首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study is to develop a ternary nanocomposite (NC) of polyaniline (PANI)/2-acrylamido-2-methylpropanesulfonic acid (AMPSA)-capped silver nanoparticles (NPs)/graphene oxide quantum dots (PANI/Ag (AMPSA)/GO QDs) as an efficient adsorbent for the removal of the highly toxic hexavalent chromium (Cr(vi)) from polluted water. PANI/Ag (AMPSA)/GO QDs NC was synthesized via in situ oxidative polymerization. The effects of pH, adsorbent dose, initial concentration, temperature, contact time, ionic strength and co-existing ions on the removal of Cr(vi) by PANI/Ag (AMPSA)/GO QDs were investigated. The PANI/Ag (AMPSA)/GO QDs NC (25.0 mg) removed 99.9% of Cr(vi) from an aqueous solution containing 60 mg L−1 Cr(vi) ions at pH 2. Energy dispersive X-ray (EDX) and inductively coupled plasma spectrometry (ICP) studies confirmed the adsorption of Cr(vi) and that some of the adsorbed Cr(vi) was reduced to Cr(iii). Cr(vi) removal by the PANI/Ag (AMPSA)/GO QDs NC followed the pseudo-second order kinetic model, and the removal was highly selective for Cr(vi) in the presence of other co-existing ions. In summary, the PANI/Ag (AMPSA)/GO QDs NC has potential as a novel adsorbent for Cr(vi).

The aim is to develop a ternary nanocomposite of polyaniline/2-acrylamido-2-methylpropanesulfonic acid-capped silver nanoparticles/graphene oxide quantum dots as an efficient adsorbent for the removal of the highly toxic hexavalent chromium (Cr(vi)) from polluted water.  相似文献   

2.
In this study, a facile one-step route was used to synthesize a novel magnetic mesoporous greigite (Fe3S4)-CTAB composite, which was utilized to remove hexavalent chromium (Cr(vi)). The optimized Fe3S4-CTAB0.75 composite with a CTAB dosage of 0.75 g possessed the maximum specific surface, showing the highest Cr(vi) adsorption capacity of 330.03 mg g−1. The mechanism analysis revealed that Fe(ii) and S(−ii) were critical for the reduction of Cr(vi). CTAB can promote the removal of Cr(vi) by Fe3S4-CTAB composites, possibly due to increased S(−ii) concentration, better dispersion of nanoparticles, and greater zeta potential. Besides, there is mild effect of Fe0 on Cr(vi) removal, which is confirmed by the disappearance of the Fe0 peak from the XPS analysis. The pseudo-second-order kinetic model could explain the Cr(vi) removal processes well. The adsorption of Cr(vi) at different initial concentrations was more consistent with a Langmuir isotherm. The existence of H+ was beneficial for Cr(vi) removal by Fe3S4-CTAB0.75. Our work confirmed that the obtained Fe3S4-CTAB0.75 composites exhibit considerable potential for Cr(vi) removal from aqueous solution.

The presence of CTAB can promote the removal of hexavalent chromium from the Fe3S4-CTAB surface.  相似文献   

3.
Sericin, a protein waste product of the silk industry, was crosslinked with chitosan, and a chitosan–sericin conjugate (CS) was prepared, characterized and used to remove hexavalent chromium (Cr(vi)) ions and methyl orange (MO) dye from aqueous solutions. The CS was shown to effectively remove Cr(vi) ions and MO dye at maximum adsorption capacities (Langmuir) of 139 mg g−1 for Cr(vi) ions and 385 mg g−1 for MO dye. Moreover, the adsorption of both Cr(vi) ions and MO dye was highly pH dependent and varied under different experimental conditions. Cr(vi) ion and MO dye uptake by the CS was confirmed by attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy (XPS) and energy dispersive spectrometry analysis. Additionally, XPS analysis of the Cr(vi)-loaded CS revealed that Cr(vi) was reduced to the less toxic Cr(iii). The CS was shown not only to be highly amenable to regeneration, but also to be able to effectively remove MO dye and Cr(vi) ions from a binary mixture.

Sericin, a protein waste product of the silk industry, was crosslinked with chitosan, and a chitosan–sericin conjugate (CS) was prepared, characterized and used to remove hexavalent chromium (Cr(vi)) ions and methyl orange dye from aqueous solutions.  相似文献   

4.
Black soils have a significant retention effect on the migration of Cr(vi) towards groundwater, and Cr(vi) adsorption and reduction are both involved in this process. However, the adsorption and reduction of Cr(vi) were always investigated separately in previous studies resulting in an unclear relationship between them. In this study, the adsorption and reduction kinetic processes of Cr(vi) by a typical black soil were separately investigated under different initial Cr(vi) concentrations (40–400 mg L−1) and pH conditions (3.5–7.0) by the means of desorption treatment, and the equilibrium relationship between aqueous and adsorbed Cr(vi) was innovatively established based on the kinetic data. It was found that under pH 5.7 the adsorbed Cr(vi) content on soil particles was linearly correlated with the remaining Cr(vi) concentration in solution with time (R2 = 0.98), and the reduction rate of Cr(vi) in the reaction system was linearly correlated with the adsorbed Cr(vi) content on soil particles with time (R2 = 0.99). With pH decreasing from 7.0 to 3.5, the partition of Cr(vi) between solid and aqueous phases turned out to be of a non-linear nature, which can be fitted better by the Freundlich model. The retention of Cr(vi) by black soil was determined to follow the “adsorption–reduction” mechanism, where the Cr(vi) was first rapidly adsorbed onto the soil particles by a reversible adsorption reaction, and then the adsorbed Cr(vi) was gradually reduced into Cr(iii). A two-step kinetic model was developed accordingly, and the experimental data were fitted much better by the two-step adsorption–reduction kinetic model (R2 = 0.89 on average) compared with the traditional first-order and second-order kinetic models (R2 = 0.66 and 0.76 on average respectively). This paper highlights the novel two step kinetic model developed based on the proposed “adsorption–reduction” mechanism of Cr(vi) retention by a typical black soil.

A novel two-step kinetic model was developed based on the proposed “adsorption–reduction” mechanism of Cr(vi) retention by a typical black soil.  相似文献   

5.
Spores of Aspergillus niger (denoted as A. niger) were used as a novel biosorbent to remove hexavalent chromium from aqueous solution. The effects of biosorbent dosage, pH, contact time, temperature and initial concentration of Cr(vi) on its adsorption removal were examined in batch mode. The Cr(vi) uptake capacity increased with an increase in Cr(vi) concentration until saturation, which was found to be about 97.1 mg g−1 at pH 2.0, temperature of 40 °C, adsorbent dose of 2.0 g L−1 and initial concentration of 300 mg L−1. Scanning electron microscopy, energy dispersive X-ray spectroscopy, field-emission transmission electron microscopy (FETEM), XPS and Fourier-transform infrared spectroscopy were applied to study the microstructure, composition and chemical bonding states of the biomass adsorbent before and after spore adsorption. The mechanisms of chromate anion removal from aqueous solution by the spores of A. niger were proposed, which included adsorption of Cr(vi) onto the spores followed by its reduction to Cr(iii). The reduced Cr(iii) was rebound to the biomass mainly through complexation mechanisms, redox reaction and electrostatic attraction. The removal of Cr(vi) by spores of A. niger followed pseudo-second-order adsorption kinetics. Monolayer adsorption of Cr(vi) was revealed by the better fitting of the Langmuir model isotherm rather than multilayer adsorption for the Freundlich model. The results indicated that A. niger spores can be used as a highly efficient biosorbent to remove Cr(vi) from contaminated water.

Spores of Aspergillus niger (denoted as A. niger) were used as a novel biosorbent to remove hexavalent chromium from aqueous solution.  相似文献   

6.
To solve the problem of contamination of hexavalent chromium (Cr(vi)), visible-light-driven graphene-based ternary metal chalcogenide nanosheets (rGO/SnIn4S8) were synthesized via a one-pot surfactant-assisted hydrothermal method for the photoreduction of Cr(vi). Characterizations demonstrated that SnIn4S8 nanosheets were uniformly distributed on the surface of rGO and the as-synthesized nanosheets exhibited excellent photocatalytic activity under visible light. In addition, the effects of pH, concentration of critic acid, holes and electron scavengers on the reduction of Cr(vi) were systematically investigated. It was found that 50 mg L−1 of Cr(vi) could be completely removed within 30 min at pH 2 when citric acid served as a hole scavenger. Kinetic studies showed that the photocatalytic reduction of Cr(vi) processes obeyed the pseudo first order model. Further study indicated that the Cr(iii) species was immediately adsorbed onto the surface of the rGO/SnIn4S8 nanosheets after photocatalytic reduction of Cr(vi). Additionally, recycling results suggested that rGO/SnIn4S8 nanosheets possessed high recycle ability and stability after repeated use (5 times). This effective and promising work might provide a new strategy for the photoreduction of Cr(vi) and complete removal of chromium from effluent through the novel photocatalyst rGO/SnIn4S8.

Fabrication of visible-light-responsive photocatalyst (rGO/SnIn4S8) for photoreduction of Cr(vi) and adsorption of Cr(iii).  相似文献   

7.
Reduced graphene oxide (rGO) supported Fe2O3 nanorod composites were prepared via a one-step hydrothermal method and further utilized for hexavalent chromium (Cr(vi)) removal from aqueous environments. The composite material exhibited an excellent removal efficiency for chromium (47.28 mg L−1), which was attributed to the electrostatic attraction and chemical reduction of chromium by the material. The removal mechanism was studied by SEM, BET, XPS, and FTIR. The results demonstrated that rGO was successfully modified by Fe2O3 nanorods (approximately 50 nm wide). Compared with graphene oxide (GO), the compound was much more easily separated from the solution after completing the removal. Furthermore, XPS characterization showed that Cr(vi) could also be reduced to low-toxicity Cr(iii) by hydroxyl groups. In the variables test, it was found that the removal process was pH-dependent. The results of the designed experiments for exploring the adsorption kinetics, isotherms and thermodynamics indicated that the removal process obeyed a pseudo-second-order kinetics model, Langmuir isotherm model and that it was a spontaneous exothermal process. This study provides the possibility of hydrothermal synthesis of Fe2O3/rGO for use as an excellent material to remove Cr(vi) from aqueous environments.

Reduced graphene oxide (rGO) supported Fe2O3 nanorod composites were prepared via a one-step hydrothermal method and further utilized for hexavalent chromium (Cr(vi)) removal from aqueous environments.  相似文献   

8.
A bentonite supported amorphous aluminum (B–Al) nanocomposite was synthesized by the NaBH4 reduction method in an ethanol–water interfacial solution and characterized with SEM, TEM, XRD, FT-IR and XRF. Surface morphology and line scans obtained from TEM imaging suggest the successful synthesis of the nanocomposite while XRF data shows a drastic change in Al concentration in the synthesized nanocomposite with respect to raw bentonite. This synthesized nanocomposite was further utilized for the removal of hexavalent chromium (Cr(vi)) from aqueous solutions. The very high removal efficiency of the composite for Cr(vi) (i.e. 49.5 mg g−1) was revealed by the Langmuir sorption isotherm. More than 90% removal of Cr(vi) in just 5 minutes of interaction suggests very fast removal kinetics. Inner sphere complexation and coprecipitation of Cr(vi) can be concluded as major removal mechanisms. No influence of ionic strength suggests inner sphere complexation dominated in Cr(vi) uptake. pH of the solution didn''t influence the sorption much but comparatively the removal was higher under alkaline conditions (99.4%) than under acidic conditions (93.7%). The presence of humic acid and bicarbonate ions reduced the sorption significantly. The final product, Cr–Al(OH)3 results in precipitation by forming alum which indicates that clay supported amorphous aluminum nanocomposites can be considered as potential sorbents for toxic metal ions in the environment.

Synthesis and application of bentonite supported amorphous aluminum nanocomposite as promising material for the removal of Cr(vi) from aqueous solutions.  相似文献   

9.
Using Cr(vi) as the imprinted ions and 2-allyl-1,3-diphenyl-1,3-propanedione (ADPD) (a compound synthesized by independent design) as the functional monomer, a series of chromium ion-imprinted composite membranes (Cr(vi)-IICMs) and corresponding non-imprinted composite membranes (NICMs) were synthesized and tested. The results showed that the Cr(vi)-IICM10 membrane prepared under optimal experimental conditions exhibited a high adsorption capacity towards Cr(vi) (Q = 30.35 mg g−1) and a high imprinting factor (α = 2.70). The structural characteristics of Cr(vi)-IICM10 and NICM10 were investigated using FE-SEM, ATR-FTIR, and BET techniques combined with UV-Vis photometry and inductively coupled plasma emission spectrometry (ICP-OES) to evaluate the adsorption performance and permeation selectivity, while the effect on adsorption permeance of varying the experimental conditions including the solvent type, pH, and temperature was also investigated. The results showed that Cr(vi)-IICM10 is a mesoporous material with excellent permeation selectivity, reusability, and favorable pH response, and that its adsorption behavior is in accordance with the Langmuir model and pseudo-first-order kinetics. Thus, Cr(vi)-IICM10 shows great potential towards utilization as a “smart membrane” to control the separation and removal of Cr(vi) in wastewater, and also proved a reasonable design of the new functional monomer ADPD.

Using Cr(vi) as the imprinted ions and 2-allyl-1,3-diphenyl-1,3-propanedione (a compound of independent design) as the functional monomer, a series of chromium ion-imprinted composite membranes and corresponding non-imprinted composite membranes were synthesized and tested.  相似文献   

10.
In order to remove hexavalent chromium (Cr(vi)) efficiently and simplify the adsorbent preparation process, we employed a single step method to prepare a new biochar supported manganese sulfide material. The nanoscale MnS particles were highly soldered on the biochar support surface, and this adsorbent displayed the effective removal of Cr(vi) (98.15 mg L−1) via synergistic effect between adsorption and reduction/precipitation under weak acid conditions (pH = 5.0–6.0). The adsorption kinetic data were described well by the pseudo second-order kinetic model, suggesting that the reaction process was a chemisorption process. The adsorption isotherm data were described well by the Redlich–Peterson model, further suggesting that this reaction was a hybrid chemical reaction-sorption process. In addition, the Dubinin–Radushkevich isotherm model with 8.28, 8.57, and 12.91 kJ mol−1 adsorption energy also suggests that it was a chemisorption process. The simple and eco-friendly preparation process, low-cost, and the high removal efficiency could make it a promising material for the purification of Cr(vi)-contaminated wastewater.

In order to remove hexavalent chromium (Cr(vi)) efficiently and simplify the adsorbent preparation process, we employed a single step method to prepare a new biochar supported manganese sulfide material.  相似文献   

11.
In this study, a novel magnetic nanocomposite was prepared using waste toner (WT) through high temperature decomposition, and calcination was conducted in different atmospheres (air, ammonia, and vacuum). WT calcined in ammonia (WT(NH3)), and it was then utilized as an efficient absorbent for the reduction of Cr(vi) in aqueous solutions; a batch experiment with different conditions was performed to investigate its Cr(vi) removal ability. The effects of two pH-regulating acid (HCl and H2SO4) treatments were also studied. It was found that WT(NH3) could remove about 99% Cr(vi) at pH 2 under H2SO4 treatment. The XRD and TEM results coupled with VSM results confirmed that WT(NH3) is an Fe3O4/Fe2N nanohybrid, which possesses excellent water-dispersibility and remarkable magnetic properties. XPS analysis showed the presence of Cr(vi) and Cr(iii) on the surface of WT(NH3), which indicated that Cr(vi) was reduced to Cr(iii). Furthermore, H2SO4 regulation also promoted the reduction of Cr(vi) by WT(NH3), and this reduction was higher than that obtained by HCl regulation.

A novel magnetic nanocomposite is prepared using waste toner via calcination in ammonia, which exhibits excellent magnetic properties and high efficiency for the removal of Cr(vi) via pH regulation using H2SO4.  相似文献   

12.
A one-step carbothermal synthesis and characterization of biochar-supported nanoscale zero-valent iron (nZVI/BC) was performed for the removal of hexavalent chromium (Cr(vi)) from aqueous solution. High dispersions of nanoscale zero-valent iron supported on biochar were successfully synthesized by the pyrolysis of an iron-impregnated biomass (corn stover) as the carbon and iron source under nitrogen atmosphere. The effects of the pyrolytic temperature on the Fe mineralogies formed on the biochar are discussed. In general, the effects of the treatment time, initial solution pH, and nZVI/BC dosage on the Cr(vi) removal are presented. The results showed high crystallinity and purity, and nZVI/BC was obtained at a pyrolytic temperature of 800 °C. The batch experimental results determined that the adsorption capacity of Cr(vi) decreases with the increase in the initial pH value from 4.0 to 10.0. The Cr(vi) adsorption kinetics data effectively followed a pseudo-second-order kinetics with a calculated rate constant of 0.0.3396 g mg−1 min−1. The calculated thermodynamic parameters, such as ΔG°, ΔH°, and ΔS°, were evaluated, and the results indicated that the Cr(vi) reduction on nZVI/BC was a spontaneous and endothermic process. The adsorption mechanism of Cr(vi) was investigated by XRD and XPS analyses and the results demonstrated that Cr(vi) was reduced to Cr(iii) and the oxidation of nZVI occurred during the reaction process. These results prove that nZVI/BC synthesized by a one-step carbothermal method can be considered as a potential candidate for the removal of Cr(vi) from aqueous solutions.

A one-step carbothermal synthesis and characterization of biochar-supported nanoscale zero-valent iron (nZVI/BC) was performed for the removal of hexavalent chromium (Cr(vi)) from aqueous solution.  相似文献   

13.
In the present work, porous carbon was made from sewage sludge and hybrid liriodendron leaves, and modified with iron ions (Fe@LS-BC) carried out on Cr(vi) in aqueous solution from a single-component system and in competitive biosorption with methyl orange (MO) from a binary-component system. The iron ion-modified porous carbon (Fe@LS-BC) showed higher efficiency in the removal of Cr(vi) compared to porous carbon prepared by the co-pyrolysis of sludge and hybrid liriodendron leaves. The incorporation of the Fe element improved the ability of the material to redox Cr(vi), while imparting magnetic characteristics to the porous carbon and improving the reusability of the porous carbon. On the other hand, Fe@LS-BC exhibited a better pore volume, facilitating the contact of the material with Cr(vi) ions. The highest adsorption capacity was 0.33 mmol g−1, and the adsorption experimental results for the single-component and binary-component systems of Cr(vi) matched well with the Langmuir–Freundlich models. When the concentration of MO was 0.2 and 0.8 mmol L−1, respectively, the highest adsorption capacity of Cr(vi) was 0.35 and 0.46 mmol g−1 in the binary system. The positively charged N–CH3+ on the MO molecule promoted the electrostatic adsorption between HCrO4, CrO42−, and Fe@LS-BC, and increased the adsorption potential of Cr(vi).

Mechanism for the adsorption of hexavalent chromium and methyl orange in a binary system.  相似文献   

14.
In this study, polyethylenimine-functionalized poly(vinyl alcohol) (PEI-PVA) films were prepared for the first time to remove aqueous Cr(vi). The results indicate that our PEI-PVA films have an excellent potential for Cr(vi) removal and their maximum removal capacity was 396.83 mg g−1. The optimized pH value was 2, the adsorption of Cr(vi) was fitted to the Langmuir model, and the kinetics of uptake could be described well by a pseudo-second-order rate model. Taking into account the simplified separation method of adsorbents and solutions, we used a PVA film as a carrier in which PEI-PVA microspheres were filled to obtain a PEI-PVA functionalized film (PPF). The PPF shows a great efficiency in the removal of Cr(vi) ions in solution, which can absorb and reduce the Cr(vi) ion concentration in the solution in 90 min. PPF has excellent selectivity and the removal efficiency of Cr(vi) ions in the presence of co-existing ions is not reduced. It also has good recycling properties; the removal efficiency remains at 77% over four cycles. The removal mechanism of Cr(vi) ions by PEI-PVA microspheres involves the reduction of the adsorbed Cr(vi) ions to Cr(iii) ions, which are less toxic.

A PEI-PVA functionalized composite film has been developed to remove hexavalent chromium ion Cr(vi) from water by an adsorption–reduction mechanism.  相似文献   

15.
Polypyrrole-based (PPy) composite are promising candidates for the treatment of water pollution. Adsorption selectivity as well as a large adsorption capacity are two key factors for treating wastewater containing multiple ions. The structure and morphology of the prepared composites were characterized by the FT-IR, XRD and SEM examinations. The results indicate that the Fe3O4 and PPy nanosphere coats attapulgite (ATP) closely and evenly. Herein, a novel Fe3O4 and ATP doped three-dimensional network structure PPy/Fe3O4/ATP composite was demonstrated as an excellent adsorbent to effectively remove Cr(vi). The as-synthesized PPy/Fe3O4/ATP composite is suitable for Cr(vi) adsorption in a wide pH range (pH 2–6). Up to a 96.44% removal rate was found with 400 mg L−1 Cr(vi) aqueous solution in 30 min for 0.2 g PPy/Fe3O4/ATP adsorbent. Adsorption results showed that Cr(vi) removal efficiency by PPy/Fe3O4/ATP decreased with an increase in pH. The removal rate of Cr(vi) had already reached 93.63% in 15 min contact time. Co-existing ions studies exhibit inorganic oxyacid anion and transition metal cation showed negative effects on Cr(vi) removal rate. A chemical rather than a physical adsorption occurred for these adsorbents as revealed by a pseudo-second-order kinetic study. The results of the adsorption isotherms showed that the adsorption process was similar to the Langmuir isotherm adsorption. Furthermore, the PPy/Fe3O4/ATP composite exhibited a high stability for Cr(vi) adsorption during recycling tests process. This work may provide some useful guidelines for designing adsorbents with selectivity toward specific heavy metal ions.

Polypyrrole-based (PPy) composite are promising candidates for the treatment of water pollution.  相似文献   

16.
Hexavalent chromium is a widespread pollutant that threatens ecological and human health. However, its removal from the environment is limited by the high cost and energy consumption rate of current technologies. In this study, the Cr(vi) biosorption mechanism of Aspergillus niger spores pretreated by freezing/thawing was studied by batch experiments and surface chemistry analyses. The results indicated that pretreatment enhanced the spores'' Cr(vi) removal efficiency. The cell surface, internal functional groups, and morphology of the freezing/thawing-pretreated spores (FTPS) before and after Cr(vi) loading were characterized by advanced spectroscopy techniques such as SEM-EDAX, XPS, FTIR, and FETEM analyses. The SEM and BET data showed that the surface of FTPS was rougher than that of untreated spores. The XPS data showed that FTPS bio-transformed Cr(vi) into Cr(iii). The intracellular localization of chromium was visualized by FETEM, and both surface and intracellular structures removed Cr(vi) following pseudo-second-order biosorption kinetics. The biosorption dynamics of Cr(vi) fit the Langmuir isotherm model describing a monolayer. These results suggest that freezing/thawing pretreatment of A. niger spores could lead to the development of a novel, efficient biomaterial for the removal of Cr(vi).

Freezing/thawing pretreatment of A. niger spores could lead to the development of a novel, efficient biomaterial for the removal of Cr(vi).  相似文献   

17.
Chromium exists mainly in two forms in environmental matrices, namely, the hexavalent (Cr(vi)) and trivalent (Cr(iii)) chromium. While Cr(iii) is a micronutrient, Cr(vi) is a known carcinogen, and that warrants removal from environmental samples. Amongst the removal techniques reported in the literature, adsorption methods are viewed as superior to other methods because they use less chemicals; consequently, they are less toxic and easy to handle. Mitigation of chromium using adsorption methods has been achieved by exploiting the physical, chemical, and biological properties of Cr(vi) due to its dissolution tendencies in aqueous solutions. Many adsorbents, including synthetic polymers, activated carbons, biomass, graphene oxide, and nanoparticles as well as bioremediation, have been successfully applied in Cr(vi) remediation. Initially, adsorbents were used singly in their natural form, but recent literature shows that more composite materials are generated and applied. This review focused on the recent advances, insights, and project future directions for these adsorbents as well as compare and contrast the performances achieved by the mentioned adsorbents and their variants.

Despite the extensive existence of adsorbents for Cr(vi) removal from aqueous solutions, new adsorbents and modification of existing adsorbing materials are continuously sought after.  相似文献   

18.
Recently, nanosized metal-oxides have been extensively investigated for their ability to remove metal ions from aqueous media. However, the activity and capacity of these nanosized metal-oxides for removing metal ions decrease owing to their agglomeration in aqueous media. Herein, we synthesized a highly stable and magnetically separable rosin-biochar-coated (RBC) TiO2@C nanocomposite through a facile and environment-friendly wet chemical coating process, followed by a one-step heating route (pyrolysis) for efficient removal of Cr(vi) from aqueous solution. An array of techniques, namely, TEM, HRTEM, TEM-EDS, XRD, FTIR, VSM, BET and TGA, were used to characterize the prepared nanocomposite. The pyrolysis of rosin into biochar and the fabrication of Fe onto the RBC-TiO2@C nanocomposite were confirmed by FTIR and XRD examination, respectively. Moreover, TEM and HRTEM images and elemental mapping using TEM-EDS showed good dispersion of iron and carbon on the surface of the RBC-TiO2@C nanocomposite. Sorption of Cr(vi) ions on the surface of the RBC-TiO2@C nanocomposite was very fast and efficient, having a removal efficiency of ∼95% within the 1st minute of reaction. Furthermore, thermodynamic analysis showed negative values of Gibb''s free energy at all five temperatures, indicating that the adsorption of Cr(vi) ions on the RBC-TiO2@C nanocomposite was favorable and spontaneous. Conclusively, our results indicate that the RBC-TiO2@C nanocomposite can be used for efficient removal of Cr(vi) from aqueous media due to its novel synthesis and extraordinary adsorption efficacy during a short time period.

A biochar-coated RBC-TiO2@C nanocomposite was synthesized using a wet chemical coating followed by a one-step heating route (pyrolysis) for the efficient removal of Cr(vi).  相似文献   

19.
Recently, research interest in the application of lignin is growing, especially as adsorbent material. However, single lignin shows unsatisfactory adsorption performance, and thus, construction of lignin-based nanocomposites is worth considering. Herein, we introduced graphene oxide (GO) into lignin to form lignin/GO (LGNs) composite nanospheres by a self-assembly method. FTIR and 1H NMR spectroscopy illustrated that lignin and GO are tightly connected by hydrogen bonds. The LGNs as an environmental friendly material, also exhibit excellent performance for Cr(vi) removal. The maximum sorption capacity of LGNs is 368.78 mg g−1, and the sorption efficiency is 1.5 times than that of lignin nanospheres (LNs). The removal process of Cr(vi) via LGNs mainly relies on electrostatic interaction, and it also involves the reduction of Cr(vi) to Cr(iii). Moreover, LGNs still have high adsorption performance after repeating five times with the sorption capacity of 150.4 mg g−1 in 200 mg g−1 Cr(vi) solution. Therefore, the prepared lignin–GO composite nanospheres have enormous potential as a low-cost, high-absorbent and recyclable adsorbent, and can be used in wastewater treatment.

Lignin/GO (LGNs) composite nanospheres were prepared by self-assembly method, which showed excellent adsorption performance for Cr(vi) removal.  相似文献   

20.
Designing exceptional probes to detect minute quantities of chromium(vi) is of huge importance for the safety and health of the human race. In this study, a green fluorescence emission probe (polyethylene Schiff base-chelated Fe2+ complex) was synthesized by a one-pot synthesis method for the highly selective and sensitive detection of Cr(vi) in an aqueous solution. The complex of polyethylene Schiff-Fe2+ was fully characterized, and it displayed satisfactory stability in the aqueous solution. The fluorescence emission could be quenched specifically by the introduction of Cr(vi) via the oxidation of the Fe2+-centered polyethylene Schiff base complex. The fluorescence intensity decreases linearly with the concentration of Cr(vi), and the corresponding detection limit was calculated to be 0.18 μM. Thus, the obtained fluorescence detection system could be used for Cr(vi) detection in tap water. These features provide potential uses of the as-prepared polyethylene Schiff-Fe2+ complex as a sensor for environmental applications.

Designing exceptional probes to detect minute quantities of chromium(vi) is of huge importance for the safety and health of the human race.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号