首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, a series of mesoporous NixMn6−xCe ternary oxides were prepared to investigate their NO catalytic oxidation ability. The sample Ni2Mn4Ce4 showed a 95% NO conversion at 210 °C (GHSV, ∼80 000 h−1). Characterization results showed the good catalytic performance of Ni2Mn4Ce4 was due to its high specific surface area, more surface oxygen and high valance manganese species, which can be ascribed to the incorporation of three elements. Based on the results of XRD, H2-TPR, O2-TPD and XPS, we confirmed the existence of Ni3+ + Mn3+ → Ni2+ + Mn4+, Ce4+ + Ni2+ → Ce3+ + Ni3+ in Ni2Mn4Ce4, and the oxidation–reduction cycles were proved to be helpful for NO oxidation. The results from an in situ DRIFTS study indicated the presence of bidentate nitrate and monodentate nitrate species on the catalyst''s surface. The nitrate species were proved to be intermediates for NO oxidation to NO2. A nitrogen circle mechanism was proposed to explain the possible route for NO oxidation. Nickel introduction was also helpful to improve the SO2 resistance of the NO oxidation reaction. The activity drop of Ni2Mn4Ce4 was 13.15% in the presence of SO2, better than Mn6Ce4 (25.29%).

In this work, a series of mesoporous NixMn6−xCe ternary oxides were prepared to investigate their NO catalytic oxidation ability.  相似文献   

2.
Trivalent Eu-activated MNb2O6 (M = Sr, Cd, Ni) ceramic phosphors were produced using the molten salt route, which involves a low sintering temperature and provides improved homogeneity. The photoluminescence (PL) and radioluminescence (RL) spectra of phosphors exhibited characteristic Eu3+ emissions with 5F07Fj transitions, and strong peaks occurred at the 5D07F2 transition. The PL and RL emissions of SrNb2O6:Eu3+ decreased over 3 mol%, while both emissions for CdNb2O6:Eu3+ and NiNb2O6:Eu3+ increased with increasing Eu3+ concentration. The spectral properties of phosphors were evaluated by determining Judd–Ofelt intensity parameters (Ω2, Ω4) from the PL emission spectrum. The quantum efficiencies (ηQE%) of MNb2O6:Eu3+ (M = Sr, Cd, Ni) phosphors with the highest emission were found as 61.87%, 41.89%, and 11.87% respectively. Bandwidths (σe × Δλeff) and optical gains (σe × τ) of MNb2O6:Eu3+ (M = Sr, Cd, Ni) phosphors with highest emissions were found as follows; 24.182 × 10−28, 28.674 × 10−28, 38.647 × 10−28 cm3 and 20.441 × 10−25, 13.790 × 10−25, 3.987 × 10−25 cm2 s, respectively, corresponding to the 5D07F2 transition.

SEM micrographs and PL–RL emissions of MNb2O6: Eu3+ (M = Sr, Cd, Ni) phosphors.  相似文献   

3.
Zr4+ doped α-MnO2 nanowires were successfully synthesized by a hydrothermal method. XRD, SEM, TEM and XPS analyses indicated that Mn3+ ions, Mn4+ ions, Mn4+δ ions and Zr4+ ions co-existed in the crystal structure of synthesized Zr4+ doped α-MnO2 nanowires. Zr4+ ions occupied the positions originally belonging to elemental manganese in the crystal structure and resulted in a mutual action between Zr4+ ions and Mn3+ ions. The mutual action made Mn3+ ions tend to lose their electrons and Zr4+ ions tend to get electrons. Cathodic polarization analyses showed that the electrocatalytic activity of α-MnO2 for oxygen reduction reaction (ORR) was remarkably improved by Zr4+ doping and the Zr/Mn molar ratio notably affected the ORR performance of the air electrodes prepared by Zr4+ doped α-MnO2 nanowires. The highest ORR current density of the air electrodes prepared by Zr4+ doped α-MnO2 nanowires in alkaline solution appeared at Zr/Mn molar ratio of 1 : 110, which was 23% higher than those prepared by α-MnO2 nanowires. EIS analyses indicated that the adsorption process of O2 molecules on the surface of the air electrodes prepared by Zr4+ doped α-MnO2 nanowires was the rate-controlling step for ORR. The DFT calculations revealed that the mutual action between Zr4+ and Mn3+ in Zr4+ doped α-MnO2 nanowires enhanced the adsorption process of O2 molecules.

O2 adsorption was enhanced after doping Zr4+ into MnO2 nanowires subsequently led to the improvement of ORR catalytic performance.  相似文献   

4.
The particle surface of LiNi0.5Mn1.5O4−δ (LNMO), a Li-ion battery cathode material, has been modified by Ti cation doping through a hydrolysis–condensation reaction followed by annealing in oxygen. The effect of different annealing temperatures (500–850 °C) on the Ti distribution and electrochemical performance of the surface modified LNMO was investigated. Ti cations diffuse from the preformed amorphous ‘TiOx’ layer into the LNMO surface during annealing at 500 °C. This results in a 2–4 nm thick Ti-rich spinel surface having lower Mn and Ni content compared to the core of the LNMO particles, which was observed with scanning transmission electron microscopy coupled with compositional EDX mapping. An increase in the annealing temperature promotes the formation of a Ti bulk doped LiNi(0.5−w)Mn(1.5+w)−tTitO4 phase and Ti-rich LiNi0.5Mn1.5−yTiyO4 segregates above 750 °C. Fourier-transform infrared spectrometry indicates increasing Ni–Mn ordering with annealing temperature, for both bare and surface modified LNMO. Ti surface modified LNMO annealed at 500 °C shows a superior cyclic stability, coulombic efficiency and rate performance compared to bare LNMO annealed at 500 °C when cycled at 3.4–4.9 V vs. Li/Li+. The improvements are probably due to suppressed Ni and Mn dissolution with Ti surface doping.

LiNi0.5Mn1.5O4−δ surface is doped with Ti ion maintaining the spinel structure at 500 °C, higher annealing temperatures cause Ti diffusion from surface towards the core.  相似文献   

5.
Ce–Fe–Mn catalysts were prepared by an oxalic acid assisted co-precipitation method. The influence of Ce doping and calcination temperature on the catalytic oxidation of chlorobenzene (as a model VOC molecule) was investigated in a fixed bed reactor. The Mn3O4 phase was formed in Ce–Fe–Mn catalysts at low calcination temperatures (<400 °C), which introduced more chemisorbed oxygen, and enhanced the mobility of O atoms, resulting in an improvement of the reduction active of Mn3O4 and Fe2O3. Additionally, CeO2 has strong redox properties, and Ce4+ would oxidize Mnx+ and Fex+. Therefore, the interaction of Ce, Fe and Mn can improve the content of surface chemisorbed oxygen. As compared with Fe–Mn catalysts, the catalytic conversion of chlorobenzene over Ce(5%)–Fe–Mn-400 was about 99% at 250 °C, owing to high specific surface area, Mn3O4 phase, and Ce doping. However, with the increase in roasting temperature, the performance of the catalysts for the catalytic combustion of chlorobenzene was decreased, which probably accounts for the formation of the Mn2O3 phase in Ce–Fe–Mn-500 catalysts, leading to a decrease in the specific surface area and concentration of chemically adsorbed oxygen. As a result, it can be expected that the Ce–Fe–Mn catalysts are effective and promising catalysts for chlorobenzene destruction.

Ce–Fe–Mn catalysts were prepared by an oxalic acid assisted co-precipitation method.  相似文献   

6.
Considering the three-dimensional ordered network of Ni foam-supported catalysts and the toxicity effects of volatile organic compounds (VOCs), the design of proper active materials for the highly efficient elimination of VOCs is of vital importance in the environmental field. In this study, a series of Co–Mn composite oxides with different Co/Mn molar ratios grown on interconnected Ni foam are prepared as monolithic catalysts for total toluene oxidation, in which Co1.5Mn1.5O4 with a molar ratio of 1 : 1 achieves the highest catalytic activity with complete toluene oxidation at 270 °C. The Co–Mn monolithic catalysts are characterized by XRD, SEM, TEM, H2-TPR and XPS. It is observed that a moderate ratio of Mn/Co plays significant effects on the textural properties and catalytic activities. From the XPS and H2-TPR characterization results, the obtained Co1.5Mn1.5O4 (Co/Mn = 1/1) favors the excellent low-temperature reducibility, high concentration of surface Mn3+ and Co3+ species, and rich surface oxygen vacancies, resulting in superior oxidation performance due to the formation of a solid solution between the Co and Mn species. It is deduced that the existence of the synergistic effect between Co and Mn species results in a redox reaction: Co3+–Mn3+ ↔ Co2+–Mn4+, and enhances the catalytic activity for total toluene oxidation.

A series of Co–Mn oxides with different Co/Mn molar ratios grown on interconnected Ni foam were prepared as monolithic catalysts for total toluene oxidation.  相似文献   

7.
Mn-Based catalysts supported on γ-Al2O3, TiO2 and MCM-41 synthesized by an impregnation method were compared to evaluate their NO catalytic oxidation performance with low ratio O3/NO at low temperature (80–200 °C). Activity tests showed that the participation of O3 remarkably promoted the NO oxidation. The catalytic oxidation performance of the three catalysts decreased in the following order: Mn/γ-Al2O3 > Mn/TiO2 > Mn/MCM-41, indicating that Mn/γ-Al2O3 exhibited the best catalytic activity. In addition, there was a clear synergistic effect between Mn/γ-Al2O3 and O3, followed by Mn/TiO2 and O3. The characterization results of XRD, EDS mapping, BET, H2-TPR, XPS and TG showed that Mn/γ-Al2O3 had good manganese dispersion, excellent redox properties, appropriate amounts of coexisting Mn3+ and Mn4+ and abundant chemically adsorbed oxygen, which ensured its good performance. In situ DRIFTS demonstrated the NO adsorption performance on the catalyst surface. As revealed by in situ DRIFTS experiments, the chemically adsorbed oxygen, mainly from the decomposition of O3, greatly promoted the NO adsorption and the formation of nitrates. The Mn-based catalysts showed stronger adsorption strength than the corresponding pure supports. Due to the abundant adsorption sites provided by pure γ-Al2O3, under the interaction of Mn and γ-Al2O3, the Mn/γ-Al2O3 catalyst exhibited the strongest NO adsorption performance among the three catalysts and produced lots of monodentate nitrates (–O–NO2) and bidentate nitrates (–O2NO), which were the vital intermediate species for NO2 formation. Moreover, the NO–TPD studies also demonstrated that Mn/γ-Al2O3 showed the best NO desorption performance among the three catalysts. The good NO adsorption and desorption characteristics of Mn/γ-Al2O3 improved its high catalytic activity. In addition, the activity test results also suggested that Mn/γ-Al2O3 exhibited good SO2 tolerance.

The Mn/γ-Al2O3 catalyst exhibited excellent performance for NO conversion in the presence of a low ratio of O3/NO, which was due to the coexistence of Mn3+ and Mn4+ and abundant chemically adsorbed oxygen.  相似文献   

8.
A new type of monoethanolamine (MEA) and Mn4+ co-doped KTF : MEAH+, Mn4+ (K2TiF6 : 0.1MEAH+, 0.06Mn4+) red emitting phosphor was synthesized by an ion exchange method. The prepared Mn4+ co-doped organic–inorganic hybrid red phosphor exhibits sharp red emission at 632 nm and the emission intensity at room temperature is 1.43 times that of a non-hybrid control sample KTF : Mn4+ (K2TiF6 : 0.06Mn4+). It exhibits good luminescent thermal stability at high temperatures, and the maximum integrated PL intensity at 150 °C is 2.34 times that of the initial value at 30 °C. By coating a mixture of KTF : MEAH+, Mn4+, a yellow phosphor (YAG : Ce3+) and epoxy resin on a blue InGaN chip, a prototype WLED (white light-emitting diode) with CCT = 3740 K and Ra = 90.7 is assembled. The good performance of the WLED shows that KTF : MEAH+, Mn4+ can provide a new choice for the synthesis of new Mn4+ doped fluoride phosphors.

KTF : MEAH+, Mn4+ exhibits good luminescent thermal stability at high temperatures, and the maximum integrated PL intensity at 150 °C is 2.34 times the initial value at 30 °C.  相似文献   

9.
In this study, to evaluate the effects of two methods for activation of nitric acid, air thermal oxidation and Ce doping were applied to a Cu–Ni/activated carbon (AC) low-temperature CO-SCR denitration catalyst. The Cu–Ni–Ce/AC0,1 catalyst was prepared using the ultrasonic equal volume impregnation method. The physical and chemical structures of Cu–Ni–Ce/AC0,1 were studied using scanning electron microscopy, Brunauer–Emmett–Teller analysis, Fourier-transform infrared spectroscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, CO-temperature programmed desorption (TPD) and NO-TPD characterisation techniques. It was found that the denitration efficiency of 6Cu–4Ni–5Ce/AC1 can reach 99.8% at a denitration temperature of 150 °C, a GHSV of 30 000 h−1 and 5% O2. Although the specific surface area of the AC activated by nitric acid was slightly lower than that activated by air thermal oxidation, the pore structure of the AC activated by nitric acid was more developed, and the number of acidic oxygen-containing functional groups was significantly increased. Ce metal ions were inserted into the graphite microcrystalline structure of AC, splitting it into smaller graphene fragments, whereby the dispersibility of Cu and Ni was improved. In addition, many reaction units were formed on the catalyst surface, which could adsorb more CO and NO reaction gases. With the increase in Ce doping, the relative proportions of Cu2+/Cun+, Ni3+/Nin+ and surface adsorbed oxygen (Oα) in the Cu–Ni–Ce/AC0,1 catalyst increased. In addition, after the introduction of Ce into Cu–Ni/AC, the amount of weak and medium acids significantly increased. This may be due to the Ce species or its influence on the Cu/Ni species. Further, the active sites of the acid were more exposed. According to the results of the study, a composite metal oxide CO-SCR denitration mechanism is proposed. Through the oxidation–reduction reaction between the metals, the reaction gas of CO and NO is adsorbed and the incoming O2 is converted into (Oα), which promotes the conversion of NO into NO2. The CO-SCR reaction is accelerated, and the rate of low-temperature denitration was increased. Overall, the results of this study will provide theoretical support for the research and development of low-temperature denitration catalysts for sintering flue gas in iron and steel enterprises.

In the process of denitrification, the reaction between NO and CO (NO + CO → N2 + CO2) occurs. There will be a redox reaction between copper, nickel and cerium (Cu2+ + Ce3+ → Cu+ + Ce4+, Ni3+ + Ce3+ → Ni2+ + Ce4+).  相似文献   

10.
MgTiO3 nanoparticles doped with Mn4+, with homogeneous size ranging about 63.1 ± 9.8 nm, were synthesized by a molten salt assisted sol gel method. These nanoparticles have been investigated as optical thermal sensors. The luminescence of tetravalent manganese ion in octahedral environment within the perovskite host presents drastic variations with temperature. Three different thermometry approaches have been proposed and characterized. Two luminescence intensity ratios are studied. Firstly between the two R-lines of Mn4+ emission at low temperature (−250 °C and −90 °C) with a maximal sensitivity of 0.9% °C−1, but also secondly between 2E → 4A2 (R-line) and the 4T24A2 transitions. This allows studying the temperature variation within a larger temperature range (−200 °C to 50 °C) with a sensitivity between 0.6% °C−1 and 1.2% °C−1 over this range. The last proposed method is the study of the lifetime variation versus temperature. The effective lifetime value corresponds to a combination of transitions from two excited energy levels of the tetravalent manganese (2E and 4T2) in thermal equilibrium toward the fundamental 4A2 state. Since the more energetic transition (4T24A2) is spin-allowed, contrary to the 2E → 4A2 one, the lifetime drastically decreases with the increase in temperature leading to an impressive high sensitivity value of 4.1% °C−1 at 4 °C and an exceptional temperature resolution of 0.025 °C. According to their optical features, MgTiO3:Mn4+ nanoparticles are indeed suitable candidates for the luminescence temperature probes at the nanoscale over several temperature ranges.

Luminescence properties of MgTiO3 nanoparticles doped with Mn4+ ions are investigated for precise temperature determination.  相似文献   

11.
Oxo and thiomolybdenum(iv/vi) imidazole hydrocitrates K2{MoIV3O4(im)3[MoVIO3(Hcit)]2}·3im·4H2O (1), (Him)2{MoIV3SO3(im)3[MoVIO3(Hcit)]2}·im·6H2O (2), molybdenum(v) bipyridine homocitrate trans-[(MoVO)2O(H2homocit)2(bpy)2]·4H2O (3) and molybdenum(vi) citrate (Et4N)[MoVIO2Cl(H2cit)]·H2O (4) (H4cit = citric acid, H4homocit = homocitric acid, im = imidazole and bpy = 2,2′-bipyridine) with different oxidation states were prepared. 1 and 2 are the coupling products of [MoVIO3(Hcit)]3− anions and incomplete cubane units [MoIV3O4]4+ ([MoIV3SO3]4+) with monodentate imidazoles, respectively, where tridentate citrates coordinate with α-hydroxy, α-carboxy and β-carboxy groups, forming pentanuclear skeleton structures. The molybdenum atoms in 1 and 2 show unusual +4 and +6 valences based on charge balances, theoretical bond valence calculations and Mo XPS spectrum. The coordinated citrates in 1 and 2 are protonated with α-hydroxy groups, while 3 and 4 with higher oxidation states of +5 and +6 are deprotonated with α-alkoxy group even under strong acidic condition, respectively. This shows the relationship between the oxidation state and protonation of the α-alkoxy group in citrate or homocitrate, which is related to the protonation state of homocitrate in FeMo-cofactor of nitrogenase. The homocitrate in 3 chelates to molybdenum(v) with bidentate α-alkoxy and monodentate α-carboxy groups. Molybdenum(vi) citrate 4 is only protonated with coordinated and uncoordinated β-carboxy groups. The solution behaviours of 1 and 2 are discussed based on 1H and 13C NMR spectroscopies and cyclic voltammograms, showing no decomposition of the species.

Oxo and thiomolybdenum(iv/vi) citrates, molybdenum(v) homocitrate and molybdenum(vi) citrate were obtained, showing the influence of coordinated α-hydroxy and α-alkoxy groups with different oxidation states.  相似文献   

12.
An all-oxide thermoelectric generator for high-temperature operation depends on a low electrical resistance of the direct p–n junction. Ca3Co4−xO9+δ and CaMnO3−δ exhibit p-type and n-type electronic conductivity, respectively, and the interface between these compounds is the material system investigated here. The effect of heat treatment (at 900 °C for 10 h in air) on the phase and element distribution within this p–n junction was characterized using advanced transmission electron microscopy combined with X-ray diffraction. The heat treatment resulted in counter diffusion of Ca, Mn and Co cations across the junction, and subsequent formation of a Ca3Co1+yMn1−yO6 interlayer, in addition to precipitation of Co-oxide, and accompanying diffusion and redistribution of Ca across the junction. The Co/Mn ratio in Ca3Co1+yMn1−yO6 varies and is close to 1 (y = 0) at the Ca3Co1+yMn1−yO6–CaMnO3−δ boundary. The existence of a wide homogeneity range of 0 ≤ y ≤ 1 for Ca3Co1+yMn1−yO6 is corroborated with density functional theory (DFT) calculations showing a small negative mixing energy in the whole range.

The heat treatment beneficially affects the performance of an all-oxide thermoelectric generator through phase and element distribution within this p–n junction.  相似文献   

13.
(Tb1−xMnx)3Al2(Al1−xSix)3O12:Ce3+ solid solution phosphors were synthesized by introducing the isostructural Mn3Al2(SiO4)3 (MAS) into Tb3Al5O12:Ce3+ (TbAG). Under 456 nm excitation, (Tb1−xMnx)3Al2(Al1−xSix)3O12:Ce3+ shows energy transfers (ET) in the host, which can be obtained from the red emission components to enhance color rendering. Moreover, (Tb1−xMnx)3Al2(Al1−xSix)3O12:Ce3+ (x = 0–0.2) exhibits substantial spectral broadening (68 → 86 nm) due to the 5d → 4f transition of Ce3+ and the 4T16A1 transition of Mn2+. The efficiency of energy transfer (ηT, Ce3+ → Mn2+) gradually increases with increasing Mn2+ content, and the value reach approximately 32% at x = 0.2. Namely, the different characteristics of luminescence evolution based on the effect of structural variation by substituting the (MnSi)6+ pair for the larger (TbAl)6+ pair. Therefore, with structural evolution, the luminescence of the solid solution phosphors could be tuned from yellow to orange-red, tunable by increasing the content of MAS for the applications of white light emitting diodes (wLED).

(Tb1−xMnx)3Al2(Al1−xSix)3O12:Ce3+ solid solution phosphors were synthesized by introducing the isostructural Mn3Al2(SiO4)3 (MAS) into Tb3Al5O12:Ce3+ (TbAG).  相似文献   

14.
A MnO–CrN composite was obtained via the ammonolysis of the low-cost nitride precursors Cr(NO3)3·9H2O and Mn(NO3)2·4H2O at 800 °C for 8 h using a sol–gel method. The specific surface area of the synthesized powder was measured via BET analysis and it was found to be 262 m2 g−1. Regarding its application, the electrochemical sensing performance toward hydrogen peroxide (H2O2) was studied via applying cyclic voltammetry (CV) and amperometry (it) analysis. The linear response range was 0.33–15 000 μM with a correlation coefficient (R2) value of 0.995. Excellent performance toward H2O2 was observed with a limit of detection of 0.059 μM, a limit of quantification of 0.199 μM, and sensitivity of 2156.25 μA mM−1 cm−2. A short response time of within 2 s was achieved. Hence, we develop and offer an efficient approach for synthesizing a new cost-efficient material for H2O2 sensing.

A MnO–CrN composite was obtained via the ammonolysis of the low-cost nitride precursors Cr(NO3)3·9H2O and Mn(NO3)2·4H2O at 800 °C for 8 h using a sol–gel method.  相似文献   

15.
Cu–Al–Ox mixed metal oxides with intended molar ratios of Cu/Al = 85/15, 78/22, 75/25, 60/30, were prepared by thermal decomposition of precursors at 600 °C and tested for the decomposition of nitrous oxide (deN2O). Techniques such as XRD, ICP-MS, N2 physisorption, O2-TPD, H2-TPR, in situ FT-IR and XAFS were used to characterize the obtained materials. Physico-chemical characterization revealed the formation of mixed metal oxides characterized by different specific surface area and thus, different surface oxygen default sites. The O2-TPD results gained for Cu–Al–Ox mixed metal oxides conform closely to the catalytic reaction data. In situ FT-IR studies allowed detecting the form of Cu+⋯N2 complexes due to the adsorption of nitrogen, i.e. the product in the reaction between N2O and copper lattice oxygen. On the other hand, mostly nitrate species and NO were detected but those species were attributed to the residue from catalyst synthesis.

Cu–Al–Ox mixed metal oxides with intended molar ratios of Cu/Al = 85/15, 78/22, 75/25, 60/30, were prepared by thermal decomposition of precursors at 600 °C and tested for the decomposition of nitrous oxide (deN2O).  相似文献   

16.
In understanding the catalytic efficacy of silver (Ag0) and gold (Au0) nanoparticles (NPs) on glass-ceramic (GC) crystallization, the microstructure–machinability correlation of a SiO2–MgO–Al2O3–B2O3–K2O–MgF2 system is studied. The thermal parameters viz., glass transition temperature (Tg) and crystallization temperature (Tc) were extensively changed by varying NPs (in situ or ex situ). Tc was found to be increased (Tc = 870–875 °C) by 90–110 °C when ex situ NPs were present in the glass system. Under controlled heat-treatment at 950 ± 10 °C, the glasses were converted into glass-ceramics with the predominant presence of crystalline phase (XRD) fluorophlogopite mica, [KMg3(AlSi3O10)F2]. Along with the secondary phase enstatite (MgSiO3), the presence of Ag and Au particles (FCC system) were identified by XRD. A microstructure containing spherical crystallite precipitates (∼50–400 nm) has been observed through FESEM in in situ doped GCs. An ex situ Ag doped GC matrix composed of rock-like and plate-like crystallites mostly of size 1–3 μm ensured its superior machinability. Vicker''s and Knoop microhardness of in situ doped GCs were estimated within the range 4.45–4.61 GPa which is reduced to 4.21–4.34 GPa in the ex situ Ag system. Machinability of GCs was found to be in the order, ex situ Ag > ex situ Au ∼ in situ Ag > in situ Au. Thus, the ex situ Ag/Au doped SiO2–MgO–Al2O3–B2O3–K2O–MgF2 GC has potential for use as a machinable glass-ceramic.

In understanding the catalytic efficacy of silver (Ag0) and gold (Au0) nanoparticles (NPs) on glass-ceramic (GC) crystallization, the microstructure–machinability correlation of a SiO2–MgO–Al2O3–B2O3–K2O–MgF2 system is studied.  相似文献   

17.
Five new isostructural lanthanide–organic complexes, [Ln2O2(OH)(HQXD)(H2QXD)2]·H2O (Ln = Eu 1, Tb 2, Sm 3 Dy 4 and Gd 5; H2QXD = quinoxaline-2,3(1H,4H)-dione), have been synthesized under hydrothermal conditions. These complexes are characterized by powder X-ray diffraction (PXRD), infrared spectroscopy (IR), elemental analysis (EA), thermogravimetric-differential thermal analysis (TG-DTA) and photo-luminescent spectroscopy. Single crystal X-ray diffraction analysis of complex 1 revealed that the structure featured in 1D chiral “Eu2O3” chains surrounded by coordinating organic ligands. These chains are interconnected via hydrogen bonding and offset π⋯π stacking interactions of the ligands to form the 3D supramolecular frameworks. The photo-luminescence studies for complexes 1–5 disclosed that the ligand (H2QXD) showed an antenna effect to transfer energy toward the lanthanide cations. The energy transfer mechanism investigations show that the energy transition from the triplet energy level (3ππ*) of ligand H2QXD to the Tb3+ cation is more effective than to the Eu3+, Sm3+ and Dy3+ ions; therefore it has been selected as a representative to examine the potential for sensing small molecules. Complex 2′, which was obtained by the heating treatment of 2 at 150 °C, displayed a high luminescence sensitivity towards small solvent molecules. Tertiary butanol (t-butanol) was found to be an excellent sensitizer, while tetrahydrofuran (THF) was a highly quenching species. Complex 2′ could regain a higher photo-luminescence intensity after treating for 5 cycles with t-butanol, revealing a prospect for reusability.

A series of isostructural lanthanide–quinoxaline-2,3(1H,4H)-dione containing 1D chiral chains shows high sensing effect toward the small solvent molecules, in which tertiary butanol was an excellent sensitizer, while tetrahydrofuran was a highly quenching species.  相似文献   

18.
Compared with pure Pb-based perovskite ferroelectric materials, BiMeO3–PbTiO3 (Me = Sc3+, In3+, and Yb3+) systems have remarkable advantages in their Curie temperatures. As a member of this group, the BiScO3–PbTiO3 (BS–PT) solid solution has drawn considerable attention from scientists for its high Curie temperature and excellent piezoelectric coefficient. However, BS–PT ceramics still have some shortcomings, such as high dielectric loss and low mechanical quality factor, which make them unsuitable for high-temperature applications. Herein, we report the effect of the addition of complex ions on the electrical properties of BS–PT ceramics. Sb2O3-doped 0.36BiScO3–0.64PbTi0.97Fe0.03O3 + 1 mol% MnO2 (BS–PTFMn + x% Sb2O3) ceramics were fabricated and their electrical properties were studied. BS–PTFMn + 0.75% Sb2O3 had an optimal piezoelectric coefficient, exhibiting which indicates that Sb2O3 doping can improve the piezoelectric properties of the BS–PT ceramics, exhibiting a “soft” effect of Sb2O3 doping. In addition, the thermal depolarization temperature (Td) of BS–PTFMn + 0.75% Sb2O3 ceramics remained above 300 °C, such as 325 °C for BS–PTFMn + 0.75% Sb2O3. It was concluded that the piezoelectric properties of BS–PT ceramics were enhanced by the addition of Sb2O3.

Compared with pure Pb-based perovskite ferroelectric materials, BiMeO3–PbTiO3 (Me = Sc3+, In3+, and Yb3+) systems have remarkable advantages in their Curie temperatures.  相似文献   

19.
This work focuses on the microstructural analysis, magnetic properties, magnetocaloric effect, and critical exponents of Ni0.6Cd0.2Cu0.2Fe2O4 ferrites. These samples, denoted as S1000 and S1200, were prepared using the sol–gel method and sintered separately at 1000 °C and 1200 °C, respectively. XRD patterns confirmed the formation of cubic spinel structures and the Rietveld method was used to estimate the different structural parameters. The higher sintering temperature led to an increased lattice constant (a), crystallite size (D), magnetization (M), Curie temperature (TC), and magnetic entropy change (−ΔSM) for samples that exhibited second-order ferromagnetic–paramagnetic (FM–PM) phase transitions. The magnetic entropy changed at an applied magnetic field (μ0H) of 5 T, reaching maximum values of about 1.57–2.12 J kg−1 K−1, corresponding to relative cooling powers (RCPs) of 115 and 125 J kg−1 for S1000 and S1200, respectively. Critical exponents (β, γ, and δ) for samples around their TC values were studied by analyzing the M(μ0H, T) isothermal magnetizations using different techniques and checked by analyzing the −ΔSMvs. μ0H curves. The estimated values of β and γ exponents (using the Kouvel–Fisher method) and δ exponent (from M(TC, μ0H) critical isotherms) were β = 0.443 ± 0.003, γ = 1.032 ± 0.001, and δ = 3.311 ± 0.006 for S1000, and β = 0.403 ± 0.008, γ = 1.073 ± 0.016, and δ = 3.650 ± 0.005 for S1200. Obviously, these critical exponents were affected by an increased sintering temperature and their values were different to those predicted by standard theoretical models.

This work focuses on the microstructural analysis, magnetic properties, magnetocaloric effect, and critical exponents of Ni0.6Cd0.2Cu0.2Fe2O4 ferrites.  相似文献   

20.
An acidic polysaccharide, named LAP-1, was extracted and isolated from Leonurus artemisia (Laur.), and was further purified with ion exchange chromatography and gel chromatography. The extraction conditions of the crude polysaccharides were optimized by single-factor experiments and response surface methodology. The primary structure of the purified polysaccharide was measured by FT-IR, GC-MS, and NMR. The results showed that LAP-1 was mainly composed of galacturonic acid (GalA), mannose (Man), xylose (Xyl), rhamnose (Rha), arabinose (Ara), glucose (Glc), galactose (Gal), fucose (Fuc), ribose (Rib), and glucuronic acid (GlcA) in the molar ratio of 8.74 : 3.45 : 1.02 : 1 : 2.11 : 5.60 : 4.73 : 1.08 : 1.09 : 1.47. Primary structure analysis results indicated that LAP-1 contained characteristic glycosyl linkages such as →1)-α-d-Manp, →1)-α-d-Glcp, →1)-α-d-Arap-(2→, →1)-β-d-Galp-(3→, →1)-β-d-Manp-(4→, →1)-β-d-Galp-(4→, →1)-β-d-Glcp-(4→, →1)-β-d-GalAp-(4→, →1)-β-d-GlcAp-(4→, →1)-β-d-Manp-(4,6→, →1)-β-d-Manp-(3,4→. The Mw/Mn (PDI), Mn, Mz and Mw of LAP-1 were determined to be 1.423, 6.979 × 103 g mol−1, 1.409 × 104 g mol−1, and 9.930 × 103 g mol−1 by HPSEC-MALLS-RID and DLS. SEM, TEM and AFM results indicated that LAP-1 was a highly branched structure. LAP-1 showed mild anticoagulant activity, low toxicity, and less spontaneous bleeding compared with heparin sodium. These results demonstrated the effective coagulation activity of Leonurus artemisia polysaccharides. Thus, the purified LAP-1 could be explored as a promising anticoagulant agent for the treatment of coagulation disorders.

An acidic polysaccharide, denoted LAP-1 was extracted, isolated and purified from Leonurus artemisia (Laur.), in addition to its structure and anticoagulant activity were explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号