首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among 12 aroma types of Baijiu, the strong aroma type of Baijiu (Nongxiangxing Baijiu) is well received by customers for its rich and full aroma profile. According to the aroma characteristics of different geographical locations, Nongxiangxing Baijiu can be divided into Jianghuai, Sichuan and North categories. However, the reasons for the differences in Nongxiangxing Baijiu flavor in different regions are still unclear. Hence, representative brands (i.e., Gujinggong, Luzhou Laojiao and Banchengshaoguo) of Nongxiangxing Baijiu from three representative regions were chosen to explore their differences in profile aroma compounds. In this study, a total of 50, 41, 35 potential aroma compounds in Banchengshaoguo, Gujinggong, and Luzhou Laojiao samples were respectively identified by direct injection combined with gas chromatography-olfactometry/mass spectrometry (GC-O/MS). Among them, 18 aroma compounds were further recognized as important aroma compounds owing to their high flavor dilution (FD) value, Osme value, and odor activity value (OAV) ≥ 1. Moreover, the relationship between the above potential aroma compounds and the aroma profile of the three representative samples was analyzed by molecular matrix analysis. The results showed that various aroma compounds contributed differently to the flavor characteristics of Nongxiangxing Baijiu. In particular, 13 aroma compounds were tentatively defined as crucial profile aroma compounds due to their high aroma expression intensity and remarkable contribution to the flavor characteristics of Nongxiangxing Baijiu in different regions, and these crucial profile aroma compounds may be the reason for the difference in aroma profile of Nongxiangxing Baijiu from distinct regions.

Among 12 aroma types of Baijiu, the strong aroma type of Baijiu (Nongxiangxing Baijiu) is well received by customers for its rich and full aroma profile.  相似文献   

2.
A total of 84 volatile aroma components were determined in the 9 samples of sugarcane to non-centrifugal sugar (NCS), including 15 alcohols, 12 aldehydes, 10 ketones, 17 carboxylic acids, 11 pyrazines, 7 phenols, 3 esters, 3 hydrocarbons, and 2 sulfur compounds. Of these compounds, 10 were with high flavor dilution (FD) factors based on the aroma extract dilution analysis (AEDA). 4-Hydroxy-2,5-dimethyl-3(2H)furanone exhibited the highest FD factor of 2187, followed by (E)-2-nonenal, 2-hydroxy-3-methyl-2-cyclopentene-1-one, and 4-allyl-2,6-dimethoxyphenol with a FD factor of 729. The odor compounds showed no significant change and were similar to that of sugarcane during the first four steps in the production of non-centrifugal cane sugar. In the middle three stages, the heating slightly affected the aroma composition. Additionally, a prolonged period of high-temperature heating, lead to the production of the Maillard reaction products, such as pyrazines, pyrroles, and furans, differentiating the step to be unique from the previous seven stages. However, the content of the NCS odorants was significantly reduced due to the loss of odor compounds during the drying process.

84 volatile aroma components were determined in 9 samples of sugarcane to non-centrifugal sugar (NCS), including 15 alcohols, 12 aldehydes, 10 ketones, 17 carboxylic acids, 11 pyrazines, 7 phenols, 3 esters, 3 hydrocarbons, and 2 sulfur compounds.  相似文献   

3.
Biofilm formation in the production of fermented vegetable might impact its quality and safety. In this study, physicochemical and microbial properties, volatile and aroma-active compounds between PRPs without biofilm (NPRP) and with biofilm (FPRP) were investigated by gas chromatography-mass spectrometry, gas chromatography-olfactometry, aroma extract dilution analysis, and spiking tests. The pH and titratable acidity were 3.66 ± 0.00 and 0.47 ± 0.08 g/100 g lactic acid in NPRP and 3.48 ± 0.01 and 0.87 ± 0.10 g/100 g lactic acid in FPRP, respectively. The nitrite level of the two PRPs was 1.87–1.92 mg kg−1, which was below the limited value (20 mg kg−1) of fermented vegetables regulated by the GB2760-2017. FPRP had relatively higher microbial and yeast numbers than NPRP, three common pathogens, namely, Salmonella spp., Staphylococcus aureus, and Shigella spp. were not detected. A total of 70 and 151 aroma compounds were detected in NPRP and FPRP, respectively, including 13 classes of compounds. The dominant aroma attributes of FPRP were sour, floral, mushroom-like, green, and smoky, while NPRP exhibits a mushroom-like flavor. Acetic acid, ethanol, α-terpineol, (E)-2-nonenal, 2-heptanol, phenylethyl alcohol, and linalool were potent key aroma-active compounds in NPRP and FPRP. Results of spiking tests showed that the addition of each substance not only increased its own odour, but also had significant effects on other smells. FPRP displayed richer varieties and contents of aroma profile than NPRP. However, some compounds, such as 4-ethylguaiacol and 4-vinylguaiacol, which were only detected in FPRP, had negative roles on the aroma attributes.

The aroma profile of PRPs was evaluated by GC-MS, GC-O, AEDA, OVA and spiking test. Biofilm can improve the variety and contents of aroma.  相似文献   

4.
Correction for ‘Unraveling variation on the profile aroma compounds of strong aroma type of Baijiu in different regions by molecular matrix analysis and olfactory analysis’ by Jiaxin Hong et al., RSC Adv., 2021, 11, 33511–33521. DOI: 10.1039/D1RA06073B.

The authors regret the omission of a funding acknowledgement in the original article. This acknowledgement is given below.Dongrui Zhao would like to acknowledge the National Natural Science Foundation of China (32001826).The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

5.
Refinement to remove fermented mash residue is essential for obtaining clarified, stable and high-quality soy sauce. In this study, raw soy sauce microfiltration was investigated. Four widely-used microfiltration membranes were employed: ceramic, polyethersulfone (PES), polyvinylidene fluoride (PVDF) and mixed cellulose ester (MCE). Membrane fouling mechanisms were identified based on the blocking filtration model, indicating that the dominant fouling mechanism during soy sauce microfiltration was cake formation on the membrane surface. Microfiltration delivered highly dispersed soy sauce having superior clarity and a light color, with satisfactory sterilization quality, and preserved well the NaCl, reducing sugar, total acid and amino nitrogen content, leading to a product having a longer shelf life as compared to pasteurization. The loss of volatile compounds after refinement (microfiltration and pasteurization) was not neglected, particularly the ester groups (total loss of 76.3% to 96.4%), which affected the aroma profile of the soy sauce; all the samples from microfiltration seemed to lack the floral aroma. Ceramic membrane filtration and pasteurization exhibited relatively good preservation of the aroma of soy sauce, which then obtained the best scores in sensory analysis.

Membrane fouling mechanisms and characterization of physicochemical, aroma and shelf-life properties of soy sauce subjected to refinement.  相似文献   

6.
Fruit wine has certain health care functions, but fruit wine made from a single fruit or vegetable does not have a good enough color, flavor or nutrient composition. Therefore, this study used fresh carrot (Daucus carota subsp. sativus) and pomegranate (Punica granatum) as raw materials to explore the brewing process of carrot and pomegranate compound wine. The fermentation technology of the composite carrot and pomegranate wine was optimized by a single-factor experiment and Box–Behnken design (BBD), which provided a theoretical foundation for the fermentation of this wine. As per the results, the alcohol content of this composite carrot and pomegranate wine was 12.35% vol. under the optimum fermentation conditions of 28 °C initial temperature, 24% initial sugar content, and with the addition of 64 mg L−1 sulfur dioxide (SO2). In the fermented fruit and vegetable wine, a total of 30 aroma components were detected; 21 composites (such as bornyl acetate, caryophyllene and 3-(2-nitrophenylmethyl)-2-thiazolidinone) were newly generated. The relative content of alcohol flavor composites (such as propionic acid 2-methyl-3-hydroxy-2,2,4-trimethylpentan-1-ol, 2-methyl-2-ethyl-3-hydroxycyclohexyl propanoate and terpinene-4-ol) showed an upward trend, and the relative content of alkene components increased significantly after fermentation. The findings of this study provide an experimental foundation for optimizing fermentation technology and for improving the product quality of composite carrot and pomegranate wine.

Fruit wine has certain health care functions, but fruit wine made from a single fruit or vegetable does not have a good enough color, flavor or nutrient composition.  相似文献   

7.
Vanillin, 4-methylguaiacol, and 4-ethylguaiacol, three phenolic compounds in Gujinggong (GJG) Chinese baijiu (Chinese liquor), were quantified by liquid–liquid extraction (LLE) combined with gas chromatography-mass spectrometry (GC-MS) and evaluated for their possible cytoprotective effects by AAPH-induced HepG2 cell model. To confirm whether vanillin, 4-methylguaiacol, and 4-ethylguaiacol protected HepG2 cells against AAPH-induced abnormal oxidative stress via motivating the Keap1–Nrf2 pathway, the gene and protein expression of Nrf2, Keap1, SOD, CAT, and GPx from the Keap1–Nrf2 pathway were measured with real-time PCR and western blot. Three levels of treatment doses (1000, 500, and 100 mg L−1) were applied. Results showed that vanillin, 4-methylguaiacol, and 4-ethylguaiacol exhibited potent cytoprotective effect in a dose-dependent manner, greatly alleviating or reversing the increased oxidative stress induced by AAPH through up-regulating the mRNA and protein expression levels of Nrf2, SOD, CAT, and GPx, and thereby, significantly improving the intracellular antioxidant defense system in HepG2 cells (p < 0.05). Based on these findings, it was confirmed that vanillin, 4-methylguaiacol, and 4-ethylguaiacol, natural components of Chinese baijiu, were able to modulate the expression of Nrf2 and its downstream antioxidative enzymes (i.e., SOD, CAT, and GPx) against AAPH-induced abnormal oxidative stress. Further, this study lays the foundation for better illustrating the health benefits of Chinese baijiu.

Vanillin, 4-methylguaiacol, and 4-ethylguaiacol widely exist in Gujinggong Chinese baijiu and could protect HepG2 cells against oxidative stress via activating the Nrf2 pathway.  相似文献   

8.
9.
‘Hongyang’ kiwifruit is a new breed of red-fleshed cultivar that has become broadly popular with consumers in recent years. In this study, the internal quality and aroma of this kiwifruit during ripening were investigated by means of gas chromatography-mass spectrometry (GC-MS) and electronic nose (E-nose). Results showed that the green note aldehydes declined, the main fruity esters increased, and the terpenes had no obvious changes during ripening. Correlations between quality indices, volatile compounds, and E-nose data were analyzed by ANOVA partial least squares regression (APLSR), and the results showed that firmness and titratable acidity (TA) had highly positive correlations with (E)-2-hexenal and hexanal, while soluble solids content (SSC) and SSC/TA ratio had positive correlations with ester compounds. The E-nose sensors of S7, S10, S8, S6, S9, and S2 were positively correlated with ester compounds, S1, S3, and S5 were mainly correlated with hexanal, and S4 was correlated with terpene compounds. Partial least squares regression (PLSR) and support vector machine (SVM) were employed to predict the quality indices by E-nose data, and SVM presented a better performance in predicting firmness, SSC, TA, and SSC/TA ratio (R2 > 0.98 in the training set and R2 > 0.94 in the testing set). This study demonstrated that the E-nose technique could be used as an alternative to trace the flavor quality of kiwifruit during ripening.

‘Hongyang’ kiwifruit is a new breed of red-fleshed cultivar that has become broadly popular with consumers in recent years.  相似文献   

10.
Foodborne microbial infestation seriously threatens food security, and the development of low-risk food preservatives is highly needed in food production. For discovering novel flavor molecules with antiseptic function, novel 2-methyl-3-furyl sulfide flavor derivatives were synthesized and evaluated. A wide range of 2-methyl-3-furyl sulfide derivatives were synthesized by reactions of 2-methyl-3-furyl disulfide with cyclic ethers, amides, ketones, and epoxides. All of these compounds have special aroma characteristics and low aroma thresholds. The antimicrobial activity of these compounds against test foodborne bacterial or fungal strains (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Salmonella paratyphi, Listeria monocytogenes, Vibrio parahemolyticus, Penicillium italicum, Aspergillus niger, Mucor racemosus, Rhizopus oryzae) was examined. It was found that fifteen compounds (3a, 3b, 3d, 3e, 3f, 3g, 3h, 3i, 3j, 3k, 3l, 3m, 5a, 5b, 5f) have antimicrobial activity against different foodborne bacterial or fungal strains. Significantly, the antimicrobial activity of the flavor compounds (3b, 3d, 3e, 3i, 3j, 3l, 3m) is better than that of the control group (penicillin, amphotericin B and thiram), and they are promising preservatives for food production.

Foodborne microbial infestation seriously threatens food security, and the development of low-risk food preservatives is highly needed in food production.  相似文献   

11.
Natural products and traditional medicine products with known safety profiles are a promising source for the discovery of new drug leads. Natural products as sesame were reported to exhibit potential to protect from COVID-19 disease. In our study, the total methanolic extract of Sesamum indicum L. seeds (sesame) were led to isolation of seven known compounds, five lignan; sesamin 1, sesamolin 2, pinoresinol 3, hydroxymatairesinol 6, spicatolignan 7, together with two simple phenolic compounds; ferulic acid 4 and vanillic acid 5. All isolated compounds were evaluated in silico against three important SARS-CoV-2 protein targets; main protease (Mpro), papain-like protease (PLpro) and RNA-dependent RNA polymerase (RdRp) which possessed crucial role in replication and proliferation of the virus inside the human cell. The results revealed that compound 6 has the high affinity against the three main proteins, specially towards the SARS-CoV-2 Mpro that exceeded the currently used SARS-CoV-2 Mpro inhibitor darunavir as well as, exhibiting a similar binding energy at SARS CoV-2 PLpro when compared with the co-crystallized ligand. This activity continued to include the RdRp as it displayed a comparable docking score with remdesivir. Inferiorly, compounds 1 and 2 showed also similar triple inhibitory effect against the three main proteins while compound 7 exhibited a dual inhibitory effect against SARS CoV-2 PLPro and RdRp. Further molecular dynamic simulation experiments were performed to validate these docking experiments and to calculate their binding free energies (ΔGs). Compounds 1, 2, 3, 6, and 7 showed comparable binding stability inside the active site of each enzyme with ΔG values ranged from −4.9 to −8.8 kcal mol−1. All the compounds were investigated for their ADME and drug likeness properties, which showed acceptable ADME properties and obeying Lipinski''s rule of five parameters. It can be concluded that the isolated compounds from sesame lignans could be an alternative source for the development of new natural leads against COVID-19.

Natural products and traditional medicine products with known safety profiles are a promising source for the discovery of new drug leads.  相似文献   

12.
13.
The flavor release mechanism related to the interaction of aroma compounds with proteins is still unclear. In this study, the interaction of protein with pyrazine homologues, such as 2-methylpyrazine (MP), 2,5-dimethylpyrazine (DP), 2,3,5-trimethylpyrazine (TRP) and 2,3,5,6-tetramethylpyrazine (TEP), was investigated to elucidate the effect of alkyl distribution in a pyrazine ring on its flavor release in bovine serum albumin (BSA) solution (pH 7.4). The results of SPME-GC-MS indicated that methyl distribution in a pyrazine ring significantly affected its release from BSA solution. The pyrazines released from BSA solution with an increasing order of MP, DP, TRP and TEP. The inhibition mechanism of alkyl-pyrazine release was further elucidated by the interaction between alkyl-pyrazines and BSA using multiple spectroscopic methods. The non-covalent interaction between alkyl-pyrazines and BSA was confirmed as the main interaction force by the value of the bimolecular quenching constant (Kq > 2 × 1010 L mol−1 s−1). A decrease in the hydrophobicity of the microenvironment between the alkyl-pyrazine and BSA was detected by synchronous fluorescence spectra, which revealed that alkyl-pyrazines were mainly bound on the sites of tyrosine and tryptophan in BSA. The UV-vis absorption spectra and circular dichromatic (CD) spectrum revealed that alkyl-pyrazines could induce polarity and conformation change of BSA. The above results indicated that the structure of the flavor homologues can affect their release in food matrices.

The methyl groups on the pyrazine ring affect the interaction of pyrazines with BSA. The non-covalent interaction between alkyl-pyrazines and BSA was confirmed. Alkyl-pyrazines could induce the polarity and conformation change of BSA.  相似文献   

14.
Gynostemma pentaphyllum (Thunb.) Makino is a medicinal and edible plant in China whose buds and leaves are used for making a popular kind of tea drink. The anticancer and antioxidant properties of the ethyl acetate (EA) and n-butanol (n-Bu) fractions provide a basis for conducting experiments for isolation and identification of key compounds that may be responsible for the aforementioned properties of G. pentaphyllum. Four compounds were isolated from the two fractions using ODS packing column, silica gel column, polyamide column, Sephadex LH-20 gel column and HPLC. With the aid of 1H, 13C NMR and mass spectrometry, they were identified as 3,4-dihydroxy phenyl-O-β-d-glucoside, gypenoside XLVI, gypenoside L and ginsenoside Rd. 3,4-Dihydroxy phenyl-O-β-d-glucoside showed the strongest DPPH (97.23%) and ABTS (101.37%) scavenging effect and ferric ion reducing power (FRAP value 0.8846), which may be closely related to the hydrogen atoms of phenolic hydroxyls. Gypenoside L and ginsenoside Rd displayed the highest inhibition of tumor cell proliferation of A549 and MCF-7 cell lines, which had to do with the chemical structure of the compounds bearing glycosylated parts and free hydroxyls at the 20th or 21st carbon atom of dammarane-type saponin.

Gynostemma pentaphyllum (Thunb.) Makino is a medicinal and edible plant in China whose buds and leaves are used for making a popular kind of tea drink.  相似文献   

15.
To enrich the flavor additives of the Maillard reaction, two Amadori analogs, N-(1-deoxy-d-fructosyl-1-yl)-l-phenylalanine ester (Derivative 1) and di-O-isopropylidene-2,3:4,5-β-d-fructopyranosyl phenylalanine ester (Derivative 2), were chemically synthesized starting from d-fructose. The samples were reacted at 120 and 180 °C for 2 h, and the effects of solvents (water and ethanol) on their degradation products were studied. The analyses of thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), and gas chromatography-mass spectrometry (GC/MS) were used to investigate the thermal behavior and degradation products of the samples. TG–DTG curves show that the Tp values of the samples corresponding to the largest mass-loss rates are 132 and 275 °C, respectively. The degradation products of Derivative 1 are mainly phenyl acetaldehyde and phenylalanine ethyl ester in water and ethyl benzoate and benzaldehyde diethyl acetal in ethanol. For Derivative 2, the major degradation products both in water and ethanol are phenylalanine ethyl ester and diacetonefructose, but the products have different relative contents affected by solvent media. The products of the pyrolysis of the samples at 350 °C were analyzed and compared with the degradation compounds obtained in solvent. These results show that organic solvents can greatly influence the degradation pathway and products. Finally, possible mechanisms of the degradation processes are proposed.

The number and content of thermal degradation products from two chemically-synthesized Amadori analogs could be influenced by solvent media.  相似文献   

16.
17.
Sea buckthorn (SB), also named sea berry, Hippophae rhamnoides L. or Elaeagnus rhamnoides L., has been used in daily life for centuries with kinds of purposes ranging from a beverage with a pleasant taste and flavor, to an agent for treatment of many disorders and diseases. SB is well known more than just a fruit. So far, a unique mixture of bioactive components was elucidated in SB including flavonoids, phenolic acids, proanthocyanidins, carotenoids, fatty acids, triterpenoids, vitamins and phytosterols, which implied the great medicinal worth of this seaberry. Both in vitro and in vivo experiments, ranged from cell lines to animals as well as a few in patients and healthy volunteers, indicated that SB possessed various biological activities including anti-inflammatory and immunomodulatory effects, antioxidant properties, anti-cancer activities, hepato-protection, cardiovascular-protection, neuroprotection, radioprotection, skin protection effect as well as the protective effect against some eye and gastrointestinal sickness. Furthermore, the toxicological results revealed neither the fruits, nor the seeds of SB were toxic. The present review summarizes the unique profile of the chemical compounds, the nutritional and health effects as well as the toxicological properties of SB, which lay the foundation for practical applications of SB in treatment of human diseases.

Sea buckthorn (SB), also named sea berry, has been used in daily life for centuries with kinds of purposes ranging from a beverage with a pleasant taste and flavor, to an agent for treatment of many disorders and diseases.  相似文献   

18.
Natural products from fungi have remained a rich resource for drug discovery. Here we report the isolation of three new spirobisnaphthalenes, namely sacrosomycin A-C (1–3), and three known analogues (4–6), from the ethyl acetate extract of a nonsporulating endolichenic fungus derived from Peltigera elisabethae var. mauritzii. The structures of these compounds were elucidated by IR, UV, MS, and NMR. Biological functions of these compounds were evaluated using cultured human cancer cell lines. Short-term cell growth and long-term cell survival assays show that compound 5 demonstrated the strongest cancer cell growth inhibition effect. We reveal that compound 5 induced both cell cycle arrest at the G2/M phase and cell death. Using western blotting, luciferase reporter assay and quantitative PCR (qPCR), we show that compound 5 induced up-regulation of the P53–P21 pathway, supporting the cell cycle arrest and growth inhibition effect of this compound. In contrast, these compounds did not induce cell death in a normal cell line. These results demonstrate a potential anticancer effect of this rare family of spirobisnaphthalene compounds isolated from endolichenic fungi.

New spirobisnaphthalenes from an endolichenic fungus strain and their anticancer effects mediated by the P53–P21 pathway.  相似文献   

19.
Tamarindus indica Linn. (Tamarind, F. Fabaceae) is one of the most widely consumed fruits in the world. A crude extract and different fractions of T. indica (using n-hexane, dichloromethane, ethyl acetate, and n-butanol) were evaluated in vitro with respect to their DPPH scavenging and AchE inhibition activities. The results showed that the dichloromethane and ethyl acetate fractions showed the highest antioxidant activities, with 84.78 and 86.96% DPPH scavenging at 0.10 μg mL−1. The n-hexane, dichloromethane, and ethyl acetate fractions inhibited AchE activity in a dose-dependent manner, and the n-hexane fraction showed the highest inhibition at 20 μg mL−1. The results were confirmed by using n-hexane, dichloromethane, and ethyl acetate fractions in vivo to regress the neurodegenerative features of Alzheimer''s dementia in an aluminum-intoxicated rat model. Phytochemical investigations of those three fractions afforded two new diphenyl ether derivative compounds 1–2, along with five known ones (3–7). The structures of the isolated compounds were confirmed via 1D and 2D NMR and HRESIMS analyses. The isolated compounds were subjected to extensive in silico-based investigations to putatively highlight the most probable compounds responsible for the anti-Alzheimer activity of T. indica. Inverse docking studies followed by molecular dynamics simulation (MDS) and binding free energy (ΔG) investigations suggested that both compounds 1 and 2 could be promising AchE inhibitors. The results presented in this study may provide potential dietary supplements for the management of Alzheimer''s disease.

In vivo anti-Alzheimer''s and antioxidant potential of Tamarindus indica supported by molecular docking.  相似文献   

20.
Metabolic profiling of the crude methanolic extract of Ficus benghalensis leaves has revealed the presence of different phenolic and nitrogenous compounds including cerebrosides and tetrapyrrole pigments. A phytochemical study of the ethyl acetate fraction resulted in the identification of three known compounds, namely carpachromene (1), alpha amyrine acetate (2), and mucusoside (3) together with one new fatty acid glycoside, named 2-O-α-l-rhamnopyranosyl-hexacosanoate-β-d-glucopyranosyl ester (4). The compounds were identified using 1D, 2D NMR, and HR-ESIMS techniques as well as via comparison to other literature. Studies on the acetylcholinesterase inhibition potential and antioxidant activity were carried out on the total methanolic leaf extract, ethyl acetate fraction, and the isolated compounds. The results revealed the potent acetylcholinesterase inhibition of mucusoside alongside a new compound. Docking studies were also performed to confirm the possible interaction between the isolated compounds and acetylcholinesterase accompanying Alzheimer''s disease progress.

Metabolic profiling of the crude methanolic extract of Ficus benghalensis leaves has revealed the presence of different phenolic and nitrogenous compounds including cerebrosides and tetrapyrrole pigments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号