α-cyano-α,β-unsaturated ketones, to synthesize highly substituted pyrrolidines (see Scheme 2), which are among the primary building blocks and the core structures of natural and bioactive compounds.10Open in a separate windowScheme 2Phosphine-catalyzed annulation of γ-sulfonamido-substituted enones and β-sulfonamido-substituted enones.We first used trans-α-cyano-α,β-unsaturated ketone 1a and β-sulfonamido-substituted enone 2a as model substrates to obtain optimum reaction conditions. Tertiary phosphine catalysts were screened with 1,2-dichloroethane (DCE) as solvent at room temperature (see Thus, the optimum reaction conditions were determined as follows: using 20 mol% of PMe3 as catalyst, CHCl3 as solvent at room temperature.Optimization of reaction conditionsa
EntryPR3Solvent t/hCon./mol L−1Yieldb (%)drc
1MePPh2DCE80.1855 : 1
2EtPPh2DCE80.1744 : 1
3 n-PrPPh2DCE80.1764 : 1
4Me2PPhDCE80.1823 : 1
5PBu3DCE80.1783 : 1
6PMe3DCE80.1846 : 1
7PMe3THF80.1857 : 1
8PMe3Toluene80.1757 : 1
9PMe3EtOAc80.1785 : 1
10PMe3CHCl380.1888 : 1
11dPMe3CHCl380.1848 : 1
12ePMe3CHCl380.1868 : 1
13PMe3CHCl3240.05859.5 : 1
14PMe3CHCl3480.0338511 : 1
15PMe3CHCl3240.026514 : 1
16PMe3CHCl3720.028614 : 1
Open in a separate windowaUnless otherwise indicated, all reactions were carried out at room temperature using 0.12 mmol of 1aa and 0.1 mmol of 2aa in a solvent containing 20 mol% of the catalyst.bIsolated yield.cDetermined by 1H NMR.d100 mg 3 Å molecular sieves were used.e100 mg 4 Å molecular sieves were used.Under the optimum conditions, the performance of various trans-α-cyano-α,β-unsaturated ketone 1 with β-sulfonamido-substituted enones 2a in the cycloaddition reactions was analyzed (see 11Screening of various trans-α-cyano-α,β-unsaturated ketones as substratesa
EntryR13Yieldb (%)drc
1Ph (1a)3aa8614 : 1
22-MeC6H4 (1b)3ba7510.5 : 1
33-MeC6H4(1c)3ca7712.5 : 1
44-MeC6H4 (1d)3da7810.5 : 1
54-OMeC6H4 (1e)3ea8014 : 1
64-CF3-C6H4 (1f)3fa6610.5 : 1
72-FC6H4 (1g)3ga729.5 : 1
83-FC6H4 (1h)3ha746 : 1
94-FC6H4 (1i)3ia765 : 1
102-ClC6H4 (1j)3ja748 : 1
113-ClC6H4(1k)3k7610 : 1
124-ClC6H4 (1l)3la825 : 1
134-BrC6H4 (1m)3ma856 : 1
141-Naphthyl (1n)3na8114 : 1
152-Naphthyl (1o)3oa808 : 1
162-thienyl (1p)3pa787 : 1
172-furyl (1q)3qa8014 : 1
Open in a separate windowaUnless otherwise indicated, all reactions were conducted at room temperature for 3 days using 0.12 mmol of compound 1 and 0.1 mmol of compound 2 in 5 ml CHCl3 in the presence of 20 mol% of PMe3.bIsolated yield.cDetermined by 1H NMR.We also tested various substituted enones containing different R groups under the optimal reaction conditions (see EntryR2/R33Yieldb (%)drc1Ph/Ts (2a)3aa8614 : 12Ph/Bs (2b)3ab8410 : 13Ph/Ns (2c)3ac814.5 : 142-FC6H4/Ts (2d)3ad778 : 153-FC6H4/Ts (2e)3ae799 : 162-ClC6H4/Ts (2f)3af828 : 173-BrC6H4/Ts(2g)3ag749 : 184-BrC6H4/Ts (2h)3ah858 : 193,4-Cl2C6H3/Ts (2i)3ai7410 : 1104-CNC6H4/Ts (2j)3aj8611 : 1113-OMeC6H4/Ts (2k)3ak7910 : 1124-OMeC6H4/Ts (2l)3al808.5 : 1134-PhC6H4/Ts (2m)3am8612.5 : 1142-naphthyl/Ts (2n)3an818 : 1Open in a separate windowaUnless otherwise noted, all reactions were performed at room temperature for 3 days using 0.12 mmol of compound 1 and 0.10 mmol of compound 2 in 5 ml CHCl3 under the presence of 20 mol% PMe3.bIsolated yield.cDetermined by 1H NMR.To demonstrate the synthetic potential of the cycloaddition reaction, a scale-up preparation of 3aa and the derivatization of 3am were performed (Scheme 3). The unsaturated ketone 1a (699 mg, 3.0 mmol) reacted with substituted enone 2a (788 mg, 2.5 mmol) under the standard condition to give 3aa in 81% yield with 13 : 1 dr. In comparison with the reaction at 0.1 mmol of scale, no significant loss of yield and diastereoselectivity was observed. Reduction of the carbonyl group of 3ma with NaBH4 in MeOH/CH2Cl2 led to the formation of compound 4 in 85% yield and 5.5 : 1 dr.Open in a separate windowScheme 3The reaction on the gram-scale and further transformations.The asymmetric variant of the present reaction had also been investigated ( EntryCatalyst t/hYieldb (%)drceec1P172Trace——2P27220>20 : 153P37250>20 : 1314P472NRd——5P572NRd——Open in a separate windowaUnless otherwise indicated, all reactions were carried out at room temperature using 0.06 mmol of 1aa and 0.05 mmol of 2aa in a solvent containing 20 mol% of the catalyst in 2.5 ml of CHCl3.bIsolated yield.cDetermined by HPLC on chiral column.dNo reaction.All these results allowed us to propose a catalytic cycle (see Scheme 4). Nucleophilic addition of the phosphine-based catalysts to β-sulfonamido-substituted enones yields phosphonium intermediate A, which converts into an intermediate B by proton transferation. The intermediate B undergoes intramolecular aza-Michael addition to an alkene yielding an intermediate compound C, followed by intramolecular nucleophilic substitution and the producing of product 3, during which the phosphine regenerates.Open in a separate windowScheme 4Proposed mechanism.In conclusion, we developed a synthesis method (under mild conditions) for highly substituted pyrrolidines through phosphine-catalyzed [3 + 2] annulation of β-sulfonamido-substituted enones with trans-α-cyano-α,β-unsaturated ketones. A series of pyrrolidine derivates were obtained in good yields with moderate-to-good diastereoselectivities. In this reactions, using of β-sulfonamido-substituted enone as a novel phosphine acceptor, the formed phosphorus ylides act as C–C–N synthons for annulations. Further investigations on the application of β-sulfonamido-substituted enones in the asymmetric phosphine-catalyzed reactions are in progress in our laboratory.  相似文献   

20.
Microwave hydrothermal synthesis of α-MnMoO4 nanorods for high electrochemical performance supercapacitors     
S. Jayasubramaniyan  S. Balasundari  P. A. Rayjada  N. Satyanarayana  P. Muralidharan 《RSC advances》2018,8(40):22559
Pristine α-MnMoO4 nanorods were facilely prepared via co-precipitation (Cp) and microwave hydrothermal (MH) methods. X-ray diffraction (XRD) patterns showed pure monoclinic crystalline phase α-MnMoO4 for the heat treated powder at 500 °C. Fourier Transform Infrared (FTIR) spectra showed that the chemical bond structure of α-MnMoO4 corresponds to the strong vibrational modes of Mo–O–Mo, Mo–O and Mo Created by potrace 1.16, written by Peter Selinger 2001-2019 O. Raman spectra showed the structural bonding and crystalline nature of α-MnMoO4. Field Emission Scanning Electron Microscope (FE-SEM) images exposed the nanorod shape of the α-MnMoO4 powder, with diameters of ∼200 nm and lengths of ∼1.6 μm. Electrochemical studies of the Cp- and MH-MnMoO4 nanorods with 2 M NaOH as the electrolyte showed specific capacitances of 143 F g−1 and 551 F g−1, respectively, at a 1 A g−1 constant discharge current density. Cyclic voltammetric (CV) studies of the MH-MnMoO4 nanorods at various scan rates revealed the presence of redox pairs, suggesting a pseudocapacitive nature. The structural stability at different current densities demonstrated the high rate performances and good reversible capacity retention of the calcined MH-MnMoO4 nanorods. A cycling life stability study of MH-MnMoO4 demonstrated a good capacity retention of 89% of the initial specific capacitance at 5 A g−1 after 1000 cycles.

Pristine α-MnMoO4 nanorods were facilely prepared via co-precipitation (Cp) and microwave hydrothermal (MH) methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号