共查询到20条相似文献,搜索用时 31 毫秒
1.
A zinc(ii)-based coordination polymer (CP), namely [Zn(modbc)2]n (Zn-CP) (modbc = 2-methyl-6-oxygen-1,6-dihydro-3,4′-bipyridine-5-carbonitrile), has been synthesized and characterized. Single-crystal structural determination reveals that Zn-CP is a two-dimensional framework structure with tetranuclear homometallic Zn4(modbc)4 units cross-linked by modbc. The excellent luminescence as well as good stability of Zn-CP do not enable it to have selective sensing capability for different ions. After encapsulation of Tb3+ in Zn-CP, the as-obtained fluorescent functionalized Tb3+@Zn-CP maintained excellent luminescence as well as stability, which made it a highly selective and sensitive multiresponsive luminescent sensor for Ru3+, Fe3+, CrO42−, Cr2O72−, and MnO4− with high sensitivity, good anti-interference performance, and quick response time (∼10 s). The detection limits are 0.27 μM, 0.57 μM, 0.10 μM, 0.43 μM and 0.15 μM, respectively. A possible sensing mechanism was discussed in detail.A composite, Tb3+@Zn-CP, for sensing Ru3+, Fe3+, CrO42−, Cr2O72− and MnO4− with fast response times was reported. 相似文献
2.
A luminescent Cd(ii) coordination polymer, namely {[Cd(btic)(phen)]·0.5H2O}n (CP-1) (H2btic = 5-(2-benzothiazolyl)isophthalic acid, phen = 1,10-phenanthroline), was constructed through the mixed-ligand method under solvothermal conditions. CP-1 manifests a chain structure decorated with uncoordinated Lewis basic N and S donors. CP-1 exhibits high sensing towards Zn2+, Fe3+ and Cr2O72− ions with fluorescence enhancement or quenching. CP-1 exhibited a fluorescence enhancement for Zn2+ ions through weak binding to S and N atoms, and a fluorescence quenching for Fe3+ and Cr2O72− ions by an energy transfer process. The binding constants were calculated as 1.812 × 104 mol−1 for Zn2+, 4.959 × 104 mol−1 for Fe3+ and 1.793 × 104 mol−1 for Cr2O72−. This study shows CP-1 as a rare multi-responsive sensor material for the efficient detection of Zn2+, Fe3+ and Cr2O72− ions.A luminescent Cd(ii) coordination polymer can act as a multi-responsive sensor for efficiently detecting Zn2+, Fe3+ and Cr2O72− ions. 相似文献
3.
Sayed Muktar Hossain Ved Prakash Prabhudutta Mamidi Soma Chattopadhyay Akhilesh Kumar Singh 《RSC advances》2020,10(7):3646
A pyrene-appended bipyridine hydrazone-based ligand, HL, was synthesized and characterized by spectroscopic methods. Upon complexation with Cu(ii), HL formed a hexanuclear paddlewheel metal–organic macrocycle (MOM) via self-assembly with a high association constant with the molecular formula of [Cu6L6(NO3)6]. Intermolecular and intramolecular π–π interactions were demonstrated in this hexanuclear Cu(ii) complex. Further, it was observed that HL had the potential to detect a trace level of Cu(ii) ion selectively among a wide range of biologically relevant metal ions in aqueous medium at physiological pH. Using HL, it was feasible to sense copper(ii) ions in living cells due to its good cell permeability and high solubility under physiological conditions along with its high IC50 value. The low detection limit, high sensitivity and good reproducibility make this Cu–sensor very promising. The complex (MOM) formed between the ligand and Cu(ii) was found to be 1 : 1 on the basis of fluorescence titrations and was confirmed by ESI-MS. Moreover, single-crystal study of the hexanuclear self-assembled fluorescent species provided better insight into its chemistry, e.g. coordination environment and binding mode, unlike most of the metal sensors due to the lack of a single-crystal structure of the metal sensor complex. Cytotoxicity assay and bioimaging were performed in living cells (Vero cells), giving green fluorescent images. Fluorescence lifetime measurements and theoretical calculations were carried out. The morphology and topographic details on the surface of the metal–organic macrocycle (MOM) were studied by field-emission scanning electron microscopy (FESEM).A pyrene-based “turn-on” Cu(ii) sensor provides a chemiluminescent Cu6 metal organic macrocycle (MOM) applicable for live cell imaging. 相似文献
4.
A novel multifunctional chemosensor HL bearing a julolidine unit and a Schiff base unit has been synthesized. As a fluorescent sensor, HL exhibited excellent selectivity and high sensitivity to Al3+ and F−/CN− with a low detection limit in acetonitrile. Moreover, HL also showed good colorimetric selectivity to F−/CN−; a solution color change from colorless to light yellow in acetonitrile was observed by the ‘naked-eye’. The properties of HL with Al3+ and F−/CN− were studied by UV-vis absorption spectroscopy, fluorescence spectroscopy, high-resolution mass spectrometry and 1H NMR titration. Furthermore, the cell imaging experimental results indicated that the chemosensor HL could be applied for the detection of Al3+ in living cells.A novel multifunctional chemosensor HL bearing a julolidine unit and a Schiff base unit has been synthesized. 相似文献
5.
Due to remarkable fluorescence characteristics, lanthanide coordination polymers (CP) have been widely employed in fluorescence detection, but it is rarely reported that they act as multifunctional luminescent probes dedicated to detecting malachite green (MG) and various metal ions. A europium-based CP fluorescent probe, Eu(PDCA)2(H2O)6 (PDCA = 2,6-pyridinedicarboxylic acid), has been synthesized and exhibited excellent recognition ability for malachite green and metal cations (Cr3+, Fe3+ and Cu2+) among 11 metal cations, 13 anions and six other compounds. The recognition was achieved by fluorescence quenching when MG, Cr3+, Fe3+ and Cu2+ were added to a suspension of Eu(PDCA)2(H2O)6 respectively. Eu(PDCA)2(H2O)6 is a multifunctional luminescent probe, and displayed high quenching efficiencies Ksv (2.10 × 106 M−1 for MG; 1.46 × 105 M−1 for Cr3+; 7.26 × 105 M−1 for Fe3+; 3.64 × 105 M−1 for Cu2+), and low detection limits (MG: 0.039 μM; Cr3+: 0.539 μM; Fe3+: 0.490 μM; Cu2+: 0.654 μM), presenting excellent selectivity and sensitivity, especially for MG. In addition, Eu(PDCA)2(H2O)6 was also made into fluorescent test strips, which can rapidly and effectively examine trace amounts of MG, Cr3+, Fe3+ and Cu2+ in aqueous solutions. This work provides a new perspective for detecting malachite green in fish ponds and heavy metal ions in waste water.A europium-based CP fluorescent sensor was synthesized and exhibited excellent recognition ability for malachite green (MG) and metal cations (Cr3+, Fe3+ and Cu2+). 相似文献
6.
The facile preparation and modification of low-cost/efficient adsorbents or biochar (CP) derived from the carbonization of palm kernel cake (lignocellulosic residue) has been studied for the selective adsorption of various metal cations, such as Fe3+, Fe2+, Ca2+ and Zn2+, from aqueous solution. The CP surface was modified with KMnO4 (CPMn) and HNO3 (CPHNO3) in order to improve the adsorption efficiency. The physicochemical properties of the as-prepared adsorbents were investigated via BET, pHpzc, FT-IR, Boehm titration, TG-DTG, XRD and SEM-EDS techniques. The surfaces of all adsorbents clearly demonstrated negative charge (pHpzc > pH of the mixture solution), resulting in a high adsorption capacity for each metal cation. Fe2+ was found to be more easily adsorbed on modified CP than the other kinds of metal cations. Synergistic effects between the carboxylic groups and MnO2 on the surface of CPMn resulted in better performance for metal cation adsorption than was shown by CPHNO3. The maximum adsorption capacities for Fe3+, Fe2+, Ca2+ and Zn2+ using CPMn, which were obtained from a monolayer adsorption process via Langmuir isotherms (R2 > 0.99), were 70.67, 68.60, 5.06 and 22.38 mg g−1, respectively. The adsorption behavior and monolayer-physisorption behavior, via a rapid adsorption process as well as single-step intra-particle diffusion, were also verified and supported using Dubinin–Radushkevich, Redlich–Peterson and Toth isotherms, a pseudo-second-order kinetic model and the Weber–Morris model. Moreover, the thermodynamic results indicated that the adsorption process of metal cations onto the CPMn surface was endothermic and spontaneous in nature. This research is expected to provide a green way for the production of low-cost/efficient adsorbents and to help gain an understanding of the adsorption behavior/process for the selective removal of metal ions from wastewater pollution.Manganese dioxide-modified green biochar exhibited excellent capacity for adsorption of Fe3+, Fe2+, Ca2+ and/or Zn2+. 相似文献
7.
Shengling Li Duanlin Cao Wenbing Ma Zhiyong Hu Xianjiao Meng Zhichun Li Changchun Yuan Tao Zhou Xinghua Han 《RSC advances》2020,10(31):18434
In this study, we designed and synthesized a simple probe 2-(8-((8-methoxyquinolin-2-yl)methoxy)quinolin-2-yl)benzo[d]thiazole (DQT) for detection of Ag+ and Cd2+ in a CH3OH/HEPES (9 : 1 v/v, pH = 7.30) buffer system. Its structure was characterized by NMR, ESI-HR-MS and DFT calculations, and its fluorescence performance was also investigated. Probe DQT showed fluorescence quenching in response to Ag+ and Cd2+ with low detection limits of 0.42 μM and 0.26 μM, respectively. Importantly, the complexation of the probe with Cd2+ resulted in a red shift from blue to green, making it possible to detect Ag+ and Cd2+ by the naked eye under an ultraviolet lamp. The DQT-Cd2+ complex could be used for sequential recognition of S2−. The recovery response could be repeated 3 times by alternate addition of Cd2+ and S2−. A filter paper strip test further demonstrated the potential of probe DQT as a convenient and rapid assay.A fluorescent probe for detection of Ag+ and Cd2+ and its Cd2+ complex for sequential recognition of S2−. 相似文献
8.
Lingjie Hou Wenting Liang Chenhua Deng Caifeng Zhang Bo Liu Shaomin Shuang Yu Wang 《RSC advances》2020,10(36):21629
A simple Schiff-base ligand 2-hydroxy-1-naphthaldehyde semicarbazone (HNS) was synthesized and characterized. Based on the combined effect of inhibition of CH N isomerization and chelation-enhanced fluorescence (CHEF), HNS functions as a fluorescence “turn on” sensor for Al3+ in buffered aqueous media. Based on the strong affinity of Al3+ to F− ions, the in situ generated Al3+–HNS complex can also be utilized as an effective chemosensor for F− sensing by metal displacement approach, ensuing quenching of fluorescence by the reversible return of HNS from Al3+–HNS complex. Thus a method using a single probe for the detection of both Al3+ and F− ions is developed. The system exhibits high selectivity and sensitivity for Al3+ and F− ions and the detection limits were found to be as low as 6.75 × 10−8 M and 7.89 × 10−7 M, respectively. Furthermore, the practical applicability of this probe has been examined in living cells.A simple Schiff-base ligand 2-hydroxy-1-naphthaldehyde semicarbazone (HNS) was synthesized and applied to the sequential sensing of Al3+ and F− ions in aqueous media and live cells. 相似文献
9.
Tianchun Lang Tao Han Cong Zhao Shixiu Cao Shuangqiang Fang Shuai Li Lei Zhao Vladimir I. Korepanov Alexey N. Yakovlev 《RSC advances》2018,8(63):36056
(Tb1−xMnx)3Al2(Al1−xSix)3O12:Ce3+ solid solution phosphors were synthesized by introducing the isostructural Mn3Al2(SiO4)3 (MAS) into Tb3Al5O12:Ce3+ (TbAG). Under 456 nm excitation, (Tb1−xMnx)3Al2(Al1−xSix)3O12:Ce3+ shows energy transfers (ET) in the host, which can be obtained from the red emission components to enhance color rendering. Moreover, (Tb1−xMnx)3Al2(Al1−xSix)3O12:Ce3+ (x = 0–0.2) exhibits substantial spectral broadening (68 → 86 nm) due to the 5d → 4f transition of Ce3+ and the 4T1 → 6A1 transition of Mn2+. The efficiency of energy transfer (ηT, Ce3+ → Mn2+) gradually increases with increasing Mn2+ content, and the value reach approximately 32% at x = 0.2. Namely, the different characteristics of luminescence evolution based on the effect of structural variation by substituting the (MnSi)6+ pair for the larger (TbAl)6+ pair. Therefore, with structural evolution, the luminescence of the solid solution phosphors could be tuned from yellow to orange-red, tunable by increasing the content of MAS for the applications of white light emitting diodes (wLED).(Tb1−xMnx)3Al2(Al1−xSix)3O12:Ce3+ solid solution phosphors were synthesized by introducing the isostructural Mn3Al2(SiO4)3 (MAS) into Tb3Al5O12:Ce3+ (TbAG). 相似文献
10.
Shengling Li Duanlin Cao Zhiyong Hu Zhichun Li Xianjiao Meng Xinghua Han Wenbing Ma 《RSC advances》2019,9(59):34652
In this study, a highly selective chemosensor ML based on a BODIPY fluorescent chromophore was synthesized for sequential recognition of Cu2+ and HSO3− in a CH3OH/H2O (99 : 1 v/v) system, which contained three recognition sites and its structure characterized by 1H NMR, 13C NMR and ESI-HR-MS. The sensor ML showed an obvious “on–off” fluorescence quenching response toward Cu2+ and the ML-Cu2+ complex showed an “off–on” fluorescence enhancement response toward HSO3−. The detection limit of the sensor ML was 0.36 μM to Cu2+ and 1.4 μM to HSO3−. In addition, the sensor ML showed a 1 : 3 binding stoichiometry to Cu2+ and the recovery rate of ML-Cu2+ complex identifying HSO3− could be over 70%. Sensor ML showed remarkable detection ability in a pH range of 4–8.A highly selective chemosensor based on a BODIPY chromophore for sequential recognition of Cu2+ and HSO3−. 相似文献
11.
Lingjie Hou Wenting Liang Chenhua Deng Caifeng Zhang Bo Liu Shaomin Shuang Yu Wang 《RSC advances》2020,10(41):24243
Correction for ‘A sensitive OFF–ON–OFF fluorescent probe for the cascade sensing of Al3+ and F− ions in aqueous media and living cells’ by Lingjie Hou et al., RSC Adv., 2020, 10, 21629–21635, DOI: 10.1039/D0RA02848G.The authors regret that an incorrect version of Fig. 4 was included in the original article. The correct version of Fig. 4 is presented below.Open in a separate windowFig. 4The ESI-MS spectrum of Al3+–HNS complex.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers. 相似文献
12.
In this study, a naphthalene Schiff-base P which serves as a dual-analyte probe for the quantitative detection of Al3+ and Mg2+ has been designed. The proposed probe showed an ‘‘off–on’’ fluorescent response toward Al3+ in ethanol–water solution (1 : 9, v/v, pH 6.3, 20 mM HEPES) over other metal ions and anions, while the detection by the probe could be switched to Mg2+ by regulating the pH from 6.3 to 9.4. The sensing mechanisms of P to Al3+/Mg2+ are attributed to inhibition of the photo-induced electron transfer (PET) process by the formation of 1 : 1 ligand–metal complexes. More importantly, the probe was applied successfully in living cells for the fluorescent cell-imaging of Al3+ and Mg2+.In this study, a naphthalene Schiff-base P which serves as a dual-analyte probe for the quantitative detection of Al3+ and Mg2+ has been designed. 相似文献
13.
Solid oxide fuel cells (SOFCs) offer several advantages over lower temperature polymeric membrane fuels cells (PMFCs) due to their multiple fuel flexibility and requirement of low purity hydrogen. In order to decrease the operating temperature of SOFCs and to overcome the high operating cost and materials degradation challenges, the Cubic phase of ZrO2 was stabilized with simultaneous substitution of Bi and Gd and the effect of co-doping on the oxide-ion conductivity of Zr1−x−yBixGdyO2−δ was studied to develop a superior electrolyte separator for SOFCs. Up to 30% Gd and 20% Bi were simultaneously substituted in the cubic ZrO2 lattice (Zr1−x−yGdxBiyO2−δ, x + y ≤ 0.4, x ≤ 0.3 and y ≤ 0.2) by employing a solution combustion method followed by multiple calcinations at 900 °C. Phase purity and composition of the material is confirmed by powder XRD and EDX measurements. The formation of an oxygen vacant Gd/Bi co-doped cubic zirconia lattice was also confirmed by Raman spectroscopy study. With the incorporation of Bi3+ and Gd3+ ions, the cubic Zr1−x−yBixGdyO2−δ phase showed relaxor type high κ dielectric behaviour (ε′ = 9725 at 600 °C at applied frequency 20 kHz for Zr0.6Bi0.2Gd0.2O1.8) with Tm approaching 600 °C. The high polarizability of the Bi3+ ion coupled with synergistic interaction of Bi and Gd in the host ZrO2 lattice seems to create the more labile oxide ion vacancies that enable superior oxide-ion transport resulting in high oxide ion conductivity (σo > 10−2 S cm−1, T > 500 °C for Zr0.6Bi0.2Gd0.2O1.8) at relatively lower temperatures.The high polarizability of the Bi3+ ion coupled with synergistic interaction of Bi and Gd in the host ZrO2 lattice seems to create the more labile oxide ion vacancies that enable high oxide ion conductivity at lower temperatures. 相似文献
14.
A suite of uranium brannerites for the disposal of MOX residues, formulated (U0.9Ce0.1)1−xMxTi2O6 (M = Ca2+ and/or Gd3+), were prepared using a mixed oxide route under oxidising, inert and reducing atmospheres (air, argon and H2/N2). Gd3+ was added to act as a neutron absorber in the final Pu bearing wasteform and Ce added to function as a structural analogue for Pu. X-ray powder diffraction of the synthesised specimens found that phase distribution was strongly affected by the processing atmosphere and Gd content. In all cases prototypical brannerite was formed, accompanied by different secondary phases dependent on processing atmosphere. Microstructural analysis (SEM) of the sintered samples confirmed the results of the X-ray powder diffraction. Bulk XANES found that Ti remained in the Ti4+ oxidation state whereas Ce was uniformly reduced to the Ce3+ oxidation state regardless of processing conditions or stoichiometry. Micro-focus XANES was used to determine U oxidation in the brannerite phase and showed that U oxidised to higher U oxidation states to charge compensate. It was concluded that the charge balance mechanism was a combination of U oxidation and A-site vacancies.This work presents the synthesis and characterisation of novel brannerite ceramics designed for the disposal of mixed oxide fuel residues. 相似文献
15.
Xiaojing Zhou Xiaolei Guo Lili Liu Haidong Zhai Qingguo Meng Zhan Shi Xishi Tai 《RSC advances》2020,10(8):4817
Two luminescent 3D supramolecular structures [Cd3(L)2(2,2-bipy)2](DMF)3(CH3CH2OH)2(H2O) (1) and [Zn3(L)2(2,2-bipy)2(DMF)2](DMF)2(CH3CH2OH)2(H2O) (2) (H3L = 4,4′,4′′-nitrilotribenzoic acid) have been successfully synthesized under solvothermal conditions using Cd(NO3)2·4H2O or Zn(NO3)2·6H2O as the metal sources, and 4,4′,4′′-nitrilotribenzoic acid (H3L), 2,2-bipy as the ligands in DMF solvent. Compound 1 displays a bi-nodal (2,3,6)-coordinated net with {83}2{86·126·163}{8}6 topology, compound 2 can be described as a (3,6)-connected 2-nodal net with kgd topology. The phase purity of compound 1 and 2 is characterized by X-ray powder diffraction (XRPD), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR) spectroscopy. Compound 1 and 2 can serve as effective luminescent sensors for Fe3+, Cu2+ and TNP via luminescent quenching.Two luminescent 3D supramolecular structures which serve as effective luminescent sensors for Fe3+, Cu2+ and TNP via luminescent quenching have been synthesized under solvothermal conditions. 相似文献
16.
Five tetranuclear lanthanide clusters of compositions [Ln4L4(NO3)2(Piv)2]·2CH3OH (Ln = Gd (1), Tb (2), Dy (3), Ho (4), Er (5); H2L = 2-(((2-hydroxy-3-methoxybenzyl)imino)methyl)-6-methoxyphenol; Piv = pivalic acid) were synthesized under solvothermal conditions. The structures of 1–5 were characterized by single-crystal X-ray crystallography. Complexes 1–5 possess a zig-zag topology with [Ln4O6] cores being formed by the fusion of oxygen atom-bridged two [Ln2O2] moieties. Direct-current magnetic susceptibility studied in the 2–300 K range revealed weak antiferromagnetic interactions in 1, 2, 4, 5 and ferromagnetic interactions in 3. Complex 3 exhibits single molecule magnet (SMM) behavior. The luminescence studies indicated that complex 2 can serve as highly sensitive and selective luminescent materials for Fe3+, CrO42−, Cr2O72− and 4-nitroaniline (4-NA), demonstrating that complex 2 should be a potential candidate for multi-responsive luminescent sensor.Five tetranuclear lanthanide clusters were synthesized. Dy4 complex exhibits single molecule magnet (SMM) behavior and Tb4 compound shows sensing properties towards Fe3+, CrO42−, Cr2O72− and 4-nitroaniline (4-NA). 相似文献
17.
18.
Jakkree Boonlakhorn Jedsada Manyam Sriprajak Krongsuk Prasit Thongbai Pornjuk Srepusharawoot 《RSC advances》2021,11(40):25038
CaCu3Ti4O12 and CaCu2.95Mg0.05Ti3.95Al0.05O12 ceramics were fabricated via a solid-state reaction method. A single-phase of CaCu3Ti4O12 was found in these two ceramics. Very great grain size expansion was produced by co-doping with Mg2+ and Al3+. DFT results indicate that both Mg and Al atoms preferentially occupy Cu sites, creating liquid-phase sintering decomposition at grain boundary layers. Very high dielectric permittivity of ∼58 397 and low loss tangent of about 0.047 were achieved in a CaCu2.95Mg0.05Ti3.95Al0.05O12 ceramic. Additionally, the temperature stability of the dielectric response was improved. Better dielectric properties in the co-doped ceramic have possible origins from enhanced grain boundary responses, especially from the influences of metastable phases and oxygen enrichment at the grain boundaries. Experimental and computational results indicate that the colossal dielectric properties in CaCu3Ti4O12 ceramics might be correlated with an internal barrier layer capacitor structure.Mg and Al atoms preferentially occupy Cu sites, creating liquid-phase sintering decomposition at grain boundary layers. This results in very high dielectric permittivity and a low loss tangent of the CaCu2.95Mg0.05Ti3.95Al0.05O12 ceramic. 相似文献
19.
In this work, a new magnetized composite of bismuth (Fe3−xBixO4) was prepared and functionalized stepwise with silica, triethylargininium iodide ionic liquid, and Zn(ii) to prepare a multi-layered core–shell bio-nanostructure, [Fe3−xBixO4/SiO2@l-ArgEt3+I−/Zn(ii)]. The modified bismuth magnetic amino acid-containing nanocomposite was characterized using several techniques including Fourier-transform infrared (FT-IR), X-ray fluorescence (XRF), vibrating sample magnetometer (VSM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDAX), thermogravimetric/differential scanning calorimetric (TGA/DSC) analysis, X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), and inductively coupled plasma-optical emission spectrometry (ICP-OES). The magnetized bionanocomposite exhibited high catalytic activity for the synthesis of 1,2,4,5-tetrahydro-2,4-dioxobenzo[b][1,4]diazepine malononitriles via five-component reactions between 1,2-phenylenediamines, Meldrum''s acid, malononitrile, aldehydes, and isocyanides at room temperature in ethanol. The efficacy of this protocol was also examined to obtain malonamide derivatives via pseudo six-component reactions of 1,4-phenylenediamine, Meldrum''s acid, malononitrile, aldehydes, and isocyanides. When the above-mentioned MCRs were repeated under the same conditions with the application of sonication, a notable decrease in the reaction time was observed. The recovery and reusability of the metal-bio functionalized bismuthmagnetite were examined successfully in 3 runs. Furthermore, the characteristics of the recovered Fe3−xBixO4/SiO2@l-ArgEt3+I−/Zn(ii) were investigated though FESEM and EDAX analysis.In this work, a new magnetized composite of bismuth (Fe3−xBixO4) was prepared and functionalized stepwise with silica, triethylargininium iodide ionic liquid, and Zn(ii) to prepare a multi-layered core–shell bio-nanostructure, [Fe3−xBixO4/SiO2@l-ArgEt3+I−/Zn(ii)]. 相似文献
20.
The Be+(2P) + H2(X1Σg+) → BeH+(X1Σ+) + H(2S) reaction has great significance for studying diabatic processes and ultracold chemistry. The first global diabatic potential energy surfaces (PESs) which are correlated with the lowest two adiabatic states 12A′ and 22A′ of the BeH2+ system are constructed by using the neural network method. Ab initio energy points are calculated using the multi-reference configuration interaction method with the Davidson correction and AVQZ basis set. The diabatic energies are obtained from the transformation of ab initio data based on the dipole moment operators. The topographical characteristics of the diabatic PESs are described in detail, and the positions of crossing between the Vd11 and Vd22 are pinpointed. On new diabatic PESs, the time-dependent quantum wave packet method is carried out to study the mechanism of the title reaction. The results of dynamics calculations indicate the reaction has no threshold and the product BeH+ is excited to high vibrational states easily. In addition, the product BeH+ tends to backward scattering at most collision energies.The first global diabatic potential energy surfaces for the Be+(2P) + H2(X1Σg+) → BeH+(X1Σ+) + H(2S) reaction are constructed. 相似文献