首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Nanocomposites are potential substitutes for inorganic materials in fabricating flexible gas-barrier thin films. In this study, two nanocomposites are used to form a flexible gas-barrier film that shows improved flexibility and a decreased water vapor transmission rate (WVTR), thereby extending the diffusion path length for gas molecules. The nanoclay materials used for the flexible gas-barrier thin film are Na+-montmorillonite (MMT) and graphene oxide (GO). A flexible gas-barrier thin film was fabricated using a layer-by-layer (LBL) deposition method, exploiting electronic bonding under non-vacuum conditions. The WVTR of the film, in which each layer was laminated by LBL assembly, was analyzed by Ca-test and the oxygen transmission rate (OTR) was analyzed by MOCON. When GO and MMT are used together, they fill each other''s vacancies and form a gas-barrier film with high optical transmittance and the improved WVTR of 3.1 × 10−3 g per m2 per day without a large increase in thickness compared to barrier films produced with GO or MMT alone. Thus, this film has potential applicability as a barrier film in flexible electronic devices.

Nanocomposites are potential substitutes for inorganic materials in fabricating flexible gas-barrier thin films.  相似文献   

2.
Organic optoelectronic devices, especially for OLEDs, are extremely susceptibility to water vapor and oxygen which limit their widespread commercialization. In order to extend the shelf-lifetime of devices, thin film encapsulation is the most promising and challenging encapsulation process. In this study, dyad-style multilayer encapsulation structures based on alternating Al2O3 layer and parylene C have been discussed as gas diffusion barriers, in which dense and pinhole-free Al2O3 films were grown by atomic layer deposition (ALD) and flexible parylene C layers were deposited by chemical vapor deposition (CVD). We found the particle in ALD deposited Al2O3 films process is the key killer to barrier property. The thickness of Al2O3 films is the key factor which limit the amount of strain placed on barrier films. With three dyads of the optimal thickness of 30 nm Al2O3 film and 500 nm parylene C, WVTR value is lower than 10−5 g m−2 per day. In addition, the lifetime of OLEDs with and without encapsulation was 190 h and 10 h, respectively. All the results show that this TFE structure has the effective encapsulated property and does not cause degradation of the OLED devices.

The work demonstrates the WVTR value of 3 dyads alternative 30 nm Al2O3 and 500 nm parylene C encapsulation structure is less than 10−5 g m−2 per day. And this TFE technology successfully applies for OLED device encapsulation.  相似文献   

3.
A facile thin film encapsulation (TFE) method having a triple-layered structure of a-SiNx:H/SiOxNy/hybrid SiOx (ASH) on QD-LEDs was performed utilizing both reproducible plasma-enhanced chemical vapor deposition (PECVD) and simple dip-coating processes without adopting atomic layer deposition (ALD). The ASH films fabricated on a polyethylene terephthalate (PET) substrate show a high average transmittance of 88.80% in the spectral range of 400–700 nm and a water vapor transmission rate (WVTR) value of 7.3 × 10−4 g per m2 per day. The measured time to reach 50% of the initial luminance (T50) at initial luminance values of 500, 1000, and 2000 cd m−2 was 711.6, 287.7, and 78.6 h, respectively, and the extrapolated T50 at 100 cd m−2 is estimated to be approximately 9804 h, which is comparable to that of the 12 112 h for glass lid-encapsulated QD-LEDs. This result demonstrates that TFE with the ASH films has the potential to overcome the conventional drawbacks of glass lid encapsulation.

The extrapolated T50 at 100 cd m−2 for the a-SiNx:H/SiOxNy/hybrid SiOx (ASH)-encapsulated QD-LEDs is estimated to be 9804 h, which is compatible to that of 12112 h for glass lid encapsulated QD-LEDs.  相似文献   

4.
A method for enhancing the moisture barrier property of polydimethylsiloxane (PDMS) polymer films is proposed. This is achieved by filling the PDMS free volume with aluminum oxide (AlOx). To deposit AlOx inside PDMS, thermal atomic layer deposition (ALD) is employed. The PDMS/AlOx film thus produced has a 30 nm AlOx layer on the surface. Its water vapor transmission rate (WVTR) is 5.1 × 10−3 g m−2 d−1 at 45 °C and 65% relative humidity (RH). The activation energy of permeability with the PDMS/AlOx film for moisture permeation is determined to be 35.5 kJ mol−1. To investigate the moisture barrier capability of the PDMS/AlOx layer, (FAPbI3)0.85(MAPbBr3)0.15/spiro-OMeTAD/Au perovskite solar cells are fabricated, and encapsulated by the PDMS/AlOx film. To minimize the thermal damage to solar cells during ALD, AlOx deposition is performed at 95 °C. The solar cells exposed to 45 °C-65% RH for 300 h demonstrate less than a 5% drop in the power-conversion efficiency.

A method for enhancing the moisture barrier property of polydimethylsiloxane (PDMS) polymer films is proposed. This is achieved by filling the PDMS free volume with aluminum oxide (AlOx).  相似文献   

5.
Thin film encapsulation (TFE) is one of the key problems that hinders the lifetime and widespread commercialization of flexible organic light-emitting diodes (OLEDs). In this work, TFE of OLEDs with Al2O3/alucone laminates grown by atomic layer deposition (ALD) and molecular layer deposition (MLD) as moisture barriers were demonstrated. The barrier performances of Al2O3/alucone laminates with respect to the individual layer thickness and the number of dyads were investigated. It was found that alucone with suitable layer thickness could reduce the permeation to the defect zones of the inorganic layer by prolonging the permeation pathway, sequentially improving the moisture barrier performance. The water vapor transmission rate (WVTR) could be further lowered with increasing the number of dyads of the laminates, the WVTR value reached 1.44 × 10−4 g per m2 per day for laminates with 5.5 dyads. These laminates were incorporated in OLEDs with pixel define layer (PDL), and were found to be able to evidently prolong the lifetime of the OLED.

Al2O3/alucone laminates were fabricated by atomic layer deposition (ALD) and molecular layer deposition (MLD), showing good barrier properties. These laminates were found to prolong the lifetime of organic light-emitting diodes (OLEDs) evidently.  相似文献   

6.
Rhodium (Rh) and palladium (Pd) thin films have been fabricated using an atomic layer deposition (ALD) process using Rh(acac)3 and Pd(hfac)2 as the respective precursors and using short-pulse low-concentration ozone as the co-reactant. This method of fabrication does away with the need for combustible reactants such as hydrogen or oxygen, either as a precursor or as an annealing agent. All previous studies using only ozone could not yield metallic films, and required post treatment using hydrogen or oxygen. In this work, it was discovered that the concentration level of ozone used in the ALD process was critical in determining whether the pure metal film was formed, and whether the metal film was oxidized. By controlling the ozone concentration under a critical limit, the fabrication of these noble metal films was successful. Rhodium thin films were deposited between 200 and 220 °C, whereas palladium thin films were deposited between 180 and 220 °C. A precisely controlled low ozone concentration of 1.22 g m−3 was applied to prevent the oxidation of the noble metallic film, and to ensure fast growth rates of 0.42 Å per cycle for Rh, and 0.22 Å per cycle for Pd. When low-concentration ozone was applied to react with ligand, no excess ozone was available to oxidize the metal products. The surfaces of deposited films obtained the RMS roughness values of 0.30 nm for Rh and 0.13 nm for Pd films. The resistivities of 18 nm Rh and 22 nm Pd thin films were 17 μΩ cm and 63 μΩ cm.

Rh and Pd metallic thin films were fabricated by atomic layer deposition using Rh(acac)3 and Pd(hfac)2 precursors, and only low-concentration ozone as co-reactant.  相似文献   

7.
In the present study, thin films of single-phase CoSb3 were deposited onto Si(100) substrates via pulsed laser deposition (PLD) method using a polycrystalline target of CoSb3. These films were implanted by 120 keV Fe-ions with three different fluences: 1 × 1015, 2.5 × 1015 and 5 × 1015 ions per cm2. All films were characterised by X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM), Rutherford backscattering (RBS) spectrometry and X-ray absorption spectroscopy (XAS). XRD data revealed that the ion implantation decreased the crystalline nature of these films, which are recovered after the rapid thermal annealing process. The Seebeck coefficient S vary with the fluences in the temperature range of 300 K to 420 K, and is found to be highest (i.e., 254 μV K−1) at 420 K for the film implanted with 1 × 1015 ions per cm2. The high S and low resistivity lead to the highest power factor for the film implanted with 1 × 1015 ions per cm2 (i.e., 700 μW m−1 K−2) at 420 K. The changing of the sign of S from negative for the pristine film to positive for the Fe-implanted samples confirm that the Fe ions are electrically active and act as electron acceptors by replacing the Co atoms. XAS measurements confirm that the Fe ions occupied the Co site in the cubic frame of the skutterudite and exist in the 3+ oxidation state in this structure.

The power factor for the Fe ion-implanted samples is greater than that of the pristine sample with a value of 700 mW m−1 K−2 at 420 K for the I1E15A sample.  相似文献   

8.
We report the application of tris(N,N′-diisopropyl-formamidinato)yttrium(iii) [Y(DPfAMD)3] as a promising precursor in a water-assisted thermal atomic layer deposition (ALD) process for the fabrication of high quality Y2O3 thin films in a wide temperature range of 150 °C to 325 °C. This precursor exhibits distinct advantages such as improved chemical and thermal stability over the existing Y2O3 ALD precursors including the homoleptic and closely related yttrium tris-amidinate [Y(DPAMD)3] and tris-guanidinate [Y(DPDMG)3], leading to excellent thin film characteristics. Smooth, homogeneous, and polycrystalline (fcc) Y2O3 thin films were deposited at 300 °C with a growth rate of 1.36 Å per cycle. At this temperature, contamination levels of C and N were under the detectable limits of nuclear reaction analysis (NRA), while X-ray photoelectron spectroscopy (XPS) measurements confirmed the high purity and stoichiometry of the thin films. From the electrical characterization of metal–insulator–semiconductor (MIS) devices, a permittivity of 13.9 at 1 MHz could be obtained, while the electric breakdown field is in the range of 4.2 and 6.1 MV cm−1. Furthermore, an interface trap density of 1.25 × 1011 cm−2 and low leakage current density around 10−7 A cm−2 at 2 MV cm−1 are determined, which satisfies the requirements of gate oxides for complementary metal-oxide-semiconductor (CMOS) based applications.

In this work, the application of tris(N,N′-diisopropyl-formamidinato)yttrium(iii) [Y(DPfAMD)3] as a precursor in a water-assisted thermal atomic layer deposition (ALD) process for the fabrication of device quality Y2O3 thin films is demonstrated.  相似文献   

9.
The passivation properties of a polysilicon (poly-Si) thin film are the key for improving the photovoltaic performance of TOPCon silicon solar cells. In this work, we investigate the influence of the poly-Si microstructure on the interface passivation and photovoltaic performance in TOPCon solar cells. The poly-Si thin films are prepared from phosphorus-doped hydrogenated microcrystalline silicon (μc-Si:H) layers deposited via plasma enhanced chemical vapor deposition (PECVD) under different hydrogen dilutions and recrystallized by high temperature post-deposition annealing. The results revealed that, as the hydrogen dilution ratio increases, the microstructure of the pre-deposited films transforms from an amorphous phase to a microcrystalline phase. Meanwhile, the effective minority carrier lifetime of the symmetrically passivated contact structure shows a maximum value of 1.75 ms, implying that the efficient passivation at the c-Si interface is obtained which is mainly attributed to the joint enhancement of the improved field effect passivation from poly-Si films and the reduced defects density on the silicon surface. Consequently, the devices displayed excellent rectification behavior with a rectifying ratio of 3 × 105, ascribed to the enhanced carrier transport with the high quality poly-Si film pre-deposited in the initial region of structural transition. Correspondingly, the obvious improvement of TOPCon solar cell performance was achieved, exhibiting an optimized conversion efficiency of 17.91%. The results provide an optimal design scheme for enhancing the photovoltaic properties of the TOPCon silicon solar cells.

The efficient passivation at the c-Si interface, and thus the enhanced photovoltaic performance in TOPCon silicon solar cells are obtained by appropriate hydrogen dilution of poly-Si film.  相似文献   

10.
Dual gate (DG) low-voltage transparent electric-double-layer (EDL) thin-film transistors (TFTs) with microporous-SiO2 for both top and bottom dielectrics have been fabricated, both dielectrics were deposited by plasma-enhanced chemical vapor deposition (PECVD) at room temperature. The threshold voltage of such devices can be modulated from −0.13 to 0.5 V by the top gate (TG), which switches the device from depletion-mode to enhancement-mode. High performance with a current on/off ratio (∼2.1 × 106), subthreshold swing (76 mV per decade), operating voltage (1.0 V), and field-effect mobility (∼2.6 cm2 V−1 s−1) are obtained. Such DG TFTs are promising for ion-sensitive field-effect transistors sensor applications with low-power consumptions.

Dual gate (DG) low-voltage transparent electric-double-layer (EDL) thin-film transistors (TFTs) with microporous-SiO2 for both top and bottom dielectrics have been fabricated, both dielectrics were deposited by plasma-enhanced chemical vapor deposition (PECVD).  相似文献   

11.
In this work, a simple and eco-friendly strategy to modify graphene nanoplatelets (GNs) with different silane coupling agents using a supercritical carbon dioxide (Sc-CO2) process has been presented, and effect of the modified GNs on the oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) of GN/PET composite films was studied. FT-IR, SEM, EDX and TG results indicated that Sc-CO2 process was an effective strategy to modify GNs with silane coupling agents. Addition of the modified GNs into PET matrix could greatly decrease the OTR and WVTR values of the GNs/PET composite films, and the WVTR of GNs560/PET composite film and OTR of GNs550/PET composite film were respectively decreased about 90.08% and 58.04%, as compared to those of GNs/PET composite film. It is found that the gas barrier property of GN/PET composites was attributed to not only the tortuous path effect caused by GNs themselves and the interfacial interaction, but also the affinity of binding bonds between GNs and the polymer to the gas molecules. It is believed that this work provided a strategy to design and prepare CN/polymer composites with high barrier properties.

Adding silane modified GNs prepared by a Sc-CO2 process into a PET matrix could greatly enhance the barrier properties of the GNs/PET composites.The barrier performance of GNs/PET composites was greatly enhanced by modifying GNs with silane coupling agents via Sc-CO2 process.  相似文献   

12.
The work presented here reported the effect of doping cobalt (Co) in ZnO thin films. The thin films were prepared using the spray pyrolysis technique with 0, 1, 5 and 10 wt% cobalt doping concentrations to study the morphological, optical and third-order nonlinear optical (NLO) properties. X-ray diffraction revealed the crystalline nature of the prepared thin films, and the crystallite size was found to increase with the concentration of doped Co. The morphology and surface topography of the films were largely influenced by doping, as indicated by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). With an increase in Co-doping concentration, the direct optical energy band-gap value increased from 3.21 eV to 3.45 eV for pure to 10 at% of Co concentrations respectively. To study the NLO properties of the prepared thin films, the Z-scan technique was adopted; it was observed that with an increase in the doping concentration from 0 to 10 wt%, the nonlinear absorption coefficient (β) was enhanced from 4.68 × 10−3 to 9.92 × 10−3 (cm W−1), the nonlinear refractive index (n2) increased from 1.37 × 10−8 to 2.90 × 10−8 (cm2 W−1), and the third-order NLO susceptibility (χ(3)) values also increased from 0.79 × 10−6 to 1.88 × 10−6 (esu). At the experimental wavelength, the optical limiting (OL) features of the prepared films were explored, and the limiting thresholds were calculated. The encouraging results of the NLO studies suggest that the Co : ZnO thin film is a capable and promising material for nonlinear optical devices and optical power limiting applications.

The work presented here reported the effect of doping cobalt (Co) in ZnO thin films.  相似文献   

13.
The effects of annealing treatment between 400 °C and 540 °C on crystallization behavior, grain size, electrochemical (EC) and photoelectrochemical (PEC) oxygen evolution reaction (OER) performances of bismuth vanadate (BiVO4) thin films are investigated in this work. The results show that higher temperature leads to larger grain size, improved crystallinity, and better crystal orientation for the BiVO4 thin film electrodes. Under air-mass 1.5 global (AM 1.5) solar light illumination, the BiVO4 thin film prepared at a higher annealing temperature (500–540 °C) shows better PEC OER performance. Also, the OER photocurrent density increased from 0.25 mA cm−2 to 1.27 mA cm−2 and that of the oxidation of sulfite, a hole scavenger, increased from 1.39 to 2.53 mA cm−2 for the samples prepared from 400 °C to 540 °C. Open-circuit photovoltage decay (OCPVD) measurement indicates that BiVO4 samples prepared at the higher annealing temperature have less charge recombination and longer electron lifetime. However, the BiVO4 samples prepared at lower annealing temperature have better EC performance in the absence of light illumination and more electrochemically active surface sites, which are negatively related to electrochemical double-layer capacitance (Cdl). Cdl was 0.0074 mF cm−2 at 400 °C and it decreased to 0.0006 mF cm−2 at 540 °C. The OER and sulfide oxidation are carefully compared and these show that the efficiency of charge transport in the bulk (ηbulk) and on the surface (ηsurface) of the BiVO4 thin film electrode are improved with the increase in the annealing temperature. The mechanism behind the light-condition-dependent role of the annealing treatment is also discussed.

The effects of annealing treatment on crystallization behavior, grain size, electrochemical (EC) and photoelectrochemical (PEC) oxygen evolution reaction (OER) performances of bismuth vanadate (BiVO4) thin films are investigated in this work.  相似文献   

14.
Gas and moisture barrier materials are of crucial importance in various application fields, including food/drug packaging and encapsulation of electronic devices. Herein, a dual-barrier film to gas and water vapor was fabricated by a facile and cost-effective spin-coating of amphiphilic surfactant (Tween 80) modified LDH nanoplatelets (denoted as LDH-80) and polydimethylsiloxane (PDMS). The resultant (LDH-80/PDMS)15 film exhibits low O2 and H2O transmission rates with ∼0.701 and ∼0.049 cm3 m−2 d−1 atm−1, respectively, smaller than those for most of the reported barrier materials. The remarkable barrier properties are ascribed to the prolonged diffusion length for gas permeation and improved inorganic–organic interfacial compatibility between LDH-80 and PDMS. Taking advantage of this unique dual-barrier property, an aluminum foil substrate coated with (LDH-80/PDMS)n film displays an excellent anti-corrosion effect due to the inhibition of oxygen-consuming corrosion, which enables the (LDH-80/PDMS)n films to be promising candidates in metal surface protection.

A hydrophobic film is fabricated by spin-coating of Tween 80 modified layered double hydroxide and polydimethylsiloxane alternately, which displays enhanced oxygen/water vapor barrier properties and anti-corrosion behavior toward metal substrates.  相似文献   

15.
Vapor deposition processes have shown promise for high-quality perovskite solar cells with potential pathways for scale-up to large area manufacturing. Here, we present a sequential close space vapor transport process to deposit CH3NH3PbI3 (MAPI) perovskite thin films by depositing a layer of PbI2 then reacting it with CH3NH3I (MAI) vapor. We find that, at T = 100 °C and pressure = 9 torr, a ∼225 nm-thick PbI2 film requires ≥125 minutes in MAI vapor to form a fully-reacted MAPI film. Raising the temperature to 160 °C increases the rate of reaction, such that MAPI forms within 15 minutes, but with reduced surface coverage. The reaction kinetics can be approximated as roughly first-order with respect to PbI2, though there is evidence for a more complicated functional relation. Perovskite films reacted at 100 °C for 150 minutes were fabricated into solar cells with an SLG/ITO/CdS/MAPI/Spiro-OMeTAD/Au structure, and a device efficiency of 12.1% was achieved. These results validate the close space vapor transport process and serve as an advance toward scaled-up, vapor-phase perovskite manufacturing through continuous vapor transport deposition.

This is the first demonstration of an all-vapor close space vapor transport process to deposit methylammonium lead iodide perovskites.  相似文献   

16.
Growth dynamics of thin films expressed by scaling theory is a useful tool to quantify the statistical properties of the surface morphology of the thin films. To date, the growth mechanism for 2D van der Waals materials has been rarely investigated. In this work, an experimental investigation was carried out to identify the scaling behavior as well as the growth mechanism of 2D MoS2 thin films, grown on glass substrates by pulsed laser deposition for different deposition time durations, using atomic force microscopy images. The growth of MoS2 films evolved from layer-by-layer to layer plus island with the increase in deposition time from 20 s to 15 min. The film surface exhibited anisotropic growth dynamics in the vertical and lateral directions where RMS roughness varied with deposition time as wtβ with the growth exponent β = 0.85 ± 0.11, while the lateral correlation length ξ was ξ = t1/z with 1/z = 0.49 ± 0.09. The films showed a local roughness exponent αloc = 0.89 ± 0.01, global roughness exponent α = 1.72 ± 0.14 and spectral roughness exponent αs = 0.85 ± 0.03, suggesting that the growth of MoS2 thin films followed intrinsic anomalous scaling behavior (αs < 1, αloc = αsα). Shadowing owing to conical incoming particle flux distribution towards the substrate during deposition has been attributed to the anomalous growth mode. The optical properties of the films, extracted from ellipsometric analysis, were also correlated with RMS roughness and cluster size variation which unveiled the important role played by surface roughness and film density.

MoS2 films grown on glass by pulsed laser deposition technique evolve from bilayer to bulk-like structure with time following intrinsic anomalous scaling behaviour caused by shadowing effect during deposition.  相似文献   

17.
In this research, pure titanium dioxide (TiO2) and doped TiO2 thin film layers were prepared using the spin coating method of titanium(iv) butoxide on a glass substrate from the sol–gel method and annealed at 500 °C. The effects on the structural and chemical properties of these thin films were then investigated. The metal doped TiO2 thin film which exists as trivalent electrons consists of aluminium (Al), yttrium (Y) and gadolinium (Gd). The anatase phase of the thin films was observed and it was found that the crystal size became smaller when the concentration of thin film increased. The grain size was found to be 0.487 to 13.925 nm. The types of surface morphologies of the thin films were nanoporous, with a little agglomeration and smaller nanoparticles corresponding to Al doped TiO2, Y doped TiO2 and Gd doped TiO2, respectively. The trivalent doping concentration of the thin films increased with a rising of thickness of the thin film. This can contribute to the defects that give advantages to the thin film when the mobility of the hole carriers is high and the electrons of Ti can move easily. Thus, Ti3+ existed as a defect state in the metal doped TiO2 thin film based on lattice distortion with a faster growth thin film that encouraged the formation of a higher level of oxygen vacancy defects.

Ti3+ state in metal doped TiO2 based on lattice distortion that encouraged the formation of oxygen vacancy defects.  相似文献   

18.
Recently, much attention has been paid to the investigation of solution-driven oxides for application in thin film transistors (TFTs). In current study, a fully solution-based method, using 2-methoxyethanol as solvent, has been adopted to prepare InZnO thin films and HfAlOx gate dielectrics. Amorphous HfAlOx thin films annealed at 600 °C have shown a high transparency (>85%), low leakage current density (6.9 × 10−9 A cm−2 at 2 MV cm−1), and smooth surface. To verify the potential applications of HfAlOx gate dielectrics in oxide-based TFTs, fully solution-induced InZnO/HfAlOx TFTs have been integrated. Excellent electrical performance for InZnO/HfAlOx TFTs annealed at 450 °C has been observed, including a low operating voltage of 3 V, a saturated mobility of 5.17 cm2 V−1 s−1, a high Ion/Ioff of ∼106, a small subthreshold swing of 87 mV per decade, and a threshold voltage shift of 0.52 V under positive bias stress (PBS) for 7200 s, respectively. In addition, time dependent threshold voltage shift under PBS could be described by a stretched-exponential model, which can be due to charge trapping in the semiconductor/dielectric interface. Finally, to explore the possible application in logic operation, a resistor-loaded inverter based on InZnO/HfAlOx TFTs has been built and excellent swing characteristic and well dynamic behavior have been obtained. Therefore, it can be concluded that fully solution-driven InZnO/HfAlOx TFTs have demonstrated potential application in nontoxic, eco-friendly and low-power consumption oxide-based flexible electronics.

Recently, much attention has been paid to the investigation of solution-driven oxides for application in thin film transistors (TFTs).  相似文献   

19.
In this study, a roll-to-roll (R2R) process for the large-scale fabrication of aluminum thin films on flexible polyimide (PI) films is proposed. The R2R machine for Al-film coating assembled in the current work uses a previously reported Al etherate-based precursor ink as the source. After the PI substrate is exposed to a diluted catalyst, the Al precursor ink is coated directly on to the substrate by a slit-die coating method. To optimize the injection of the Al precursor ink, a low-flow limit was established. At a film speed of 5 cm s−1, the width of the fabricated Al film was 130 mm. Such Al-coated films exhibit many advantageous features, including 5.87 × 106 S m−1 of high electrical conductivity at 60.9 nm film thickness and high durability with good adhesion. There was only a minor change in the resistance of the film when it was heated at 100 °C in an oven for 10 days or when it was exposed to H2O or ethyl alcohol. Flexibility and tape testing was also conducted and the film showed robustness in both cases. Touch panels (7 cm × 9 cm) were fabricated using the fabricated Al-coated film as one side of the panel; the panel showed enough sensitivity to write recognizable letters on the computer. This indicates that the fabricated Al films can be applied in actual electronic devices without further complicated processing.

R2R machine is designed for the Al thin film coating to the flexible substrate, and the substrate can be applied to the flexible electronics.  相似文献   

20.
Ethylene-bridged polysilsesquioxane (EBPSQ) was prepared by the sol–gel reaction of bis(triethoxysilyl)ethane. The whitish slurry was prepared by mixing EBPSQ and hollow silica particles (HSPs) with a median diameter of 18–65 μm at 80 °C, and it formed a hybrid film by heating at 80 and 120 °C for 1 h at each temperature, then at 200 °C for 20 min. The surface temperatures of EBPSQ films containing 10 wt% and 20 wt% of HSPs (90.2 °C–90.5 °C) were lower than those of EBPSQ films (93.6 °C), when the films on the duralumin plate were heated at 100 °C for 10 min from the bottom of the duralumin plate. The thermal conductivity/heat flux (k/q) obtained from the temperature difference between the surface temperature and bottom temperature of the films and the film thickness also decreased with adding the HSPs. EBPSQ film without HSPs exhibited T5d of 258 °C and T10d of 275 °C. However, EBPSQ film containing 20 wt% of HSPs exhibited high thermal stability, and T5d and T10d were 299 °C and 315 °C, respectively. Interestingly, T5d and T10d of the hybrid films increased with an increase in the number of HSPs. Overall, it was shown that HSPs could improve the thermal insulation properties and thermal stability.

Ethylene-bridged polysilsesquioxane/hollow silica particle hybrid films were prepared by the sol–gel reaction. The hybrid film containing hollow silica particles exhibited good thermal insulation properties and thermal stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号