首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design of a highly specific and sensitive approach for the quantitative and qualitative determination of acetaminophen (AP) is crucial from a human health point of view. In this study, AuNPs@PMo12, as a nanozyme, has been developed for the highly sensitive and selective detection of AP with 3,3′,5,5′-tetramethylbenzidine (TMB) within a few seconds without adding oxidizing reagents (e.g. H2O2). Synthesized nanosensors are able to oxidize TMB to yellow-brown oxidized TMB (oxTMB). The maximum peak wavelength of oxTMB was observed at 450 nm. The addition of AP and then increasing its concentration led to the production of different products in blue color. In experimental measurements, the limit of detection was obtained as 14.52 mg L−1. The quantitative determination of AP concentrations can be carried out using UV-vis spectroscopy. The design of nanosensors is cost-effective and application of them in H2O2-free and enzyme-free conditions provides a rapid sensing approach for practical use in disease monitoring and diagnosis.

The design of a highly specific and sensitive approach for the quantitative and qualitative determination of acetaminophen (AP) is crucial from a human health point of view.  相似文献   

2.
Potassium permanganate (KMnO4) is one of the most important oxidants, which plays important roles in many fields. Here, we found that KMnO4 could directly induce the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) to generate an oxidized product with a color change. This redox reaction is highly efficient, and 1 μM KMnO4 is enough to cause detectable changes in the absorbance signal. Meanwhile, this reaction is very fast and the generated blue product can stabilize for a relatively long period, which has great advantages in practical applications. Since hydrogen peroxide (H2O2) is able to react with KMnO4 under acidic conditions, the KMnO4-TMB system can be used for the detection of H2O2; the absorbance signal induced by 5 μM H2O2 can be easily detected in this method. Meanwhile, the KMnO4-TMB system can also be used for the detection of glucose by monitoring the generation of H2O2, which is the main product of glucose oxidation; this method permits detection of concentrations as low as 10 μM glucose, and the sensitivity is comparable to or higher than most peroxidase mimetic based methods, but avoiding the preparation and storage of the nanomaterials. Furthermore, the KMnO4-TMB system can even be used for analyzing glucose in serum samples, which can also be expected to be used in immunoassays.

The redox reaction between potassium permanganate and 3,3′,5,5′-tetramethylbenzidine is fast and highly efficient, which can be used for different biosensing.  相似文献   

3.
Hydroquinone (HQ) is poorly degradable in the ecological environment and is highly toxic to human health even at a low concentration. The colorimetric method has the advantages of low cost and fast analysis, which provides the possibility for simple and rapid detection of HQ. In this work, a new colorimetric method has been developed for HQ detection based on a peroxidase-like catalyst, α-Fe2O3@CoNi. This sweetsop-like α-Fe2O3@CoNi catalyst enables H2O2 to produce hydroxyl (˙OH), leading to the oxidization of colorless 3,3′,5,5′-tetramethylbenzidine (TMB) to blue oxTMB. In the presence of HQ, the blue oxTMB is reduced to colorless, which allows for colorimetric detection of HQ in water samples. This method has been validated by detecting HQ in water samples with high selectivity, rapid response, broad detection range (0.50 to 30 μM), and low detection limit (0.16 μM).

A sweetsop-like α-Fe2O3@CoNi catalyst with superior peroxidase-like activity was synthesized and successfully applied to the detection of hydroquinone (HQ) based on the colorimetric principle.  相似文献   

4.
Carbon quantum dots (CQDs) were synthesized from litchi peel, exhibiting a peroxidase-like activity and enabling the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) in association with H2O2 to generate blue oxidized TMB (ox-TMB) with a strong absorption peak at 652 nm. Interestingly, the ox-TMB could be further reduced by ascorbic acid (AA) leading to fading of the blue color and an absorbance decrease. Thus, a convenient and sensitive colorimetric method for detection of AA using CQDs as peroxidase mimics was established. Several factors, such as acidity, temperature, incubating time, and TMB concentration, which might influence the response of the analysis signal, were optimized. The results showed that the decrease of absorbance (ΔA) was in good linear agreement with AA concentration in the range of 1.0–105 μM, with a low detection limit of 0.14 μM. The feasibility of this method was also investigated in commercial beverages with the 94.3–110.0% recovery.

Carbon quantum dots (CQDs) were synthesized from litchi peel, exhibiting a peroxidase-like activity and enabling the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) in association with H2O2 to generate blue oxidized TMB (ox-TMB) with a strong absorption peak at 652 nm.  相似文献   

5.
2,2′,2′′,4,4′,4′′,6,6′,6′′-Nonanitro-1,1′:3′,1′′-terphenyl (NONA) is currently recognized as an excellent heat-resistant explosive. To improve the atomistic understanding of the thermal decomposition paths of NONA, we performed a series of reactive force field (ReaxFF) molecular dynamics simulations under extreme conditions of temperature and pressure. The results show that two distinct initial decomposition mechanisms are the homolytic cleavage of the C–NO2 bond and nitro–nitrite (NO2 → ONO) isomerization followed by NO fission. Bimolecular and fused ring compounds are found in the subsequent decomposition of NONA. The product identification analysis under finite time steps showed that the gaseous products are CO2, N2, and H2O. The amount of CO2 is energetically more favorable for the system at high temperature or low density. The carbon-containing clusters are a favorable growth pathway at low temperatures, and this process was further demonstrated by the analysis of diffusion coefficients. The increase of the crystal density accelerates the decomposition of NONA judged by the analysis of reaction kinetic parameters and activation barriers. In the endothermic and exothermic stages, a 20% increase in NONA density increases the activation energies by 3.24 and 0.48 kcal mol−1, respectively. The values of activation energies (49.34–49.82 kcal mol−1) agree with the experimental data in the initial decomposition stage.

The bimolecular and fused ring compounds are found in the high-temperature pyrolysis of NONA using ReaxFF molecular dynamics simulations.  相似文献   

6.
The catalytic properties of bimetallic nanoparticles have been widely studied by researchers in many fields. In this paper, core–shell Cu/Au nanoparticles (Cu/Au NPs) were synthesized by a simple and mild one-pot method, and their peroxidase activity was proved by catalyzing the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) with color change to blue. The change of solution color and absorbance strongly depends on the concentration of H2O2, so it can be used for direct detection of H2O2 and indirect detection of glucose. What''s more, GSH can efficiently react with the hydroxyl radicals from H2O2 catalyzed by core–shell Cu/Au NPs to inhibit the production of ox-TMB. Thus, the concentration of GSH can be determined by the decrease in the absorbance of the solution at 652 nm. The results showed that our proposed strategy had good detection range and detection limit for the detection of glucose and GSH. This method has been used in the detection of practical samples and has great application potential in environmental monitoring and clinical diagnosis.

Core–shell Cu/Au nanoparticles were synthesized by a one pot method, their peroxidase activity was proved by catalysing the oxidation of 3,3′,5,5′-tetramethylbenzidine with colour change to blue. Results showed a good range and limit for the detection of glucose and GSH.  相似文献   

7.
Peroxidase widely exists in nature and can be applied for the diagnosis and detection of H2O2, glucose, ascorbic acid and other aspects. However, the natural peroxidase has low stability and its catalytic efficiency is easily affected by external conditions. In this work, a copper-based metal–organic framework (Cu-MOF) was prepared by hydrothermal method, and characterized by means of XRD, SEM, FT-IR and EDS. The synthesized Cu-MOF material showed high peroxidase-like activity and could be utilized to catalyze the oxidation of o-phenylenediamine (OPDA) and 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2. The steady-state kinetics experiments of the oxidation of OPDA and TMB catalyzed by Cu-MOF were performed, and the kinetic parameters were obtained by linear least-squares fitting to Lineweaver–Burk plot. The results indicated that the affinity of Cu-MOF towards TMB and OPDA was close to that of the natural horseradish peroxidase (HRP). The as-prepared Cu-MOF can be applied for colorimetric detection of H2O2 and glucose with wide linear ranges of 5 to 300 μM and 50 to 500 μM for H2O2 and glucose, respectively. Furthermore, the specificity of detection of glucose was compared with other sugar species interference such as sucrose, lactose and maltose. In addition, the detection of ascorbic acid and sodium thiosulfate was also performed upon the inhibition of TMB oxidation. Based on the high catalytic activity, affinity and wide linear range, the as-prepared Cu-MOF may be used for artificial enzyme mimics in the fields of catalysis, biosensors, medicines and food industry.

A Cu-MOF with high peroxidase-like activity was prepared and could be used for colorimetric detection of H2O2 and glucose with high selectivity and good linear range (50–500 μM).  相似文献   

8.
Recently, energetic ionic salts have become a research hotspot due to their attractive properties, such as high density, high heat of formation, and environmental friendliness. Dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50) is a typical nitrogen-rich energetic ionic salt, which has broad application prospects. However, the research on the stability and crystal structure evolution of TKX-50 in different solvent systems is insufficient. Herein, we investigated the crystal structure transformations and searched for new solid forms of TKX-50 under different conditions via a solvent induction method. The phase composition of all screened samples was analyzed by powder or single-crystal X-ray diffraction. Three new solid forms of [NH2(CH3)2+][BTO], [NH2(CH3CH2)2+]2[BTO2−], [NHOH(CH3CCH3)+][BTO] H2O were obtained from DMAC, DEF and AC/MT, respectively. Furthermore, the energetic properties were evaluated through EXPLO5.

Three new solvent compounds obtained by dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate recrystallized from three solvents.  相似文献   

9.
Mesoporous MnFe2O4 magnetic nanoparticles (mMnFe2O4 MNPs) were prepared with a one-step synthesis method and characterized to possess intrinsic peroxidase-like activity, and had obvious advantages over other peroxidase nanozymes in terms of high catalytic affinity, high stability, mono-dispersion, easy preparation, and quick separation. The mMnFe2O4 MNPs were used as a colorimetric sensor for indirect sensing of urine glucose based on the sensing principle that H2O2 can be produced from glucose oxidation catalyzed by glucose oxidase (GOx), and under the catalysis of the mMnFe2O4 MNPs nanozyme, H2O2 can oxidize 3,3′,5,5′-tetramethylbenzidine (TMB) to produce a blue color in a few minutes. This sensor is simple, cheap, sensitive, and specific to glucose detection with a detection limit of 0.7 μM, suggesting its potential for on-site glucose detection.

Schematic illustration of glucose detection with glucose oxidase (GOx) and mMnFe2O4 MNPs-catalyzed system.  相似文献   

10.
Solvothermal reactions of aromatic 1,1′-ethynebenzene-3,3′,5,5′-tetracarboxylic acid (H4EBTC) and Mg2+ salts in the presence of different supporting ligands afforded the coordination polymers [Mg(H2EBTC)(DMF)2(H2O)2] (1), [Mg3(HEBTC)2(H2O)4]·solvent (2) and [Mg2(EBTC)(H2O)5]·solvent (3). The crystal structures of 1–3 were determined by the single crystal X-ray diffraction technique, where CP 1 showed a one-dimensional zigzag MgO6 coordination octahedral chain structure; 2 exhibited a two-dimensional MgO6 coordination octahedral framework with trinuclear [Mg3(COO)6] SBUs, and 3 featured a three-dimensional MgO6 coordination octahedral framework with binuclear [Mg2O(COO)2] SBUs. The various structures in CPs 1–3 of Mg2+ ions with the H4EBTC ligand were ascribed to the conformational flexibility and the coordination mode diversity of the H4EBTC ligand. Interestingly, the zwitterionic supporting ligand 2-aminoterephthalic acid or 4-aminobenzenesulphonic acid played a vital role in the initial formation process of nuclear crystals but only as a structural induction agent, which modulated the dimensionality of these Mg2+-based CPs. Additionally, the three CPs emitted bright blue luminescence at ambient conditions, and the emission lifetimes and absolute quantum yields were also investigated.

Crystal structure diversity and dimensionality of three Mg2+-based CPs, which emit bright ligand-based luminescence at ambient conditions, are modulated by reaction temperature and structural induction agents.  相似文献   

11.
PtPd nanoflowers (PtPd NFs) exhibit intrinsic peroxidase-like activity as nanozymes, but the nanozymes lack substrate specificity and have low catalytic activity. Herein, a molecularly imprinted nanogel on PtPd NFs was prepared by using 3,3′,5,5′-tetramethylbenzidine (TMB) as the template through the aqueous precipitation polymerization method. After the TMB was washed out, many substrate binding pockets were retained in the PtPd NFs. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and powder X-ray diffraction (XRD) were employed to characterize the molecularly imprinted polymer (MIP) PtPd nanoflowers (T-MIP-PtPd NFs). The obtained T-MIP-PtPd NFs exhibited enhanced catalytic activity and specific recognition for TMB. Compared with PtPd NFs, T-MIP-PtPd NFs showed a linear range from 0.01–5000 μM and a detection limit of 0.005 μM toward the detection of H2O2. Glucose can also be sensitively detected through cascade reaction by the T-MIP-PtPd NFs and glucose oxidase. Therefore, molecular imprinting on nanozymes technology shows promising application in biocatalysis and sensing fields.

PtPd nanoflowers (PtPd NFs) exhibit intrinsic peroxidase-like activity as nanozymes, but the nanozymes lack substrate specificity and have low catalytic activity.  相似文献   

12.
2′,4′-Dihydroxy-6′-methoxy-3′,5′-dimethylchalcone (DMC, 1) was isolated from seeds of Syzygium nervosum A.Cunn. ex DC. exhibiting intriguing biological activities. Herein, thirty three DMC derivatives including 4′-O-monosubstituted-DMC (2), 7-O-acylated-4-hydroxycoumarin derivatives (3), stilbene–coumarin derivatives (4), 2′,4′-disubstituted-DMC (5), and flavanone derivatives (6), were synthesised through acylation, alkylations, and sulfonylation. These semi-synthetic DMC derivatives were evaluated for in vitro cytotoxicity against six carcinoma cell lines. It was found that most derivatives exhibited higher cytotoxicity than DMC. In particular, 4′-O-caproylated-DMC (2b) and 4′-O-methylated-DMC (2g) displayed the strongest cytotoxicity against SH-SY5Y with IC50 values of 5.20 and 7.52 μM, respectively. Additionally, 4′-O-benzylated-DMC (2h) demonstrated the strongest cytotoxicity against A-549 and FaDu with IC50 values of 9.99 and 13.98 μM, respectively. Our structure–activity relationship (SAR) highlights the importance of 2′-OH and the derivatisation pattern of 4′-OH. Furthermore, molecular docking simulation studies shed further light on how these bioactive compounds interact with cyclin-dependent kinase 2 (CDK2).

Semi-synthetic DMC derivatives were synthesised and displayed biological potency against various cancer cell lines.   相似文献   

13.
Multiple enzyme-like activities of manganese oxides (MnO2) have been reported and applied in catalysis, biosensors, and cancer therapy. Here, we report that catechol can be determined colorimetrically based on the 3,3′,5,5′-tetramethylbenzidine (TMB) oxidase-like activity of δ-MnO2. The detection was based on pre-incubation of catechol containing water samples with δ-MnO2, and then the residual TMB oxidase-like activity of reacted δ-MnO2 was linearly dependent on the catechol concentration in the range of 0.5 to 10 μM. This determination method was stable at pH 3.73–6.00 and was not affected by ion strength up to 200 μM. Common co-solutes in water bodies (50 μM) have negligible effects and excellent selectivity of catechol among various phenolic compounds (15 μM) was facilitated. Both reduction and aggregation of δ-MnO2 were observed during the incubation process with catechol, and aggregation-induced TMB oxidase–mimic activity decrease was the main factor for this colorimetric determination.

A new determination mechanism for catechol: aggregation-induced oxidase-mimic activity decrease of δ-MnO2.  相似文献   

14.
Nanomaterial-based artificial peroxidase has attracted extensive interests due to their distinct advantages over natural counterpart. Cu@Au/Pt and Cu@Ag/Pt nanocomposite with rambutan-like structure were prepared and discovered to function like peroxidase, which was illustrated by catalyzing the oxidation reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) accompanied with a blue color change. Steady-state investigation indicates that the catalytic kinetics of Cu@Au/Pt and Cu@Ag/Pt all followed typical Michaelis–Menten behaviors and Cu@Au/Pt showed a strong affinity for H2O2, while Cu@Ag/Pt showed strong affinity for TMB. The color change and absorbance intensity strongly depend on the concentration of H2O2, thus the direct determination of H2O2 and indirect detection of glucose were demonstrated using Cu@Au/Pt with a detection limit of 1.5 μM and 6 μM, respectively. What is more important, the method was applied for detection of glucose in 50% fetal bovine serum with a detection limit of 80 μM, which is much lower than the lowest glucose content in blood for diabetes (7 mM). Moreover, the Cu@Au/Pt nanocomposite were also successfully applied for sensing l-cysteine because of the inhibition effect. Considering the good peroxidase-like activity and novel structure, Cu@Au(Ag)/Pt is expected to have a wide range of applications in bioassays and biocatalysis.

Cu@Au(Ag)/Pt nanocomposite possess good peroxidase-like activity and can be used for detection of glucose and l-cysteine.  相似文献   

15.
A ultrasensitive assay for the determination of uric acid (UA) based on Pt@Ag nanoflowers (Pt@Ag NFs) was constructed. H2O2 was formed by the reaction of uricase and UA and produced the hydroxyl radical (˙OH). The system was catalyzed by Pt@Ag NFs to change the color of 3,3′,5,5′-tetramethylbenzidine (TMB) from colorless to blue, and the morphology and chemical properties of Pt@Ag NFs were characterized by transmission electron microscopy and X-ray photoelectron spectroscopy. Under the optimized conditions, a linear relationship between the absorbance and UA concentration was in the range of 0.5–150 μM (R2 = 0.995) with a limit of detection of 0.3 μM (S/N = 3). The method can be applied to detection of UA in actual samples with satisfactory results. The proposed assay was successfully applied to the detection of UA in human serum with recoveries over 96.8%. Thus, these results imply that the UA assay provides an effective tool in fast clinical analysis of gout.

A ultrasensitive assay for the determination of uric acid (UA) based on Pt@Ag nanoflowers (Pt@Ag NFs) was constructed.  相似文献   

16.
3′-N-(2-Thio-1,3,2-oxathiaphospholane) derivatives of 5′-O-DMT-3′-amino-2′,3′-dideoxy-ribonucleosides (NOTP-N), that bear a 4,4-unsubstituted, 4,4-dimethyl, or 4,4-pentamethylene substituted oxathiaphospholane ring, were synthesized. Within these three series, NOTP-N differed by canonical nucleobases (i.e., AdeBz, CytBz, GuaiBu, or Thy). The monomers were chromatographically separated into P-diastereomers, which were further used to prepare NNPSN′ dinucleotides (3), as well as short P-stereodefined oligo(deoxyribonucleoside N3′→O5′ phosphoramidothioate)s (NPS-) and chimeric NPS/PO- and NPS/PS-oligomers. The condensation reaction for NOTP-N monomers was found to be 5–6 times slower than the analogous OTP derivatives. When the 5′-end nucleoside of a growing oligomer adopts a C3′-endo conformation, a conformational ‘clash’ with the incoming NOTP-N monomer takes place, which is a main factor decreasing the repetitive yield of chain elongation. Although both isomers of NNPSN′ were digested by the HINT1 phosphoramidase enzyme, the isomers hydrolyzed at a faster rate were tentatively assigned the RP absolute configuration. This assignment is supported by X-ray analysis of the protected dinucleotide DMTdGiBuNPSMeTOAc, which is P-stereoequivalent to the hydrolyzed faster P-diastereomer of dGNPST.

Separated P-diastereomers of 3′-N-(2-thio-1,3,2-oxathiaphospholane) derivatives of 5′-O-DMT-3′-amino-2′,3′-dideoxy-ribonucleosides were used to prepare P-stereodefined NNPSN′ dinucleotides and short NPS-, NPS/PO- and NPS/PS-oligomers.  相似文献   

17.
Exploiting a rapid and sensitive method for biomarker detection has important implications in the early diagnosis of diseases. Here, we synthesized Mn3O4 microspheres which worked as a nanozyme to exhibit outstanding oxidase-like activity for rapid colorimetric determination of glutathione (GSH). The Mn3O4 microspheres of about 800 nm in size could be prepared through a hydrothermal method, and we found that the as-prepared Mn3O4 microspheres could quickly oxidize 3,3′,5,5′-tetramethylbenzidine (TMB) to its oxidized form (TMBox) in the absence of H2O2. After adding glutathione (GSH), TMBox was able to be changed into to its original form and resulted in the corresponding decrease in absorbance value at 652 nm. The Mn3O4-TMB system had good linearity with GSH concatenation in the range of 5–60 μM, and the limit of detection was 0.889 μM. Furthermore, this assay possessed high selectivity specificity, which made it possible to detect GSH in human serum samples. Thus, the obtained assay based on the oxidase mimic of Mn3O4 would enlarge and exploit the application fields of nanozymes in bio-analysis.

The oxidase-like activity of Mn3O4 was used to detect the GSH level directly and rapidly in the absence of H2O2.  相似文献   

18.
High temperature oxide melt solution calorimetry studies on (M′ = Nb5+, M′′ = Mn3+ and Fe3+ and x = 0.20, 0.30 and 0.40) oxides and a new family of Ta containing Li excess disordered cathode materials, (M′ = Ta5+, M′′ = Fe3+ and x = 0.20, 0.30 and 0.40), synthesized by a rapid quenching method, are reported in this study. The enthalpies of formation determined from high temperature calorimetry studies reveal that the stability of compounds increases with the increasing Li content per formula unit. The reaction between more basic Li2O and acidic transition metal oxides results in the more negative enthalpies of formation for these compounds. The work reveals that the formation enthalpy term plays a more important role in the stabilization of such disordered Li ion materials at room temperature whereas configurational entropy along with lattice entropy (vibrational and magnetic) contributes to the stabilization at high temperature from which the samples are quenched.

Enthalpies of formation from oxides (ΔHf,ox) of novel disordered Li1+xTaxFe1−2xO2 and reported (M′′ = Mn3+ and Fe3+).  相似文献   

19.
Papain, a natural plant protease that exists in the latex of Carica papaya, catalyzes the hydrolysis of peptide, ester and amide bonds. In this work, we found that papain displayed peroxidase-like activity and catalyzed the oxidation of 3,3′,5′,5′-tetramethylbenzidine (TMB) in the presence of H2O2. This results in the formation of a blue colored product with an absorption maximum at 652 nm. The effects of experimental parameters including pH and reaction temperature on catalytic activity of papain were investigated. The increase of absorbance induced by the catalytic effect of papain offers accurate detection of H2O2 in the range of 5.00–90.0 μM, along with a detection limit of 2.10 μM. A facile colorimetric method for glucose detection was also proposed by combining the glucose oxidase (GOx)-catalyzed glucose oxidation and papain-catalyzed TMB oxidation, which exhibited a linear response in the range of 0.05–0.50 mM with a detection limit of 0.025 mM. The method proposed here displayed excellent selectivity, indicating that common coexisting substances (urea, uric acid, ascorbic acid, maltose, lactose and fructose) in urine did not interfere with detection of glucose. More importantly, the suggested method was successfully used to precisely detect the glucose concentration in human urine samples with recoveries over 96.0%.

We reported a simple colorimetric method for the detection of glucose based on GOx-catalyzed glucose oxidation and papain-catalyzed TMB oxidation.  相似文献   

20.
Sensitive glucose detection based on nanoparticles is good for the prevention of illness in our bodies. However, many nanoparticles lack stability and biocompatibility, which restrict their sensitivity to glucose detection. Herein, stable and biocompatible Ginkgo biloba leaf polysaccharide (GBLP) stabilized palladium nanoparticles (Pdn-GBLP NPs) were prepared through a green method where GBLP was used as a reducing and stabilizing agent. The results of Pdn-GBLP NPs characterized by UV-visible spectroscopy (UV-Vis), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectra (XPS) confirmed the successful preparation of Pdn-GBLP NPs. TEM results indicated that the sizes of Pd NPs inside of Pdn-GBLP NPs (n = 41, 68, 91 and 137) were 7.61, 9.62, 11.10 and 13.13 nm, respectively. XPS confirmed the successful reduction of PdCl42− into Pd (0). Dynamic light scattering (DLS) results demonstrated the long-term stability of Pdn-GBLP NPs in different buffer solutions. Furthermore, Pd91-GBLP NPs were highly biocompatible after incubation (500 μg mL−1) with HeLa cells for 24 h. More importantly, Pd91-GBLP NPs had peroxidase-like properties and followed a ping-pong mechanism. The catalytic oxidation of substrate 3,3′,5,5′-tetramethylbenzidine (TMB) into blue oxidized TMB (oxTMB) by Pd91-GBLP NPs was used to detect the glucose concentration. This colorimetric method had high selectivity, wide linear range from 2.5 to 700 μM and a low detection limit of 1 μM. This method also showed good accuracy for the detection of glucose concentrations in blood. The established method has great potential in biomedical detection in the future.

Ginkgo biloba leaf polysaccharide stabilized palladium nanoparticles had high stability, good biocompatibility and low detection limit for glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号