首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rate coefficients for the gas-phase reactions of Cl atoms with β-ocimene and camphene were determined to be (in units of 10−10 cm3 per molecule per s) 5.5 ± 0.7 and 3.3 ± 0.4, respectively. The experiments were performed by the relative technique in an environmental chamber with FTIR detection of the reactants at 298 K and 760 torr. Product identification experiments were carried out by gas chromatography with mass spectrometry detection (GC-MS) using the solid-phase microextraction (SPME) method employing on-fiber carbonyl compound derivatization with o-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride. An analysis of the available rates of addition of Cl atoms and OH radicals to the double bond of alkenes and cyclic and acyclic terpenes with a conjugated double bond at 298 K is presented. The atmospheric persistence of these compounds was calculated taking into account the measured rate coefficients. In addition, tropospheric chemical mechanisms for the title reactions are postulated.

Rate coefficients for the gas-phase reactions of Cl atoms with β-ocimene and camphene were determined to be (in units of 10−10 cm3 per molecule per s) 5.5 ± 0.7 and 3.3 ± 0.4, respectively.  相似文献   

2.
The different rotameric conformations of imidazo-[1,2-a]pyrazine have been synthesized and characterized by means of different experimental techniques, such as NMR, FTIR, and absorption spectroscopy and quantum chemical calculations. The different conformations were stabilized by hydrogen bonds, such as OH⋯N, ArH⋯N and ArH⋯ArH. The ground state optimizations and potential energy surface (PES) scanning profiles produced using density functional theory (DFT) show two stable rotameric forms for each molecule. The relative population of the conformations is affected by the strength of the hydrogen bonds. The calculated absorption spectra and isotopic shielding constants were acquired by time-dependent density functional theory (TD-DFT) and gauge invariant atomic orbitals (GIAO)-DFT, respectively. The strength of the hydrogen bonding interactions that resulted in the different conformations was studied by quantum theory of atoms in molecules (QTAIM).

The different rotameric conformations of imidazo-[1,2-a]pyrazine have been synthesized and characterized by means of different experimental techniques, such as NMR, FTIR, and absorption spectroscopy and quantum chemical calculations.  相似文献   

3.
Reducing the quantity of sludge produced in Fenton reactions can be partly achieved by improving their efficiency. This paper firstly studies the effect of uniform deceleration feeding (ferrous iron and hydrogen peroxide) on the efficiency of a Fenton reaction by measuring the yield of hydroxyl radicals (˙OH) and chemical oxygen demand (COD) removal rate. The dynamic behavior of ˙OH was also investigated. The results indicated that uniform deceleration feeding was the best feeding method compared with one-time feeding and uniform feeding methods when the same amount of Fenton reagents and the same reaction times were used. Besides, it was found the COD removal rate reached 79.3% when this method was applied to degrade 2-(a-hydroxyethyl)benzimidazole (HEBZ); this COD removal rate is larger than those when the other two modes were used (they reached 60.7% and 72.1%, respectively). The degradation pathway of HEBZ was determined using PL, UV-vis, FTIR, HPLC and GC-MS. Ultimately, HEBZ was decomposed into three small molecules (2-hydroxypropylamine, oxalic acid, and 2-hydroxypropamide). This research is of great significance for the application of Fenton reactions in wastewater treatment.

Improving the efficiency of Fenton reactions and their application in the degradation of benzimidazole in wastewater.  相似文献   

4.
Efficient electrocatalysts are crucial to water splitting for renewable energy generation. In this work, electrocatalytic hydrogen evolution from Pd nanoparticle-modified graphene nanosheets loaded on ZnO nanowires on nickel foam was studied in an alkaline electrolyte. The high electron mobility stems from the cylindrical ZnO nanowires and the rough surface on the graphene/ZnO nanowires increases the specific surface area and electrical conductivity. The catalytic activity arising from adsorption and desorption of intermediate hydrogen atoms by Pd nanoparticles improves the hydrogen evolution reaction efficiency. As a hydrogen evolution reaction (HER) catalyst, the Pd/graphene/ZnO/Ni foam (Pd/G/ZnO/NF) nanocomposite exhibits good stability and superior electrocatalytic activity. Linear sweep voltammetry (LSV) revealed an overpotential of −31 mV and Tafel slope of 46.5 mV dec−1 in 1 M KOH. The economical, high-performance, and environmentally friendly materials have excellent prospects in hydrogen storage and hydrogen production.

Efficient electrocatalysts are crucial to water splitting for renewable energy generation.  相似文献   

5.
The existence of pre- and post-reaction complexes has been proposed to influence hydrogen abstraction reaction kinetics, but the significance still remains controversial. A theoretical study is presented to discuss the effects of complexes on hydrogen abstraction from 2-butanone by OH radicals based on the detailed PESs at the DLPNO-CCSD(T)/aug-cc-pVTZ//M06-2x-D3/may-cc-pVTZ level with five pre-reaction complexes at the entrance of the channels and four post-reaction complexes at the exit. The hydrogen bond interactions, steric effects, and contributions to the bonding orbital of the OH radical species and 2-butanone species in the complex structures were visualized and investigated by wavefunction analyses. Three kinds of mechanisms—the general bimolecular reaction, the reaction with the complexes considered, and the well-skipping reaction—were compared based on high-pressure-limit rate constants, predicted branching ratios, and fractional populations of reactants and products in the temperature range of 250–2000 K. The existence of complexes was proved to be crucial in the kinetics and mechanisms of the hydrogen abstraction from 2-butanone molecules by OH radicals.

Schematic diagram of the geometry and corresponding weak interactions in the complex between two reactant monomers.  相似文献   

6.
High purity birnessite was synthesized and exfoliated into a negatively charged monolayer structure. A positively charged 5, 10, 15, 20-tetrakis (4-aminophenyl) manganese porphyrin (MnTAPP) was synthesized. Driven by the electrostatic force and the coordination effect of the amino nitrogen on the manganese ion in birnessite, the single-layer birnessite was reassembled with MnTAPP, forming a new sandwich-type catalytic composite MnTAPP@bir. The structure and chemical properties of the composite were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Brunauer–Emmett analysis (BET). Electrocatalytic studies showed that the MnTAPP@bir exhibited an overpotential for water oxidation of 450 mV (at 10 mA cm−2) and a Tafel slope of 121.5 mV dec−1 compared to birnessite with 700 mV (at 10 mA cm−2) and 230 mV dec−1. Impedance spectroscopy results suggested that the charge transfer resistivity of MnTAPP@bir was significantly lower than that of birnessite, suggesting that MnTAPP in the interlayer increased the conductivity of birnessite. Through a chronoamperometry test, the new material also showed excellent stability within 4000 s.

Sandwich-type MnTAPP@bir was synthesized by re-assembly of exfoliated birnessite and MnTAPP, and exhibited superior OER performance.  相似文献   

7.
In this work, a new inhibitor, triazole modified chitosan, was synthesized for the first time following chemical modification of chitosan using 4-amino-5-methyl-1,2,4-triazole-3-thiol. The newly synthesized biopolymer (CS–AMT) was characterized using FTIR and NMR, and then it was evaluated as an inhibitor against corrosion of carbon steel in 1 M hydrochloric acid. The corrosion testing and evaluation were performed thoroughly employing the weight loss method, electrochemical measurements and surface analysis. A maximum corrosion inhibition efficiency of >95% was obtained at 200 mg L−1 concentration of inhibitor. The adsorption of inhibitor obeyed the Langmuir isotherm and showed physical and chemical adsorption. The electrochemical study via impedance analysis supported the adsorption of the inhibitor on the surface of carbon steel, and the potentiodynamic polarization indicated a mixed type of inhibitor behavior with cathodic predominance. To get a better insight on the interaction of inhibitor molecules with the metal surface, a detailed theoretical study was performed using DFT calculations, Fukui indices analysis and molecular dynamics (MD) simulation. The DFT study showed a lower energy gap of CS–AMT and the MD simulations showed an increased binding energy of CS–AMT compared to the parent chitosan and triazole moieties thereby supporting the experimental findings.

A novel derivative of chitosan is evaluated as an environment-friendly corrosion inhibitor for carbon steel in hydrochloric acid solution.  相似文献   

8.
Yong Yang 《RSC advances》2018,8(27):15078
The structural, dynamical and electronic properties of water molecules on the β-PtO2(001) surface has been studied using first-principles calculations. For both water monomer and monolayer, the adsorption energies are found to be three to five times larger than that of water adsorption on the Pt surface, and the dissociative adsorption configurations are energetically more stable. The adsorption energies are positively correlated with the charge transfer between the water molecule and the substrate, and the charge-rebalance between the Pt and O atoms of β-PtO2 upon water adsorption. More interestingly, an exceptionally large redshift is observed in the OH stretching mode of the adsorbed water monomer, due to the very strong hydrogen bonding with the substrate. The strong water–substrate interactions have significant effects on the molecular orbitals of the chemisorbed water molecules.

The structural, dynamical and electronic properties of water molecules on the β-PtO2(001) surface has been studied using first-principles calculations.  相似文献   

9.
Understanding the interaction of the hydroxyapatite (HAp) surface with hydroxyl originating from either the alkalescent physiological environment or HAp itself is crucial for the development of HAp-based biomaterials. Periodical density functional theory calculations were carried out in this study to explore the interaction of the HAp (100), (010) and (001) facets with hydroxyl. Based on a comparison study of Ca-rich, PO4-rich and Ca–PO4–OH mixed surfaces, the interaction pattern, interaction energy and effect of an additional water molecule on the Ca–OH interaction were comprehensively studied. The formation of CaOH on the Ca-rich surface was energetically favored on (100) and (001), while Ca(OH)2 was energetically favored on (010). The Ca–water interaction was competitive, but had lower interaction energy than Ca–OH. Furthermore, Ca–O bonding and its influence on the OH stretching vibration were analyzed. Our calculations suggest that the hydroxyl-coated surface structure is more appropriate than the commonly used Ca-terminated surface model for studying HAp surface activity in its service environments.

Hydroxyl adsorption alters the surface structure of hydroxyapatite.  相似文献   

10.
Low-cost and efficient electrocatalysts with high dispersion of active sites and high conductivity are of high importance for oxygen evolution reaction (OER). Herein, we use amorphous mesoporous fumed silica (MFS) as a skeleton material to disperse Ni2+ and Fe3+ through a simple impregnation strategy. The MFS is in situ etched away during the OER process in 1 M KOH to prepare a stable mesoporous Ni–Fe electrocatalyst. The high specific surface area and abundant surface silanol groups in the mesoporous fumed silica afford rich anchor sites for fixing metal atoms via strong chemical metal–oxygen interactions. Raman and XPS investigations reveal that Ni2+ formed covalent bonds with surface Si–OH groups, and Fe3+ inserted into the framework of fumed silica forming Fe–O–Si bonds. The mesoporous Ni–Fe catalysts offer high charge transfer abilities in the OER process. When loaded on nickel foam, the optimal 2Ni1Fe-MFS catalyst exhibits an overpotential of 270 mV at 10 mA cm−2 and a Tafel slope of 41 mV dec−1. Notably, 2Ni1Fe-MFS shows a turnover frequency value of 0.155 s−1 at an overpotential of 300 mV, which is 80 and 190 times higher than that of the state-of-the-art IrO2 and RuO2 catalysts. Furthermore, 2Ni1Fe-MFS exhibits 100% faradaic efficiency, large electrochemically active surface area, and good long-term durability, confirming its outstanding OER performance. Such high OER efficiency can be ascribed to the synergistic effect of high surface area, dense metal active sites and interfacial conductive path. This work provides a promising strategy to develop simple, cost-effective, and highly efficient porous Ni–Fe based catalysts for OER.

A stable mesoporous Ni–Fe–O electrocatalyst with high OER efficiency is constructed using mesoporous fumed silica as a template.  相似文献   

11.
The degradation behavior of polyimide in extreme environments, especially under coupling treatment, directly determines the service life of several key components in spacecraft. In this research, the combined effect of a high energy electron beam (1.2 MeV), heavy tensile stress (50 MPa) and constant high temperature (150 °C) was taken into account to study the surface modification and degradation behavior of polyimide films. By analyzing surface morphology, microstructural evolution and mechanical behavior of polyimide films after coupling treatment, the results indicated that the coupling treatment led to severe breakage of chemical bonds and decrease of surface quality. Meanwhile, new chemical bonds of C–C, CH2–O and C Created by potrace 1.16, written by Peter Selinger 2001-2019 N formed after coupling treatment. Additionally, a high dose of electron beam during coupling experiments contributed to the formation of an oxide layer, surface defects and even volatile gases in the outer layer of the polyimide film. This was attributed to the significant scissioning of molecular chains in polyimide films and corresponding chemical reactions between free radicals and oxygen in air. Consequently, the irradiation-load-heating coupling treatment led to a remarkable drop in viscoelastic properties and mechanical performance of polyimide films.

Schematic of irradiation-load-heating coupling treatment and degradation process of polyimide film.  相似文献   

12.
‘Imogolite’, a tubular inorganic nanotube surface, was modified with a peptide oligomer to prepare a hybrid hydrogel. The formation of the gels was confirmed by conducting a vial inversion test and rheological measurements. The surface modification of imogolite with the peptide oligomer was verified by performing thermogravimetric analysis and circular dichroism measurements. Furthermore, the formation of the network-like morphology of the prepared hydrogel was confirmed by scanning force microscopy.

‘Imogolite’, a tubular inorganic nanotube surface, was modified with a peptide oligomer to prepare a hybrid hydrogel.  相似文献   

13.
Hyperbranched polymers, a subclass of dendritic polymers, mimic nature''s components such as trees and nerves. Hyperbranched polyglycerol (HPG) is a hyperbranched polyether with outstanding physicochemical properties, including high water-solubility and functionality, biocompatibility, and an antifouling feature. HPG has attracted great interest in the modification of different objects, in particular carbon-based nanomaterials. In this review, recent advances in the synthesis and application of HPG to modify carbon-based nanomaterials, including graphene, carbon nanotubes, fullerene, nanodiamonds, carbon dots, and carbon fibers, are reviewed.

Modification of carbon nanomaterials by hyperbranched polyglycerol improves their properties.  相似文献   

14.
In this study, to achieve a homogeneous dispersion of nanodiamond (ND) in a polyimide (PI) matrix and a strong interfacial adhesion between ND and the PI matrix, a biomimetic nondestructive dopamine chemistry was employed for surface modification of ND. FTIR and Raman spectroscopy studies revealed that self-polymerization of dopamine could produce thinner polydopamine (PDA) layers on the ND surface via spontaneous oxidation and the intermolecular cross-linking reaction of PDA molecules. The structure and morphology of PDA–ND were studied by FTIR, SEM, and Raman spectroscopy, which verified the π–π interactions between PDA and ND. The facile dispersion of PDA–ND in a polyamic acid prepolymer made it possible to obtain PI/ND composites with no obvious ND aggregation. The effect of PDA–ND nanoparticles on the thermal, mechanical and tribological properties of the resulting PI/PDA–ND composites were evaluated, and the results showed that the incorporation of PDA–ND could increase the hardness, tensile strength, storage modulus, as well as the wear resistance properties. PI/PDA–ND composites prepared in this study showed that PDA–ND is a promising nanoreinforcing filler for PI composites.

In this study, to achieve a homogeneous dispersion of nanodiamond (ND) in a polyimide (PI) matrix and a strong interfacial adhesion between ND and the PI matrix, a biomimetic nondestructive dopamine chemistry was employed for surface modification of ND.  相似文献   

15.
β-Ni(OH)2 nanoplatelets are prepared by a hydrothermal procedure and characterized by scanning and transmission electron microscopy, X-ray diffraction analysis, Raman spectroscopy, and X-ray photoelectron spectroscopy. The material is demonstrated to be an efficient electrocatalyst for oxygen reduction, oxygen evolution, and hydrogen evolution reactions in alkaline media. β-Ni(OH)2 shows an overpotential of 498 mV to reach 10 mA cm−2 towards oxygen evolution, with a Tafel slope of 149 mV dec−1 (decreasing to 99 mV dec−1 at 75 °C), along with superior stability as evidenced by chronoamperometric measurements. Similarly, a low overpotential of −333 mV to reach 10 mA cm−2 (decreasing to only −65 mV at 75 °C) toward hydrogen evolution with a Tafel slope of −230 mV dec−1 is observed. Finally, β-Ni(OH)2 exhibits a noteworthy performance for the ORR, as evidenced by a low Tafel slope of −78 mV dec−1 and a number of exchanged electrons of 4.01 (indicating direct 4e-oxygen reduction), whereas there are only a few previous reports on modest ORR activity of pure Ni(OH)2.

β-Ni(OH)2 nanoplatelets produced via a hydrothermal method exhibit good performance as trifunctional electrocatalysts for the ORR, OER, and HER in alkaline media along with excellent stability under cathodic/anodic polarisation conditions.  相似文献   

16.
We report on the sensing stability of quantum nanosensors in aqueous buffer solutions for the two detection schemes of quantum decoherence spectroscopy and nanoscale thermometry. The electron spin properties of single nitrogen-vacancy (NV) centers in 25 nm-sized nanodiamonds have been characterized by observing individual nanodiamonds during a continuous pH change from 4 to 11. We have determined the stability of the NV quantum sensors during the pH change as the fluctuations of ±12% and ±0.2 MHz for the spin coherence time (T2) and the resonance frequency (ω0) of their mean values, which are comparable to the instrument error of the measurement system. We discuss the importance of characterizing the sensing stability during the pH change and how the present observation affects the measurement scheme of nanodiamond-based NV quantum sensing.

We report on the sensing stability of quantum nanosensors in aqueous buffer solutions for the two detection schemes of quantum decoherence spectroscopy and nanoscale thermometry.  相似文献   

17.
Design and synthesis of non-noble electrocatalyst with controlled structure and composition for hydrogen evolution reaction (HER) are significant for large-scale water electrolysis. Here, an elegant multi-step templating strategy is developed for the fabrication of vertically aligned CoP@Ni2P nanowire–nanosheet architecture on Ni foam. Cobalt–carbonate hydroxides nanowires grown on Ni foam are first synthesized as the self-template. Afterward, a layer of amorphous Ni(OH)2 nanosheets is grown on the Co-based precursors through a chemical bath process, which is then transformed into the hierarchical CoP@Ni2P nanoarrays by a co-phosphatization treatment. Owing to the synergistic effect of the compositions and the advantages of the hierarchical heterostructures, the resulting hybrid electrocatalyst with dense heterointerfaces is revealed as an excellent HER catalyst, with a low overpotential of 101 mV at the current density of 10 mA cm−2, a relatively small Tafel slope of 79 mV dec−1, and favorable long-term stability of at least 20 h in 1 M KOH.

Benefiting from their structural and compositional merits, the as-synthesized CoP@Ni2P core–shell nanoarrays exhibit excellent electrocatalytic activity and long-term stability for HER in 1 M KOH.  相似文献   

18.
Zinc oxide (ZnO) coated superhydrophobic and superoleophilic stainless steel meshes are facilely fabricated via chemical immersion growth and subsequent surface modification. The as-prepared meshes show good mechanical durability, chemical stability and corrosion-resistant properties due to a combination of the hierarchical ZnO structure and the low surface energy modification. More importantly, the as-prepared meshes are used for highly efficient separation of various oil/water mixtures. Meanwhile, a new oil skimmer based on the as-prepared mesh is proposed to spontaneously collect floating oil with high separation efficiency and desirable durability.

Zinc oxide coated superhydrophobic and superoleophilic stainless steel mesh was fabricated by a simple and inexpensive approach for efficient oil/water separation.  相似文献   

19.
Modeling of dry etching processes requires a detailed understanding of the relevant reaction mechanisms. This study aims to elucidate the gas-phase mechanism of reactions in the chemical dry etching process of SiO2 layers which is initiated by mixing NF3 gas with the discharged flow of an NH3/N2 mixture in an etching chamber. A kinetic model describing the gas-phase reactions has been constructed based on the predictions of reaction channels and rate constants by quantum chemical and statistical reaction-rate calculations. The primary reaction pathway includes the reaction of NF3 with H atoms, NF3 + H → NF2 + HF, and subsequent reactions involving NF2 and other radicals. The reaction pathways were analyzed by kinetic simulation, and a simplified kinetic model composed of 12 reactions was developed. The surface process was also investigated based on preliminary quantum chemical calculations for ammonium fluoride clusters, which are considered to contribute to etching. The results indicate the presence of negatively charged fluorine atoms in the clusters, which are suggested to serve as etchants to remove SiO2 from the surface.

Reactions of NF3 and a discharged NH3/N2 mixture generate etchant species for destroying SiO2 layers.  相似文献   

20.
A highly efficient and low-cost oxygen evolution reaction electrocatalyst is essential for water splitting. Herein, a simple and cost-effective autologous growth method is developed to prepare NiFe-based integrated electrodes for water oxidation. In this method, a Ni(OH)2 nanosheet film is first developed on nickel foam by oxidative deposition in a chemical bath solution. The as-prepared nanosheet electrode is then immersed into a solution containing Fe(iii) cations to form an Fe-doped Ni(OH)2 electrode by utilization of the different solubility of metal cations. Benefiting from its unique and integrated nanostructure, this hierarchically structured electrode displays extremely high catalytic activity toward water oxidation. In 1 M KOH, the electrode can deliver a current density of 1000 mA cm−2 at an overpotential of only 330 mV. This work provides a facile way to produce an efficient, durable, and Earth-abundant OER electrocatalyst with no energy input, which is attractive for large-scale water splitting.

We report here a simple and cost-effective autologous growth method to prepare a NiFe-based integrated electrode for efficient electrocatalytic water oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号