首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chiral carbon quantum dots (CQDs) with chirality, fluorescence and biocompatibility were synthesized by a one-step method with l-/d-tryptophan (l-/d-Trp), as both carbon source and chiral source. Levogyration-/dextrorotation-CQDs (l-/d-CQDs) were characterized by transmission electron microscopy, Fourier transform infrared spectrometry, ultraviolet-visible absorption, excitation and emission spectrometry and circular dichroism (CD) spectrometry. Results show that l-CQDs and d-CQDs present similar spherical morphology, functional groups and optical properties. The CD signal, around 220, 240 and 290 nm are opposite and symmetric, which conclusively demonstrates that l-CQDs and d-CQDs are enantiomers. Besides the CD signal around 220 nm from the inheritance of l-/d-Trp, two new chiral signals around 240 and 290 nm were induced by chiral environment.

To clarify the chirality mechanism of chiral CQDs prepared by l-/d-tryptophan, the chirality origin in CQD structure was revealed.  相似文献   

2.
Stereocomplex (SC) formation was reported for the first time for enantiomeric alternating copolymers consisting of repeating units with two types of chiral centers, poly(lactic acid-alt-2-hydroxybutanoic acid)s [P(LA-alt-2HB)s]. l,l-Configured poly(l-lactic acid-alt-l-2-hydroxybutanoic acid) [P(LLA-alt-l-2HB)] and d,d-configured poly(d-lactic acid-alt-d-2-hydroxybutanoic acid) [P(DLA-alt-d-2HB)] were amorphous. Blends of P(LLA-alt-l-2HB) and P(DLA-alt-d-2HB) were crystallizable and showed typical SC-type wide-angle X-ray diffraction profiles similar to those reported for stereocomplexed blends of poly(l-lactic acid) and poly(d-lactic acid) homopolymers and of poly(l-2-hydroxybutanoic acid) and poly(d-2-hydroxybutanoic acid) homopolymers, and of l,l-configured poly(l-lactic acid-co-l-2-hydroxybutanoic acid) [P(LLA-co-l-2HB)] and d,d-configured poly(d-lactic acid-co-d-2-hydroxybutanoic acid) [P(DLA-co-d-2HB)] random copolymers. The melting temperature values and melting enthalpy values at 100% crystallinity for stereocomplexed solvent-evaporated and precipitated P(LLA-alt-l-2HB)/P(DLA-alt-d-2HB) blends were correspondingly 187.5 and 187.9 °C, and 98.1 and 91.8 J g−1. Enantiomeric polymer blending of P(LLA-alt-l-2HB) and P(DLA-alt-d-2HB) can confer crystallizability by stereocomplexation and the biodegradable materials with a wide variety of physical properties and biodegradability are highly expected to be prepared by synthesis of alternating copolymers of various combinations of two types of chiral α-substituted 2-hydroxyalkanoic acid monomers and their SC crystallization.

Stereocomplex formation was reported for alternating copolymers of chiral α-substituted 2-hydroxyalkanoic acids which can be utilized for preparation of biodegradable materials with a variety of physical properties and biodegradability.  相似文献   

3.
In this study, we investigated the signalling pathways mediating tryptophan (Trp)-promoted β-defensin-2 (BD-2) expression in rat intestinal mucosa. Sprague Dawley rats were administered with l-Trp and treated with rapamycin (RAPA), 1-methyltryptophan (1-MT), or para-chlorophenyl-amine (PCPA) to inhibit mammalian target of rapamycin (mTOR), indoleamine-2,3-dioxygenase (IDO), or tryptophan hydroxylase (TPH), respectively. The mRNA and protein levels of BD-2 in the jejunal and ileal mucosa of rats increased with administration of l-Trp. Intraperitoneal injection of RAPA significantly decreased the mRNA level of BD-2 and the concentrations of p-mTORC1 and BD-2 in the jejunal and ileal mucosa of rats with administration of l-Trp (P < 0.05). Oral administration of 1-MT decreased the IDO activity and the mRNA and protein levels of BD-2, and increased the concentrations of tumour necrosis factor (TNF-α), interleukin (IL)-17, and IL-22 in the jejunal and ileal mucosa of rats with administration of l-Trp (P < 0.05). Intraperitoneal injection of PCPA decreased the TPH activity and increased the mRNA and protein levels of BD-2, but did not change the concentrations of TNF-α, IL-17, or IL-22 in the jejunal and ileal mucosa of rats with administration of l-Trp. The results indicate the Trp-promoted BD-2 expression in the jejunum and ileum via the mTOR pathway and its metabolites: kynurenine banding to aryl hydrocarbon receptor in rat intestine.

In this study, we investigated the signalling pathways mediating tryptophan (Trp)-promoted β-defensin-2 (BD-2) expression in rat intestinal mucosa.  相似文献   

4.
Chirality remains a critical consideration in drug development and design, as well as in applications of enantioselective recognition and sensing. However, the preparation of chiral nanomaterials requires extensive post synthetic modifications with a chiral agent, coupled with extensive purification. This limits the use and application of chiral nanomaterials. Herein, we report a facile, one-step microwave-assisted synthesis of chiral carbon dots through the reaction of l- and d-cysteine amino acid precursors and citric acid. We modulated the synthetic parameters to preserve and tune the residual chiral properties of the dots and demonstrate that the reaction conditions play a critical role in dictating the chiral behaviour of the dots. Finally, in a proof of concept application we demonstrated that the synthesized carbon dots, particularly d-carbon dots inhibit bacterial growth at a lower concentration than l-carbon dots. By varying bacterial strains and chirality of the carbon dots, concentrations ranging from 0.25–4 mg mL−1 of the nanoparticles were required to inhibit microbial growth. The ability to preserve and tune chirality during synthesis can open up novel avenues and research directions for the development of enantioselective materials, as well as antibacterial films and surfaces.

Chiral carbon dots, prepared from the unnatural d-enantiomer of cysteine, inhibit the growth of Escherichia coli ATCC 25922 and MG1655 at a lower concentration than l-carbon dots, prepared from the l-enantiomer.  相似文献   

5.
In this study, three types of chiral fluorescent zirconium-based metal–organic framework materials were synthesized using l-dibenzoyl tartaric acid as the chiral modifier by the solvent-assisted ligand incorporation method, which was the porous coordination network yellow material, denoted as PCN-128Y. PCN-128Y-1 and PCN-128Y-2 featured unique chiral selectivity for the Gln enantiomers amongst seven acids and the highly stable luminescence property, which were caused by the heterochiral interaction and aggregation-induced emission. Furthermore, a rapid fluorescence method for the chiral detection of glutamine (Gln) enantiomers was developed. The homochiral crystals of PCN-128Y-1 displayed enantiodiscrimination in the quenching by d-Gln such that the ratio of enantioselectivity was 2.0 in 30 seconds at pH 7.0, according to the Stern–Volmer quenching plots. The detection limits of d- and l-Gln were 6.6 × 10−4 mol L−1 and 3.3 × 10−4 mol L−1, respectively. Finally, both the maximum adsorption capacities of PCN-128Y-1 for the Gln enantiomers (Qe(l-Gln) = 967 mg g−1; Qe(d-Gln) = 1607 mg g−1) and the enantiomeric excess value (6.2%) manifested that PCN-128Y-1 had strong adsorption capacity for the Gln enantiomers and higher affinity for d-Gln.

A stable luminescent zirconium-based MOF PCN-128Y-1 was synthesized by the SALI method and applied as a specific chiral selective adsorbent and a chiral fluorescence sensor for the recognition and quantitative analysis of Gln enantiomers.  相似文献   

6.
Phenylalanine an essential aromatic amino acid for humans and animals, cannot be synthesized by humans and animals on their own. However, it synthesizes important neurotransmitters and hormones in the body and is involved in gluconeogenesis and lipid metabolism. Moreover, the two opposite configurations of phenylalanine have different activities. For example, l-phenylalanine is a biologically active optical isomer involved in crucial biological processes, the lack of which will lead to intellectual disability, while d-phenylalanine only acts as a chiral intermediate. In this research, an H8-BINOL chiral fluorescent sensor modified with 1,2,3-triazole was synthesized in high yield (95%) by nucleophilic substitution and click reaction. The chiral fluorescent sensor showed high enantioselectivity toward phenylalanine. l-Phenylalanine enhanced the fluorescence response of the probe significantly, while d-phenylalanine had no obvious fluorescence response change. The enantioselective fluorescence enhancement ratio [ef = (ILI0)/(IDI0), where I0 is the fluorescence of the sensor without amino acids] for the highest fluorescence intensity at 20.0 equivalents of amino acids was 104.48. In this way, the probe could be used to identify and differentiate different configurations of phenylalanine.

A triazole-modified H8-BINOL fluorescence sensor was synthesized with 95% yield, which can enantioselectively recognize l-phenylalanine without the participation of metal ions, even the enantioselective fluorescence enhancement ratio was up to 104.28.  相似文献   

7.
A new kind of chiral zirconium based metal–organic framework, l-Cys-PCN-222, was synthesized using l-cysteine (l-Cys) as a chiral modifier by a solvent-assisted ligand incorporation approach and utilized as the chiral stationary phase in the capillary electrochromatography system. l-Cys-PCN-222 was characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, Fourier-transform infrared spectra, nitrogen adsorption/desorption, circular dichroism spectrum, zeta-potential and so on. The results revealed that l-Cys-PCN-222 had the advantages of good crystallinity, high specific surface area (1818 m2 g−1), thermal stability and chiral recognition performance. Meanwhile, the l-Cys-PCN-222-bonded open-tubular column was prepared using l-Cys-PCN-222 particles as the solid phase by ‘thiol–ene’ click chemistry reaction and characterized by scanning electron microscopy, which proved the successful bonding of l-Cys-PCN-222 to the column inner wall. Finally, the stability, reproducibility and chiral separation performance of the l-Cys-PCN-222-bonded OT column were measured. Relative standard deviations (RSD) of the column efficiencies for run-to-run, day-to-day, column-to-column and runs were 1.39–6.62%, and did not obviously change after 200 runs. The enantiomeric separation of 17 kinds of chiral compounds including acidic, neutral and basic amino acids, imidazolinone and aryloxyphenoxypropionic pesticides, and fluoroquinolones were achieved in the l-Cys-PCN-222-bonded OT column. These results demonstrated that the chiral separation system of the chiral metal–organic frameworks (CMOFs) coupled with capillary electrochromatography has good application prospects.

A new kind of chiral zirconium-based metal–organic framework, l-Cys-PCN-222, was synthesized by the SALI method and utilized as the chiral stationary phase in a capillary electrochromatography system for enantioseparation.  相似文献   

8.
The photochemical reactivity of the triplet state of pyrano- and furano-1,4-naphthoquinone derivatives (1 and 2) has been examined employing nanosecond laser flash photolysis. The quinone triplets were efficiently quenched by l-tryptophan methyl ester hydrochloride, l-tyrosine methyl ester hydrochloride, N-acetyl-l-tryptophan methyl ester and N-acetyl-l-tyrosine methyl ester, substituted phenols and indole (kq ∼109 L mol−1 s−1). For all these quenchers new transients were formed in the quenching process. These were assigned to the corresponding radical pairs that resulted from a coupled electron/proton transfer from the phenols, indole, amino acids, or their esters, to the excited state of the quinone. The proton coupled electron transfer (PCET) mechanism is supported by experimental rate constants, isotopic effects and theoretical calculations. The calculations revealed differences between the hydrogen abstraction reactions of phenol and indole substrates. For the latter, the calculations indicate that electron transfer and proton transfer occur as discrete steps.

Biologically active naphthoquinones undergo photochemical induced hydrogen abstraction from biologically relevant substrates via a PCET mechanism.  相似文献   

9.
A novel tetra-4-{(E)-[(8-aminonaphthalen-1-yl)imino]methyl}-2-methoxyphenol Co(ii) phthalocyanine (CoTANImMMPPc) was synthesized using a precursor protocol and characterized via electroanalytical and spectroscopic techniques. The FT-IR spectra of the synthesized compounds showed significant peaks corresponding to the functional groups of the precursors and phthalocyanine (Pc) compound. The mass and NMR spectra confirmed the formation of the target precursor compounds. A film of CoTANImMMPPc was deposited on the surface of an electrode and applied for the detection and monitoring of l-alanine and l-arginine. The cyclic voltammetric studies of l-alanine and l-arginine using the (CoTANImMMPPc/MWCNTs/GC) electrode showed a linear response in the range of 50–500 nM and the limit of detection was found to be 1.5 and 1.2 nM, respectively. Differential pulse voltammetry and chronoamperometry showed that the catalytic response for l-alanine and l-arginine is in the range of 50–500 nM with an LoD of 1.8 and 2.3 nM, respectively. The oxidation-active CoTANImMMPPc film significantly enhanced the current response in the chronoamperometric method and displayed a selective and sensitive response towards l-alanine and l-arginine in the presence of various other bio-molecules. The developed electrode showed good working stability and was applied for the analysis of real samples, which yielded satisfactory results. Therefore, CoTANImMMPPc-MWCNTs/GCE shows good analytical performance, is economical and produced via a simple synthetic method and can be applied as a sensor for the detection of l-alanine and l-arginine.

A novel CoTANImMMPPc complex was synthesized using a precursor protocol and characterized via electroanalytical and spectroscopic techniques with enhanced electrocatalytic behaviour of α-amino acids.  相似文献   

10.
This study describes the long-distance diastereomeric effect on thermoresponsive properties in water-soluble diastereomeric polyurethanes (PUs) composed of an l-lysine ethyl ester diisocyanate and a trimethylene glycol l-/d-tartrate ester, which have differences in spatial arrangements of the ethyl esters in the mirror image. The PUs based on l-lysine and l-/d-tartrate ester, named l-PU and d-PU, were synthesized with various number average molecular weights from 4700 to 13 100. In turbidimetry, l-PU showed a steep phase transition from 100%T to 0%T within about 10 °C at 4 g L−1, whereas d-PU did not change completely to 0%T transmittance even at 80 °C at 4 g L−1. In addition, the thermoresponsive properties of l-PU were less affected by concentration than those of d-PU. This long-distance diastereomeric effect on thermoresponsive behavior between l-PU and d-PU appeared in common among 6 samples with 4700 to 13 100 number average molecular weight. In the dynamic light scattering experiments at each transmittance, the hydrodynamic diameter (Dh) of l-PU increased up to 1000 nm, while the Dh of d-PU remained almost at 200–300 nm. The C Created by potrace 1.16, written by Peter Selinger 2001-2019 O stretching vibration of FT-IR spectra showed that d-PU has more hydrogen-bonded ester groups than L-PU. Thus, we speculated that the difference in the retention of polymer chains in the micelle to promote intermicellar bridging generates the long-distance diastereomeric effect.

The long-distance diastereomeric effect on thermoresponsive properties in a polyurethane system consisting of chiral monomers was reported.  相似文献   

11.
l-Menthol is the main ingredient of peppermint which affects various pharmacological effects such as anti-inflammation and anti-oxidative activity. In this study, we aimed to evaluate the potential effects of l-menthol on cigarette smoke extract (CSE) induced lung injury in rats. Morphology assessment results revealed that administration with l-menthol (5, 10 or 20 mg kg−1 d−1) significantly alleviated CSE-induced lung injury. Besides, l-menthol significantly reduced the inflammatory response by suppressing the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) via downregulating nuclear factor kappa B (NF-κB) and p38 MAPK pathways. Meanwhile, l-menthol decreased the levels of oxidative stress markers including malondialdehyde (MDA) and myeloperoxidase (MPO) whereas it increased the amount of glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) through activation of the Nrf2 pathway. Furthermore, the expression of MMP-9 and TIMP-1 in lungs was reduced after treatment with l-menthol, and this indicated that l-menthol might have a potential effect on airway remodeling. Moreover, immunohistochemistry analyses indicated that l-menthol could suppress the infiltration of CD4+ and CD8+ T cells in lung tissues and this was probably due to the immune regulation activity of l-menthol. Taken together, our findings support that l-menthol might be a potential candidate for the treatment of CSE-induced lung injury in rats.

l-Menthol is the main ingredient of peppermint which affects various pharmacological effects such as anti-inflammation and anti-oxidative activity.  相似文献   

12.
Amino acids are essential nutrients that are not only used as protein building blocks but are also involved in various biochemical processes and in the development of human diseases. Quantitative analysis of amino acids in complex biological samples is an important analytical process used for understanding amino acid biochemistry and diagnosis of human diseases. In this study, a protein sensor based on fluorescence resonance energy transfer (FRET) was designed for the quantitative analysis of l-Met, in which a fluorescent unnatural amino acid (CouA) and YFP were used as a FRET pair. A natural Met-binding protein (MetQ) was chosen as a sensor protein, and CouA and YFP were incorporated into the protein by genetic code expansion technology and genetic fusion. Among the four sites screened for CouA incorporation into MetQ, R189 was selected as the best site for l-Met sensing. The sensor protein (YFP-MetQ-R189CouA) showed a large FRET signal change (2.7-fold increase) upon l-Met binding. To improve amino acid specificity of the sensor protein, the ligand-binding site was engineered, and the mutant sensor (YFP-MetQ-R189CouA-H88F) with the H88F mutation was identified, which showed no FRET signal change with d-Met and l-Gln at 50 μM concentration and retained the maximum FRET signal change with l-Met. The optimized sensor protein was evaluated for biochemical applications. l-Met concentration in FBS and optical purity in a mixture of d- and l-Met were successfully determined. Because l-Met is biochemically important owing to its involvement in cancer cell growth and autophagy, the sensor protein would be useful for quantitative analysis of l-Met in a complex biological sample. In addition, the design strategy used in this study can be applied to other small molecule-binding proteins for the development of protein sensors for important biomolecules.

A protein sensor based on FRET was designed for the quantitative analysis of l-Met, in which a fluorescent unnatural amino acid (CouA) and YFP were used as a FRET pair.  相似文献   

13.
d-Amino acids are key intermediates required for the synthesis of important pharmaceuticals. However, establishing a universal enzymatic method for the general synthesis of d-amino acids from cheap and readily available precursors with few by-products is challenging. In this study, we constructed and optimized a cascade enzymatic route involving l-amino acid deaminase and d-amino acid dehydrogenase for the biocatalytic stereoinversions of l-amino acids into d-amino acids. Using l-phenylalanine (l-Phe) as a model substrate, this artificial biocatalytic cascade stereoinversion route first deaminates l-Phe to phenylpyruvic acid (PPA) through catalysis involving recombinant Escherichia coli cells that express l-amino acid deaminase from Proteus mirabilis (PmLAAD), followed by stereoselective reductive amination with recombinant meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum (StDAPDH) to produce d-phenylalanine (d-Phe). By incorporating a formate dehydrogenase-based NADPH-recycling system, d-Phe was obtained in quantitative yield with an enantiomeric excess greater than 99%. In addition, the cascade reaction system was also used to stereoinvert a variety of aromatic and aliphatic l-amino acids to the corresponding d-amino acids by combining the PmLAAD whole-cell biocatalyst with the StDAPDH variant. Hence, this method represents a concise and efficient route for the asymmetric synthesis of d-amino acids from the corresponding l-amino acids.

An efficient one-pot biocatalytic cascade was developed for synthesis of d-amino acids from readily available l-amino acids via stereoinversion.  相似文献   

14.
Wet dust removal systems are an effective design for preventing aluminum dust explosion in the process of metal polishing. However, wet dust removal systems pose hydrogen fire and explosion risks because aluminum dust can react with water to produce hydrogen gas. According to previous studies, l-phenylalanine can be used to solve the corrosion problem of metal slabs. In this work, a hydrogen inhibition method was proposed to inhibit hydrogen production in wet dust removal systems by using l-phenylalanine. The hydrogen evolution curves of aluminum particles reacting with different concentrations of l-phenylalanine solutions obtained via hydrogen inhibition experiments revealed that when the concentration of l-phenylalanine solutions reached 20 g L−1, essentially no hydrogen gas was produced. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to characterize the aluminum particles before and after the reaction. This work shows that l-phenylalanine is a good inhibitor. The adsorption of l-phenylalanine on the aluminum particle surface obeys the Langmuir adsorption isotherm. Additionally, Fourier transform infrared (FTIR) analysis was conducted to explain the physicochemical mechanism of the l-phenylalanine inhibition of hydrogen production. l-Phenylalanine is an environmentally friendly inhibitor and hence can be used in wet dust removal systems for the treatment of aluminum dust, which can reduce the hydrogen fire and explosion risk.

The reaction between aluminium dust and water in wet dust removal system is inhibited by using l-phenylalanine.  相似文献   

15.
Temperature usually occupies a crucial position in the construction of chiral compounds. By controlling the temperature of the reaction system, chiral and non-chiral compounds can be designed and synthesized. Given the above, three new chiral and non-chiral compounds based on copper(ii) monosubstituted polyoxoanions and Cu(en) complexes (en = ethylenediamine), d/l-[Cu(H2O)(en)2]2{[Cu(H2O)2(en)][SiCuW11O39]}·5H2O (1, d-1 and l-1) and [Cu(H2O)(en)2]{[Cu(en)2]2[SiCuW11O39]}·2.5H2O (2), were successfully synthesized under hydrothermal conditions. The main synthesis conditions of compound 1 (d-1 and l-1) and compound 2 are the same, however, the only difference is that the reaction temperatures are 80 °C and 140 °C, respectively. What''s more, compounds 1 and 2 can form a 1D chiral chain by Cu–O and W/Cu–O–W/Cu bonds, respectively, and further obtain a 3D-supramolecular framework through hydrogen bonding interaction. Meanwhile, due to the asymmetry of chiral compound 1, optical second-harmonic generation (SHG) was used to investigate the second-order nonlinear optical effect and it was found that the observed SHG efficiency of compound 1 is 0.3 times that of urea. To further investigate the chiral properties, d-1 and l-1 were used in the electrochemical enantioselective sensing of d-/l-tartaric acid (d-/l-tart) molecules, respectively, which demonstrates that d-1 and l-1 have a good application prospect in sensing chiral substances.

A pair of temperature-controlled chiral compounds, d- and l-[Cu(en)2(H2O)]2{[Cu(en)(H2O)2][SiCuW11O39]}·5H2O (en = ethanediamine) are isolated by hydrothermal method, having a good application prospect in sensing d-/l-tartaric acid.  相似文献   

16.
A silver nanoparticle-doped Zn(ii) metal–organic framework composite (AgNPs@ZnMOF) was investigated as an electrochemiluminescence (ECL) signal enhancer for potassium persulfate. First, ZnMOF was prepared by a one-step hydrothermal method, and then AgNPs@ZnMOF composite was obtained by depositing AgNPs on the surface and interior of ZnMOF. After the AgNPs@ZnMOF composite was modified on the glass carbon electrode (GCE), the cathode luminescence of potassium persulfate on bare GCE was enhanced by 8 times. A dual amplification mechanism provided by Zn(ii) and Ag nanoparticles in the AgNPs@ZnMOF composite has been validated by ECL spectra, fluorescence spectra, and electrochemical methods. The interaction between the sulfhydryl groups in l-cysteine (l-Cys) and AgNPs significantly affects the catalytic luminescence of the AgNPs@ZnMOF composite. Thus, a sensitive ECL method for the determination of l-Cys was developed based on the inhibition effect of l-Cys on the ECL signal within the linear range from 5.0 nM to 1.0 μM and the limit of detection was found to be 2 nM (S/N = 3). The established method has been successfully applied to the determination of l-Cys in human urine.

A silver nanoparticle-doped Zn(ii) metal–organic framework composite (AgNPs@ZnMOF) was investigated as an electrochemiluminescence (ECL) signal enhancer for potassium persulfate.  相似文献   

17.
The reactions of a dichloro(p-cymene)ruthenium(ii) dimer, [RuCl2(p-cymene)]2, with citric acid and sulfur-containing amino acids gave only [Ru(L)(p-cymene)]-type complexes (L = citrate (Cit), l-penicillaminate (l-Pen), S-methyl-l-cysteinate (S-Me-l-Cys) and l-methioninate (l-Met)) in aqueous solutions at various pHs and molar ratios of the reactants, where Cit and the amino acids act as a tridentate ligand. These sulfur-containing amino acid complexes with bound nitrogen, oxygen and sulfur atoms and η6-p-cymene take S absolute configuration around Ru(ii) selectively, having the α-proton oriented in the opposite direction from the Ru(ii) center. The concentration dependences of the observed pseudo-first-order rate constants were provided for the substitution reactions of the citrato complex, [Ru(Cit)(p-cymene)], with a large excess of the sulfur-containing amino acids at various temperatures at pH 7.3, where solvolysis path was observed for S-Me-l-Cys and l-Met as an intercept but not for l-Pen. The activation parameters for the substitution reactions by the direct attack of the amino acids were changed significantly, indicating that the reaction mechanism varies sensitively with the amino acids from an associative mechanism to an interchange one. The pH dependences of the rate constants of the substitution reactions suggest that the carboxylate group is an attacking group for S-Me-l-Cys and l-Met under neutral conditions and the thiol group of l-Pen acts as an entering group constantly at any pH showing a considerably smaller activation energy compared with S-Me-l-Cys and l-Met. Differences in stabilities of the amino acid complexes were obtained from the equilibrium constants for the substitution reactions between the amino acids. These results indicate that the activation energies for the substitution reactions of the citrato complex with the amino acids are moderately correlated with the stabilities of the formed amino acid complexes.

Thorough kinetic study revealed characteristics of the reaction mechanism for arene ruthenium(ii) complexes with bio-related ligands.  相似文献   

18.
Recently, research interest in the application of lignin is growing, especially as adsorbent material. However, single lignin shows unsatisfactory adsorption performance, and thus, construction of lignin-based nanocomposites is worth considering. Herein, we introduced graphene oxide (GO) into lignin to form lignin/GO (LGNs) composite nanospheres by a self-assembly method. FTIR and 1H NMR spectroscopy illustrated that lignin and GO are tightly connected by hydrogen bonds. The LGNs as an environmental friendly material, also exhibit excellent performance for Cr(vi) removal. The maximum sorption capacity of LGNs is 368.78 mg g−1, and the sorption efficiency is 1.5 times than that of lignin nanospheres (LNs). The removal process of Cr(vi) via LGNs mainly relies on electrostatic interaction, and it also involves the reduction of Cr(vi) to Cr(iii). Moreover, LGNs still have high adsorption performance after repeating five times with the sorption capacity of 150.4 mg g−1 in 200 mg g−1 Cr(vi) solution. Therefore, the prepared lignin–GO composite nanospheres have enormous potential as a low-cost, high-absorbent and recyclable adsorbent, and can be used in wastewater treatment.

Lignin/GO (LGNs) composite nanospheres were prepared by self-assembly method, which showed excellent adsorption performance for Cr(vi) removal.  相似文献   

19.
Lingfeng Ni  Yi Li 《RSC advances》2018,8(72):41358
Graphene oxide (GO) is increasingly used and inevitably released into aquatic environments, facilitating its interaction with traditional pollutants such as heavy metal ions. However, the potential effect of GO on the toxicity of heavy metal ions to aquatic animals is unknown. This work aims to assess the toxicity of heavy metal ions (Cu(ii), Cd(ii), and Zn(ii)) on Daphnia magna (D. magna) in the presence of GO. GO nanoparticles remarkably reduced the concentrations of heavy metal ions by adsorption and decreased the metal accumulation in D. magna. The maximum desorption rate of heavy metal ions from metal-adsorbed GO was below 5%. At pH 7.8, with addition of 2 mg L−1 GO, the 72 h median lethal concentration (LC50) values of Cu(ii), Cd(ii), and Zn(ii) were increased from 14.3, 38, and 780 μg L−1 to 36.6, 72, and 1010 μg L−1, respectively. The analyses of oxidative stress indicators suggested that the oxidative damage to D. magna by heavy metal ions was reduced after addition of GO at pH 7.8. Moreover, a higher pH level in the growing range (6.5 to 8.5) of D. magna led to weaker toxicity of metal ions with GO addition due to more adsorption and less bioaccumulation. The results revealed the role of GO nanoparticles in the mitigated toxicity of heavy metal ions in the aquatic environment.

Graphene oxide nanoparticles mitigates the biotoxicity of heavy metal ions (Cu(ii), Cd(ii), and Zn(ii)) on aquatic animals (Daphnia magna).  相似文献   

20.
The aim of the study was to investigate the influence of the environment''s pH on the degradation of the layers of the ternary composite l,d-PLA : 5CB : SWCN (10 : 1 : 0.5, w/w/w), where l,d-PLA (poly(lactic acid)) is a biodegradable polymer, 5CB is a well-known liquid crystal (4′-pentyl-4-biphenylcarbonitrile), and SWCN are single-walled carbon nanotubes. For this purpose, the samples were stored in air, distilled water, and solutions of 0.1 M NaOH and 0.1 M HCl, for up to 62 days. Using differential scanning calorimetry, atomic force microscopy, and infra-red spectroscopy methods it was observed that for both neat l,d-PLA and composite layers there was a poor degradation process after the storage under standard air conditions, distilled water, and 0.1 M HCl solution, while the erosion of the surface layer kept in 0.1 M NaOH solution was revealed just after 6 days. The longer storage in 0.1 M NaOH solution resulted in complete degradation of the l,d-PLA polymer layer, while the composite layer survived for up to 62 days. The solubilization of the polymeric l,d-PLA matrix in the composite after 62 days was so severe that it resulted in the vanishing of thermal effects on the DSC curve except for one that was probably connected with the glass transition of the residual quantity of the polymer that remained in the layer or the isotropisation of 5CB. As a result, we have shown that admixtures of 5CB and SWCN accelerate the degradation of l,d-PLA in the composite layer due to the hydrophilic/hydrophobic interface in the layer and act as plasticizers. The mechanism of the degradation process is also discussed.

We have shown that admixtures of 5CB and SWCN accelerate the degradation of l,d-PLA in the composite layer due to hydrophilic/hydrophobic interface in the layer and act as plasticizers. The mechanism of the degradation process is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号